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Abstract

In this paper we combine methods from the field of computer vision with surface
editing techniques to generate animated faces, which are all in full correspondence
to each other. The inputs for our system are synchronized video streams from
multiple cameras. The system produces a sequence of triangle meshes with fixed
connectivity, representing the dynamics of the captured face. By carefully tak-
ing all requirements and characteristics into account we decided for the proposed
system design: We deform an initial face template using movements estimated
from the video streams. To increase the robustness of the reconstruction, we use
a morphable model as a shape prior to initialize a surfel fitting technique which is
able to precisely capture face shapes not included in the morphable model. In the
deformation stage, we use a 2D mesh based tracking approach to establish corre-
spondences over time. We then reconstruct positions in 3D using the same surfel
fitting technique, and finally use the reconstructed points to robustly deform the
initially reconstructed face. We demonstrate the applicability of the tracked face
template for automatic modeling and show how to use deformation transfer to at-
tenuate expressions, blend expressions or how to build a statistical model, similar
to a morphable model, on the dynamic movements.
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Figure 1: Workflow to reconstruct a dynamic face. (a) Views from different directions and cam-
era rig. (b) Top: Morphable model after optimizing rigid transformation and shape parameters.
Bottom: Reconstruction of the neutral face from the first image. (c¢) The 2D mesh tracking estab-
lishes temporal correspondences between the frames. (d) Top: The surfel fitting produces a point
cloud, which may contains some holes. Bottom: Result of the 3D mesh tracking: Successfully
reconstructed surfels define constraints for a non-rigid deformation of the initial face template.

1. Introduction

The dense motion capture of facial movements is an important part to generate
data driven facial animations. The acquired motion data can be used to create an-
imations for movies, computer games, or humanoid avatars which can be utilized
in scientific as well as commercial applications. Standard face tracker based mo-
tion capture systems often record only sparse temporal and spatial data and need
to place special markers onto the face of an actor. In many applications like psy-
chological studies, where the original video should be as natural as possible, it is
not possible to use markers or any artificial texture to ease the reconstruction pro-
cess (paint, structured light, efc.). Modern multi-camera and computer systems
offer the possibility to acquire and analyze large amounts of image data, which
makes the dense reconstruction and example based synthesis of facial movements
possible.

In this paper, we exploit methods from computer vision and mesh editing
to compute a dense motion field for facial animations from synchronized video
streams. The output of our system is a motion field represented by a predefined
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face template whose vertices move in time according to the underlying scene flow.
In many applications such as the re-targeting of facial movements, expression
blending or statistical analysis of motion data, it is essential to establish corre-
spondences between vertices not only from frame to frame, but also between dif-
ferent data sets. Since we use a predefined face template which is fitted to an
individual face, we immediately obtain the correspondences between all acquired
reconstructions.

To increase robustness, we use the surface from the previous frame to initial-
ize the 3D reconstruction for the current frame. In order to robustly obtain the
reconstruction in the first frame we use a simple morphable model, with only a
few shape parameters, just to initialize the face template for the first frame of the
video stream. Tracking in 2D to establish correspondences in time is done by an
optical flow like approach, while our 3D reconstruction is a variant of the surfel
fitting approach [1].

In many applications, e.g., the design of stimulus material for psychological
studies, it is of interest to blend existing facial movements or to attenuate facial
expressions. We describe how to use deformation transfer [2] as a key technique
in order to transfer, blend and attenuate expressions. Furthermore we introduce a
new statistical model, computed from the time varying deformations of the trian-
gles of different face templates, representing the average of specific expressions
and its main deviation modes.

The main contributions of this paper are

e A simple and easy to implement formulation of the surfel fitting [1] ap-
proach to reconstruct 3D geometry.

e A carefully designed reconstruction system which reconstructs facial move-
ments from purely video data at high frame rates without using marker or
artificial textures and which guarantees full temporal and inter-subject cor-
respondences.

e A set of possible applications using the captured data to produce new facial
animations by linearly combining existing ones.

e A statistical analysis of the temporal deformation data (instead of just static
geometry) and a prototypical statistical model describing average dynamic
expressions and their main deviation modes.



1.1. Related Work
Our system is related to previous work in the areas of facial modeling, face
capture and facial animation.

A common technique to generate (caricatured) facial movements for movies
and computer games is Free Form Deformation (FFD). FFD provides a frame-
work which allows artists to drag vertices of a cage to intuitively deform the space
inside the cage and thus the underlying geometry. Sophisticated methods, e.g.,
introduced in [3, 4, 5], compute mappings in 3D space which do not induce large
distortions (such as volumetric shrinking). Using such tools, artists can be very
creative when producing animation sequences, but the major disadvantage is that
this is very time consuming.

One way to simulate realistic movements of a human face is to use physically
based methods, which usually rebuild some anatomical features of the human head
with the aim of mimicking natural movements. Waters [6] simulates facial muscle
contractions by abstracting the facial action units originally introduced by Ekman
and Friesen [7]. However, this work only uses a few muscles to reproduce basic
human emotions. Similarly, Lee et al. [8] build an anatomically accurate physi-
cally based head model with tissue, skull and synthetic muscles, which are used
to deform the tissue to produce facial expressions. Kéhler et al. [9] use a similar
model to perform real-time deformations based on anthropometrically meaningful
landmarks. Their method is also capable of simulating aging. Sifakis et al. [10]
uses finite element methods to deform the synthetic tissues around a skull model.
It also uses a set of sparse surface landmarks to track facial movements with a
motion capture system.

The major problem with all biomechanical models is that it is quite difficult
to build them correctly, because our anatomical knowledge about human skin,
muscles, and bone structures is still limited. Thus, models sometimes require ex-
tensive tuning to produce a realistic output. Our animation technique is purely
data driven and does not require this special parameter tuning.

Most data driven facial animation systems track special markers placed on
an actors face [11, 10, 12, 13]. The so captured trajectories typically represent
the movements of the face in a very sparse way. To improve geometric details,
Bickel [12] added wrinkles to a facial base mesh, which is deformed by the motion
capture data using a shell based mesh deformation method. In many applications,
e.g., the aforementioned psychological studies where the original videos should
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appear as natural as possible, markers are forbidden to use. This motioned us to
focus on a markerless capture system for facial animations. Zhang et al. [14] re-
formulated space-time stereo as a global optimization problem to compute a time
varying disparity map between two image sequences obtained by a structured light
system. Then they fit a template mesh to the time varying depth maps and use op-
tical flow conditions to maintain temporal correspondences in a markerless setup.
Since we use pure video data instead of structured light scanners we deal with a
different setup, which works at potentially higher frame rates. In the animation
synthesis part the authors produce compelling facial expressions and data driven
animations. However, for these steps only one input sequence of a specific subject
is considered, while we also consider the blending of motion data from different
subjects and an inter-subject analysis of the dynamics of faces. Ma et al. [15]
enrich sparse motion capture data with fine geometric details by using an active
sensing method. In their setup they use structured light scanning and photometric
stereo to capture wrinkles and fine facial features, while motion capture markers,
which make this also a marker based method, are used to track large scale de-
formations and to establish correspondences between faces. In a training phase
polynomial displacement maps are computed to represent medium-frequency fa-
cial deformations and high-frequency facial details and used in a synthesis phase
to produce new animation sequences. Since our markerless system maintains ver-
tex correspondences between faces and through time we can use a rather simple
approach, like the one proposed by Botsch et al. [2], to transfer (blended) defor-
mations to other faces.

Other active sensing methods were proposed by Hernadndez et al. [16] which
use multispectral photometric stereo to compute a dense normal field from untex-
tured surfaces. Weise et al. [17] use active illumination based on phase-shift to re-
construct surfaces at high frame rates. A drawback of both approaches is that they
are unable to maintain correspondences between vertices in time. In [18] Weise et
al. improved their system to be able to track a generic face template. These data
were used to create an actors face model in an offline process which enables to
track and transfer facial movements of this actor in real time to other faces. In our
application we also consider the related deformation transfer of Botsch et al. [2]
as a key technique. Additionally we introduce a statistical expression model by
performing a principal component analysis on the time varying deformations of
the templates triangles.

Since we do not use active sensing methods [14, 16, 17, 15, 18], which in
general need special hardware to project light patterns or colors onto an object in
order to ease the reconstruction, we get by with a rather cheap, easy to get (unlike,



e.g., the scanner invented by Weise et al., which is currently not purchasable) and
simple camera setup, which potentially can produce sequences at higher frame
rates.

A famous data driven approach was suggested by Blanz and Vetter [19]. They
learn shape and texture parameters for a morphable model by performing a prin-
cipal component analysis (PCA) on a set of laser scans of human heads. In a pure
image based approach, they optimize these parameters to extract static geometry
and texture of a human head from a photo. In order to decouple identities, ex-
pressions and visemes Vlasic et al. [20] use multilinear models. They perform a
statistical analysis on the captured data to obtain a multilinear face model. With
this model they were able to track facial movements from a monocular video and
transfer moods and articulation to another video. Dellepiane ef al. [21] deform a
dummy head to reconstruct the shapes of human heads from images and used them
for binaural rendering. Active Appearance Models (AAMs), as in [22, 23], are
used to track motion through (multiview) image sequences. As with all morphable
models, though, the reconstructions are always restricted to the low-dimensional
space spanned by the parametric model, while our reconstruction method pro-
duces results not restricted to such parametric spaces, since the shape model is
only used for the robust initialization. Moreover, we build a statistical model by
analyzing the dynamics of the faces instead of static poses and use this model to
synthesize expressions.

Vedula et al. introduced the term dense scene flow in [24], which was further
improved by Li and Sclaroff [25]. In their pure video based approach they refor-
mulate the optical flow problem, find corresponding pixels in time, and use dispar-
ity to find correspondences between different views. The extraction of geometric
information which could be used for simple visibility tests was not considered.
In [26] Furukawa extended their reconstruction approach to track vertices of a
mesh reconstructed in the first image of a video stream. In order to ease the 3D
stereo reconstruction and to produce compelling results they put additional paint
on the faces. We designed our system such that we always have good initial solu-
tions for the 3D reconstruction, thus we do not need to artificially texture human
faces. Another difference is that we use a predefined template with fixed topology,
which gives us inter-subject correspondences and simplifies deformation transfer
and blending. Borshukov et al. [27] propose a system that is similar to ours. A
scanned model of a neutral expression of an actor is tracked in time. They use
optical flow to ensure temporal correspondences and use 3D stereo to triangulate
3D positions of the models vertices. Since they are using a very expensive cam-
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era setup (> 100.000 $) and correct tracking errors in 2D and 3D manually the
results look very impressive. There are other expensive commercial solutions to
capture facial movements from pure video data like DI3D™ from Digital Imag-
ing. Recently Bradley er al. [28] designed a passive, video based capture system
which does not need special markers. They use 7 stereo pairs of high resolution
cameras to reconstruct single patches, which are merged into a 3D point cloud.
An optical flow based tracking which involves minimal user interaction is used
to establish temporal correspondences. With this quite expensive system they are
able to create textured animated faces in a high resolution. Our method is low-cost
and the tracking part involves no manual interaction. In addition we decided to
use a mesh based 2D tracking, which allows to track, e.g., upper and lower lips
independently, while in general a simple implementation of optical flow would
smooth those contradictory up and down motions, which might cause strong drift-
ing artifacts.

In the area of facial animation there are many different approaches for retar-
geting facial expressions. Noh et al. [29] roughly select correspondences between
a source and a target mesh manually and refine them by using radial basis func-
tions. Displacement vectors are rotated into local coordinates of a target mesh
and scaled appropriately in order to take local geometric differences into account.
Similar to the method proposed by Na et al. [30], where a base mesh is fitted by
a user to a target mesh and fine geometric details such as wrinkles are transferred
to the target mesh in an hierarchical approach, this technique is well suited to
transfer vertex displacements to another mesh with a complete different topology.
Our capture system ensures the faces to be in full inter-subject as well as temporal
correspondence and we can use a straight forward and robust technique to transfer
facial deformations by applying the deformation gradient of each source triangle
to the target triangle as described in [31, 2]. Moreover, it is possible to blend
deformations and compute a statistical expression model as we will show in the
applications section.

1.2. Overview

To generate the input for our system, five synchronized cameras are mounted
on a rig and calibrated (finding intrinsic and extrinsic camera parameters) to cap-
ture the dynamic facial expressions of different subjects. Each of the cameras
record images at 30 FPS with a resolution of 640 x 480 (Figure 1a shows the rig,
together with four images from the middle of a sequence). Our system processes



the images after the capture, so higher frame rates > 60 FPS are possible if this is
supported by the camera hardware.

The first image of each sequence shows the face in its neutral pose. In order
to be able to track facial movements we need to reconstruct the face seen in the
first frame. Independently optimizing point depth values using surfel fitting would
produce a point cloud which can contain holes and outliers. We decided to use a
simple morphable model to estimate the shape of the face seen in the first frame
(see Section 3.1). This drastically increases to robustness of the surfel fitting be-
cause of the good initial surfel parameters. One requirement of our system is that
inter-subject correspondences have to be maintained. This becomes possible by
using a face template, containing a fixed number of vertices, which is in a one-to-
one correspondence with the vertices of the morphable model. Morphable models
are restricted to a space spanned by their training examples. In order to represent
more general shapes we additionally non-rigidly deform the resulting model to
produce a smooth face template, which is used for all further steps of the pipeline
(Figure 1b).

The initial face template is deformed during the whole sequence while corre-
spondences between the vertices of the template and the captured face are main-
tained. To achieve this, we combine mesh modeling techniques with multiview
stereo reconstruction: 2D image-samples, placed in the first image of every view,
are tracked over the entire sequence (Figure 1c). In order to establish temporal
correspondences between successive frames, we use a 2D mesh based tracking
approach. Simple feature tracker like the KLT tracker [32] often have the problem
that features slide past each other, since their displacements are optimized inde-
pendently of their local neighborhood. In the proposed 2D mesh tracking (Sec-
tion 3.2) we can control the global smoothness of the produced mapping to prevent
foldovers. Shooting rays through an image-sample of the first image hits the initial
face template and thereby defines an anchor point in 3D. At each step, the tracked
image-samples are reconstructed using the surfel fitting approach [1] (top of Fig-
ure 1d). Together with its anchor point lying on the surface of the face template, a
successfully reconstructed image-sample will provide a constraint which is used
in the modeling step to deform the face template (Figure 1d). See Section 3.3 for a
more precise description. The proposed modeling step has two advantages: First,
since the tracked face template provides good initial solutions the surfel fitting be-
comes much more robust. Second, even if the surfel fitting should not succeed the
face template can still be deformed using surrounding successfully reconstructed
surfels.

Since surfel fitting is used to reconstruct the initial face, as well as to track fa-
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cial movements we will describe this approach in the next section. The advantage
of this algorithm is its simplicity since each surfel can be optimized independently
from its local neighborhood.

After presenting our reconstruction results, we show the usability of such re-
constructed faces by numerous applications in Section 5: The fixed topology al-
lows for automatic placement of eyes, eyelids, lashes or denture. Deformation
transfer for triangle meshes [31, 2] is employed to transfer expressions from one
subject to another, attenuate an expression or blend expressions from different
subjects. In the end we introduce a dynamic face model, where a principal com-
ponent analysis is used to analyze the dynamic deformation of facial expressions.
The resulting statistical model has similarities to the morphable model of [19], but
instead of analyzing the point positions of one static shape we consider all defor-
mation gradients of all triangles and frames. In several examples we will illustrate
the presented techniques.

2. Surfel Fitting

Our 3D multi-view stereo reconstruction method is a modified version of the
surfel fitting approach introduced by Habbecke et al. [1]. The input for this algo-
rithm is a set of images obtained from calibrated cameras and an initial estimate
of a surface element (surfel) defined by a point and a normal. In order to cali-
brate the cameras, i.e., finding intrinsic parameters (focal length, principal point
and distortion) and extrinsic parameters (position and orientation of the cameras),
we employ the calibration method proposed by Zhang [33]. One could also use
classic vertex or pixel based reconstruction methods, but in our experiments sur-
fel fitting proved to be a quite robust and simple approach for multi-view stereo
reconstruction.

Surfel fitting uses the surfel’s associated plane and the cameras projection ma-
trices to define a homography which naturally maps pixels from a reference image
I, over the 3D plane to a comparison image /.. Thereby it is superior to ordinary
3D stereo reconstruction which often compare correlation windows of a fixed size
in image space, since perspective distortions, induced by the two projection steps
(onto the plane and into the comparison image), are handled automatically. It op-
timizes the parameters of the plane by minimizing differences in pixel intensities
between reference and comparison images.

Given the input plane defined by the initial position p € R? and normal n €
IR3, a reference image, and a set of comparison images for the plane are defined
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Figure 2: The 3D plane together with the image projection matrices define a homography H which
maps image points from I,. to points in the image /..

by:

ref(p) = I, re{l,...,C}
comp(p) = {l,,....1,.} c,...qe{l,...,C}

where C' is the total number of views. The reference image can for example be
chosen as the image where viewing direction and the vertex normal are closest to
parallel. In all the presented steps of the tracking workflow, we have a good initial
surface. Thus, the set of comparison images can be obtained by a simple visibility
test using the OpenGL z-Buffer.

For simplicity we consider only one comparison image /. in the following. Let
the projection matrices for the reference image and the comparison image be

Pr = [Qr’qr] and Pc = [Qc‘qc]

Without loss of generality, we can transform the scene by a matrix B such that
P/ = P,.B = [I3]|0]. Together with its normal n we define a plane at point p
as N7 = [nT, 5], with § = —p - n. By setting the origin of the transformed
coordinate system of the reference camera to the origin of the world coordinate
system, such that the plane through p is not passing through the origin, we can
scale the parameters of N such that 6 = 1. This shows that a plane in 3D space has
only three degrees of freedom. From now on we will only consider normalized
planes N = [nT, 1] = [n1,n2, n3, 1]. A plane determines a homography

H(N) = (6Q.-qn") (6Q, —qn")
= (0Q.—qn")
— (Q/c _ q’ch) c R3><3

-1
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which is used to define a warping function W.(N; p) : R* — R? mapping pixels
p = (u,v)T from the reference image to the comparison image by W.(N; p) =
(¢, 5)T (see Figure 2). The vector (a, b, )" is computed by the transformation of
the homogeneous pixel position (u, v, 1)T with the matrix H.(N)

a u
b| =H.(N) v
1

The goal is then to find new plane parameters which minimize the energy function

E(N) = f"(N)f(N) = ) (L(W.(N;p)) — I.(p))*

peQ

where () is a square region (we used 15 x 15 pixels in all our experiments) in
the reference image around the projection of the 3D point p. The vector f(N) €
R with components f; = I.(W.(N;P)) — I.(p) measures the differences
in pixel intensities between the reference and comparison image evaluated at the
positions p and W.(IN; p) respectively.

In order to find optimal plane parameters minimizing the energy function
E(N), we employ the Levenberg-Marquard algorithm [34]. For this we need
to calculate the Jacobian J = 63—12 € RI®*3 which is the derivative of each com-
ponent of f with respect to NV:

0fi(N)
ON

OW.(N;p)

R1X3
N -

= VI,

where V1. is the image gradient at the warped pixel position W.(N; p). Employ-
ing the quotient rule, the derivative of the warping function with respect to N can
be expressed by

15 dc Ie} Ie} 15 15
ﬁ cmag ﬁ‘c_“’ ancz ﬁ cma ancg
. A 2 2 2
aWC(Nv p) _ ¢ ¢ ¢ 2x3
—_— = eR
ON Ob . ,_p e Db,y e 0b .., oc
ony ony Ong Ong ong onsg
c? c? c?
a(avbvc)T — !/ 8(a,b,c)T — / 6(a7b7C)T — /! :
where =7=— = —q.u, =5~ = —q.v and =5>— = —q,. Following the

Levenberg-Marquard algorithm we use the first order Taylor expansion to lin-
earize

f(N + AN) ~ f(N) + JAN
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and find an update AN which minimizes E.(IN + AN) by solving the augmented
linear system
(JTT + M\I3)AN = —J7f(N),

where I3 is the 3 x 3 identity matrix and A is a damping factor which controls
the convergence of the optimization: An update AN is accepted if it leads to a
decrease of the error function, ie., E.(N + AN) < E.(N). In this case the
damping factor A is divided by 10. We increase A by a factor of 10 if the update
would lead to an increased error value and reject the update AN. Initially the
damping factor is set to A = 1073, For stability reasons we normalize the pixel
intensities within the small image regions by subtracting the average intensity of
that region.

After minimizing the energy function, the 3D position can be obtained by
shooting a ray through the center of {2 and computing the intersection with the
optimized plane. Occasionally, due to noise in the images or badly textured parts
in human faces, this process does not succeed at every vertex. If the plane equa-
tion is numerically ill-conditioned, the Levenberg-Marquard algorithm did not
converge or if the vertex is only visible in less than 2 cameras, we discard the
result. We also use a histogram based discarding criterion: If the final error, is
among the 20% largest errors we discard the surfel.

3. Workflow to reconstruct a dynamic face

In order to reconstruct the dynamics of a face, the first step is to fit the face
template to the individual geometry of the first frame. Then, the 2D mesh track-
ing establishes temporal correspondence between pixels of successive frames by
tracking image-samples distributed over regions of the first frame. Finally, 3D
reconstructions of these image-samples are used as constraints to deform the face
template and thereby capture the movement.

3.1. Initialization of the face template

Reconstructing a human face by just using surfel fitting would produce a point
cloud probably containing holes and outliers. For the first frame of the video
stream we overcome this by using a morphable model as a shape prior to recon-
struct the face. Our face template contains a fixed number of n vertices (~ 8K)
and is in a one-to-one correspondence with the vertices of the morphable model
(described in the next section). The basic appearance of a neutral face can be
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changed by adjusting the shape parameters of this model. We initialize the mor-
phable model by fitting it to a set of user defined points. Then the face is automat-
ically tracked in 3D by employing the temporal correspondences, established by
mesh tracking, and using surfel fitting to reconstruct 3D geometry. In these later
steps we do not use the morphable model anymore to predict some appearance
of the face, instead we take the surface generated in the previous frame as initial
solution for the next frame.

Morphable model. The morphable model we use is similar to the one intro-
duced by Blanz and Vetter [19]. To generate it, we laser scanned about 50 faces
in a neutral expression and established correspondences. By adjusting shape pa-
rameters o; we can approximate each face of the database as a weighted sum of
eigenfaces m; € R™ added to an average face M € R”

M=M+E:aq,

where the columns of E € R™* store the most significant eigenfaces m;. The
small number of k eigenfaces are extracted by performing PCA on the laser
scanned face data. If the database contains K faces, PCA extracts /' — 1 eigen-
faces, describing the main deviations from the average face. By excluding eigen-
faces with small eigenvalues, the dimensionality of the face space is reduced to a
small number £ < K, while keeping the important details. To neglect high fre-
quencies and to obtain smooth surfaces, we set k£ = 15 in all our experiments.

Initial transformation and shape. For a rough estimate of the rigid transla-
tion and rotation w.r.t. the coordinate system of the cameras as well as the shape
parameters, we use a few user defined points like the corners of eyes and lips.
Defining these features in at least two views allows us to triangulate the 3D loca-
tion of those features. We assume the user defines a very sparse set of L feature
points denoted by U = (u;,,...,u; L)T. We denote the corresponding points of
the morphable model as follows

M = [M;,...,M;

M +E'-aq,

]T

where M’ and E’ contain just the entries and rows of M and E corresponding
to U. We alternately optimize the rigid transformation and the shape parameters
of the morphable model. To compute the model’s translation and rotation, the
method of Iterative Closest Points [35], which minimizes the squared distances
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between user defined points and corresponding model points, is used. For this one
needs at least 3 corresponding point pairs. In what follows, M’ denotes the rigidly
transformed morphable model.

After optimizing the rigid transformation, the new shape parameters can be
obtained by minimizing the function

E = EShape + )\EAfue
= M -U)?+ A -a'Daq,

where D € R¥** is a diagonal matrix with entries D;; = 0—12 and o; is the eigen-
value of the eigenface m;. This second term with weigﬁt A has a smoothing
effect, because faces near the average face have a smaller energy value. Deriving
this function w.r.t. the shape parameters « and setting the derivative to zero yields
the linear system

[B'E + D] a = E" (U- W)

In each iteration after optimizing the rigid transformation, \ is decreased by some
constant amount, such that the morphable model slowly approaches the user de-
fined points. Since the system is augmented with the diagonal matrix D, the
shape optimization would recover the average face if the user did not specify any
3D points. But to be able to find a rigid transformation and in order to recover
a good initial solution for subsequent steps we always select 4 points at the eyes
and 4 points on the lips.

Improvement of transformation and shape. In the next step, we run the
surfel fitting algorithm to calculate new depth values for the vertices of the face
model. To do this for each vertex, a reference image is defined as that image with
viewing direction most parallel to the vertex normal. The comparison images
are obtained from a visibility test. The resulting point cloud, possibly containing
some holes, is used to augment the user defined feature points U. For each new
point v € U, a corresponding point is obtained as the point on the face model
with minimal distance to u. This results in new pairs (M’, U), which are used to
compute new parameters for shape and rigid transformation as described above.

3.2. Mesh Tracking in 2D

The objective of the 2D mesh tracking is to establish temporal correspon-
dences between successive frames. In our setup we use five video cameras to track
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Figure 3: Displacing the triangle vertices by dy, d; and ds yield a similar intensity distribution
within the triangle for both successive images I/~! and I7.

the dynamic facial expression through time. Each view is tracked individually. To
do this, we place a 2D mesh in the first image and calculate displacements for
every frame such that the mesh tracks the 2D deformation. Since we can control
for global smoothness, foldovers can be prevented. Unlike, e.g., [14] we do not
use optical flow to establish temporal correspondences. Especially between lips
it might be the case that displacement vectors of the flow field point in different
directions and thus are suppressed by the smoothing term which keeps the field
coherent [36]. In a mesh based approach where lips are separated and allowed to
move independently this is less likely to happen.

Initialization. We project the face template, reconstructed as described in
Section 3.1, into the first frame of the considered view. The projected mesh is
then remeshed by the algorithm presented in [37], such that the new average edge
length covers about 25 pixels. We denote the remeshed version of the mesh in the
first frame as S*.

Tracking. A view consists of a sequence of images

AT LAy £ £

Given two successive images I/ and I/*!, the aim is to find displacements d; =
.z, di )T € R? for every vertex of the given shape S/, such that differences in
the intensity distribution within each triangle of two successive images are small
(see Figure 3). Consider one triangle T of S/. A pixel p = [z, y]” € R? within
this triangle has barycentric coordinates |5y, 51, f2]. The barycentric coordinates
and the vertex displacements define a linear mapping 7 : R? — R2, which maps
p from the undeformed triangle of image I/ to a deformed triangle in the image

I7HLIf I/ () is the intensity function of an image 7, the minimization function
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can be stated as
Br =Y (I'(p) — I'*'(x(p))
peT
If the time between two successive frames is short, the input is already close to
the optimal solution and a standard Levenberg-Marquard minimization procedure
is suitable to solve for the displacements d;. Summing these energy functions for
all triangles yields the global energy function

Baa = Y Er=Y > (I(p) - '*\(x(p))*

TeSf TeSf PET

To ensure a smooth distribution of the displacements, we introduce the additional
energy term

2

Eomooth = Z wi Z Wi, j || d; — dj H

iev(8f) \ ' j€Neigh;

where V(S7) is the set of vertex indices of the mesh S/ and Neigh, denotes the 1-
neighborhood of vertex P;. The standard chordal weights w; ; =|| P;—pP; ||* wi =
> jen, wi,j are used to set up the Laplace system. Putting both terms together, the
final energy function is denoted by

E = Edata + )\Esmooth

where A controls the smoothness term.

3.3. Mesh Tracking in 3D

As initialization for the 3D mesh tracking we use again the surface we esti-
mated for the first frame. The objective of the algorithm described in this section
is to find a deformation of the face template for every frame, such that the highly
detailed movements of the captured face are tracked by the template face. To
achieve this, we generate image-samples in every view and track them through
time. Using the surfel fitting of Section 2, these image-samples are reconstructed
in 3D for every frame. Finally, these reconstructed 3D points are used to deform
the template mesh. As stated above this increases the robustness of surfel fitting
and decouples the reconstruction of the dynamics from the independent recon-
struction of single image-samples.
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Figure 4: An anchor point of a image-sample P is obtained by the intersection of a ray through p
with the initial face template S!.

Generating image-samples. Running the 2D mesh tracking described in Sec-
tion 3.2 on every view of the video sequence produces a 2D triangle mesh ng for
each view c and frame f. Supersampling the triangles of the meshes in the first
frame of the sequence generates 2D points that have barycentric coordinates w.r.t.
the triangle they are placed in. For every view c this yields a set of points f)}’c
for the first frame, where a point can uniquely be identified by its index ¢ and the
view c it was put in. The number of image-samples is a user-defined parameter.
We usually place 1600 samples in one view to obtain a dense reconstruction. The
mapping 7, which is defined by the deformation of a 2D mesh from one frame
to the following, allows us to displace the image-samples and thereby track them
through the whole sequence of a single view. This produces sequences of points

N
pi,c‘

From image-samples to 3D trajectories. Section 3.1 describes how to fit a
face template to the first frame of a video stream. Assume the face template to be
S!. For each image-sample 1321,0 we introduce an anchor point on the surface of S*
by shooting a ray through f)z{c and determining the intersection with S;. This in-
tersection is located within a triangle 7" and has barycentric coordinates [y, 71, V2]
with respect to 7" (see Figure 4). An image-sample f){ . can be reconstructed in 3D
by using the surfel fitting approach of Section 2. Given a face template S/~! that
was already fitted to frame f — 1, a good initial solution for the surfel position is
obtained by evaluating the linear combination of the triangle vertices of T € S/~!
weighted with [y, 71, 72]. Further, the normal of this triangle is the initial plane
normal for the surfel. As a reference image, we select the view c that the image-
sample was initially placed in. Since the fitted template of the frame f — 1 is
already a good approximation, this mesh is well suited for visibility tests to deter-
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mine the set of (multiple) comparison images. If the surfel fitting succeeded, the
reconstructed point pfi . € R3 is stored in a list denoted by Succ(f).

Deformation of the template mesh. In order to deform the mesh we treat
the p{ . as handles which drag the surface S'. We define two objective functions.
The first function measures the squared distance between the Laplace vectors of
S! and those of the deformed surface S/

B= Y AV - AV
veS
Here, A denotes the discrete Laplace operator using the cotangent weights eval-

uated on the surface S;. The second function penalizes large deviation of the
anchor point from the reconstructed point and can be denoted by

Ec= Y, | p—anchor(p) |’

pESucc(p)

where the anchor point anchor(p{ .) is calculated by interpolating the vertices of
the triangle 7" associated with pf-i . using the precomputed barycentric coordinates:

anchor(p{c) = Z Y- vl
vieT

To obtain the new vertex positions of a mesh S/, we solve
E=FE,+ A\Ec

in the least-squares sense and repeat the whole procedure for the next frame f + 1.

It is worth mentioning that this procedure can also help improve the estimated
surface S! of the first frame. At the end of the process described in Section 3.1, a
new point cloud can be extracted by surfel fitting. For each surfel, we can compute
an anchor point as the closest point on S! w.r.t. the surfel. These pairs can then be
used to deform the face template S!, as described above. The deformed surface
does not lie in the space spanned by the morphable model and is used as the input
surface for all subsequent steps of the pipeline.

4. Reconstruction results

We generated all our results using a 2.6Ghz Intel Core 17 CPU. During 2D
mesh tracking, the computation of the 2D displacements for five views of one
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frame took an average time of 52 seconds. The average time for the surfel fitting
of one frame, where we optimized about 8K samples from all five views, was 50
seconds, leading to an overall computing time of less than 2 minutes per frame.
Since for each surfel we need to sum over all comparison cameras in order to
compute its update, the worst case complexity of the surfel fitting is O(n-C') where
C' is the number of cameras and n the number of surfels to be reconstructed. But
this is an upper bound, because we incorporated a visibility test which sometimes
removes cameras from the set of comparing cameras.

We collected sequences of different subjects each performing different facial
expressions for approximately 2 to 4 seconds. In Figure 5 we present five ex-
amples. It shows one of the input images together with the reconstruction of the
neutral face (left column). The right column shows the result of the deformation
step where the surfels act as handles to deform the neutral face (see the close up
images). In all these examples, we left the parameters at a fixed setting.

5. Applications

Since we decided to use a predefined face template with a fixed mesh topology,
we obtain meshes for each frame which are in full correspondence to each other.
This enables a variety of applications. We demonstrate some of these applications,
which are explained in more detail in this section.

5.1. Eliminating rigid transformations

Due to head movements the captured face will certainly show some rigid trans-
formations w.r.t. the first frame. For the applications described in the following
sections it is desirable to separate these rigid transformations from the deforma-
tions.

Assuming the face does not scale, we compute a translation and rotation of
the face in each frame w.r.t. the face shown in the first frame. For this we employ
a variant of the algorithm provided by Horn [35]. Note that the correspondences
do not need to be calculated since vertex indices of our face template remain con-
stant across frames. In general one can take all vertices into account to calculate
the rigid transformations, but due to highly deformable regions on the face (like
cheeks, forehead or mouth) we just consider vertices lying on the more rigid nose
region. Advantages of this step are that we can easily replace the rigid transfor-
mation with different transformations, without changing the deformation itself.
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Figure 5: Reconstruction results. The left column shows input images of neutral faces and their
reconstructions. The extracted surfels and their anchor points define constraints in a modeling step
to deform the surface. This is possible because we established temporal correspondences by using
the 2D mesh tracking algorithm. The deformation and the surfels can be seen in the right column.

5.2. Automatic model enhancement
Since we are able to remove rigid transformations the positions of eyes, bones,
etc. remain constant across frames. Together with the fixed topology of the mov-
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Figure 6: Left: The eyelid and the boundary of the eye have the same amount of vertices, so the
eyelid can be stitched to the top boundary. Right: The closing ¢ determines the position of each
lower point q; ; on the eyeball. If ¢ = 1 the lid covers the whole eye, i.e., p;; = q; ;.

ing face template, this allows for the automatic placement of eyes, eye lids and
lashes. In this section we describe a very simple way to model eyes. Note that
this does not produce realistic looking eyes, but can be seen as a proof of concept
for such an automated modeling procedure, which connects the boundary curve
of the eye to lids and lashes.

As depict in Figure 6, the boundary around an eye consists of a lower curve
{Pi1,...,Pin} and an upper curve {py,1,...,Punr}. We model the eyeball as a
simple sphere with a radius » = 12mm, which is the average radius of a human
eye [38]. The center c of the eye is placed such that the following function is

minimized:
n
2 2
F=> > (c—pi,)’—r
i=lau  j=1

subject to the constraints
Ipij —cll =7

In order to model a lid we created a small polygon mesh with an upper and lower
curve containing the vertices {qy 1, ..., qu,} and {q;1, ..., q.,}. This mesh can
easily be connected to the upper boundary curve by setting q,,; = p..; (see Fig-
ure 6). We compute aperture angles for each pair of vertices on the boundary of

the eye as
T
0, Zarccos< (Pui — )" (P1i — ©) )
[Pui — [l - [[pr; — cl]
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Figure 7: Simple eye model with lid and lashes. The closing of the lid depends on the viewing
direction of the eye: The lower vertices of the lid are close to the upper point of the iris. In this
example we also modeled teeth.

The positions of the lower points are calculated by interpolating the aperture angle.
Lett € [0, 1] be the parameter controlling the closing of the eye. The lower points
of the lid are computed as points lying on the eyeball (Figure 6) such that

T (e,
t-0; = arccos( (Pui — )" (qi — ) )
”pu,i - CH . ||ql,i — CH

Note that the eye is closed, i.e., q;; = py,;, if t = 1. The inner vertices of the lid
are smoothly distributed over the eyeball.

Lashes can be attached to the lower points q;; and its mesh is textured with
a semitransparent image of eyelashes. The result of our automatic modeling ex-
ample is depicted in Figure 7. Here we implemented a simple look-at function
for the eyes which rotates the eyeballs. The opening of the lid is calculated such
that the lower points of the lid are close to the upper point of the iris. In this way
the lid closes when the eye is looking down. Further modeling steps could be the
automatic placement of denture or the integration into a head model.

5.3. Automatic Expression Modeling

In this section we demonstrate versatile applications where expressions, i.e.,
the deformation of faces, themselves are manipulated. As in Section 5.2, corre-
spondences between different faces and across frames are crucial for these ap-
plications. As a basic technique we use a variant of the deformation transfer for
triangle meshes which was originally introduced by Sumner [31].

Deformation Transfer. Assume a source triangle mesh S = (V,T) is given,
with V' = {qi,...,d,} being the set of vertices and T' = {¢1,...,1,,} the set
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of triangles. Further assume this mesh was deformed into another mesh S — &’
where new point positions in S’ are denoted by {q’, ..., q/,}. As described in [2]
we can compute a deformation gradient S, € R3*3 for each triangle ¢ that maps
a point from the undeformed to the deformed state. This deformation gradient is
given by
Si = (d) — d3,dy — 43, 0') - (a1 — g3, 92 — g3, n) "

where n, n’ and q;, g are the normals and vertex positions of an undeformed and
a deformed triangle ¢.

The idea is to find a deformation for a target mesh 7 — 7 such that the
deformation gradients T; € R3*? of the target mesh match those of the source
mesh:

T, = (P/1 - pg,pé - pg,n’) - (p1 — P3, P2 — P3,n)_1 =S

Here we denote the vertices of 7 and 7" as {p1,...,p,} and {p],...,p),}. Note
that the indices of the triangles do not change since both meshes are in full cor-
respondence. Equivalent to this we can also require that the transposed of these
matrices should be the same:

T = ST

This has the advantage that we can find an expression for T'; which is linear in the
new point positions p}:

- L (10 -1 p,"
T =((p1 —Ps,P2—P3m)"!) - | 01 —1 |- p5'
00 0 p,7

N

where G; is the constant gradient matrix of the coordinate function of a triangle ¢
of the target mesh 7.

In order to compute the deformation transfer for all triangles we want to find
new vertex positions p; such the all deformation gradients of the target mesh are
equal to the deformation gradients of the source mesh. This is expressed by the
global system

T T
G, o) P1 Si"

: : : =G : :
T T T

G P P S
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Figure 8: Expression transfer. The smile S',. .., S of one face is transferred to another subject
to produce a sequence 7,...,TF.

-

.

Where G € R?*"*" is the global gradient matrix computed from 7 and S € R3™*3
is a global matrix computed from the deformation S — S’. Since this system is
over determined we solve it in the least squares sense

1T
P1
G'G : = G’S
P,
This system weights the deformations per triangle in a uniform way which may
lead to unwanted distortions. To avoid this, the deformation gradients are weighted

by the area of the triangle which finally yields the Poisson equation describing the
deformation transfer:

Py
G'DG : = G'DS
p,"
where D € R3™*3™ is the diagonal area matrix computed from all triangles in 7.

Observe that G'DG is equal to the standard Laplace matrix of the mesh 7 using
the cotangent weights and GTD represents the divergence operator.

Expression transfer. Using the formalism of deformation transfer, carry an
expression from one face over to another is straight forward. Assume we used the
markerless reconstruction technique to generate a sequence of meshes S!, ..., S¥
from F' frames. For each frame f > 1 a global deformation gradient matrix
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Figure 9: Expression attenuation. The upper image shows the face at time point zero. The images
in the lower row show attenuated versions of one of the expressions shown in Figure 8(top) at a
particular time point > 0. To generate the images from left to right, we set a to 1,3, 2, 1 and 0.

S/ € R*™*3 can be calculated which describes the deformation S* — S/. In
order to transfer this expression sequence to another face 7' we simply compute
a new sequence of F' deformed meshes 7/ with new vertex positions pzf :

T
pl

" —K(71)

where 1 < f < F and K(7") € R™3™ is a precalculated matrix only depending
on T

In Figure 8 we transferred the smile of one subject to another face.

Expression attenuation. In the previous section we used the deformation
gradients S/ from a source sequence to generate a new target sequence showing
the same expression as the source sequence. When using the identity matrix I3 as
source deformation gradients per triangle, the target mesh would not change at all.
By linearly blending between both possibilities we can attenuate the expression.
We start with a face 7! in neutral position which might be identical to S' and
compute new vertex positions p{ as

T T
p{ S{ I3
| =K(TY) e | |+ (1—a) |
i sl Ls
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Figure 10: Expression blending. Left: Three *smile’ sequences (S, Sa, S3) captured by our sys-
tem. Right: Each row shows images from a blended sequence at the same points in time, where
T is the average shape of (Si,S5,S4). The first row shows the average smile of (Si, Sz, S3).
The second row shows the average of (Sz, S3). In the third and fourth row one can see the average

of (81, 83) and (81, 82)

where o € [0,1]. In Figure 9 we show a smile in four different intensities by
setting « to 0, %, % and 1.

Expression blending. In this scenario we compute a weighted sum of defor-
mation gradients from different subjects and compose a new sequence from the
sum of these weighted gradients.

Besides the geometric correspondence we therefore also need temporal corre-
spondence, i.e., the same number of frames in each sequence. In our experiments
the subject performed facial expressions from neutral to an expressed face. Since
this took almost the same time for every subject, we immediately get temporal co-
herence by a simple cut, common in video editing, without interpolating between
frames or scaling time.

For expression blending we consider k source sequences S; = {S},..., S}
where ¢ € 1,...,k. For each frame f in every sequence ¢ we precompute a
deformation gradient S/ € R3™*® which describes the deformation S} — S/.
Starting with a target mesh 7, which might be a new individual showing a neutral
face, a blending between faces like done by a morphable model or simply the
first mesh of one of the source sequences, we compute a new sequence from the
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Figure 11: Principal component analysis of the deformation gradients. Top row shows the average
smile of 5 subjects. The following rows show the variations produced by adding/subtracting the
first, second and third eigenvector. The tree images out of each of the 7 sequences are taken at the
same time points.

convex combination of the deformation gradients. This generates new meshes 7/
with new point positions:

fT
P1 k

=K(T") (> w;-S!
=1

T
n

where Zle w; = 1, w; > 0 are some given weights. In Figure 10 we show the
result of such a convex combination of the source deformation gradients.

Statistical expression model. The idea of blending can be extended to build
a statistical model for expressions. As above we assume the source sequences
are in temporal correspondence, i.e., each of the k sequences contains exactly F
frames. Blanz and Vetter [19] built a morphable model by running a PCA on the
point and color values. In this application we deal with data of a higher dimen-
sion namely the deformation gradients over all frames. Like the shape of a face
can be represented by concatenating the x, i, 2 components of all points to a high
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dimensional vector, we represent one sequence by concatenating all components
of the deformation gradients of all triangles at all frames, i.e., for /' — 1 deforma-
tions and m triangles the produced vector has dimensionality R*“~Y™ Running
PCA on these vectors leads to average deformations for each frame S/ € R3™*3
and principal components sf € R¥™3 with j € {1,...,k — 1}. Similar to the
example above we calculate a whole sequence from a target mesh 7 representing
a neutral expression by computing new point positions for 7/ as

fT
P _ K

: =K(T") (Sf—l—ij-sf)
j=1

fT
n

where we select k' < k in order to omit eigenvectors with small eigenvalues and
thereby to drop negligible details. In Figure 11 we demonstrate such a model
obtained from five sequences of a smile: it shows the average expression together
with the variations produced by adding or subtracting the first most significant
eigenvectors.

6. Limitations

The main problem for our system is caused by bad illumination conditions,
which will introduce noise in the image and an insufficient depth of field. Then the
surfel fitting as well as mesh tracking is likely to fail. As many 3D reconstruction
methods surfel fitting will fail in the present of specular highlights caused by a
shiny skin, glasses or piercings. Our system is not capable to capture faces with
a long and dense beard, although we observed that a very short beard adds some
natural texture to the face which makes tracking and 3D reconstruction easier.
The same thing holds for tattoos. In our experiments we observed that the natural
texture of human skin is sufficient to do surfel fitting and mesh tracking. But some
persons have extremely smooth skin, which causes surfel fitting to produce strong
outliers, since the gradient of the energy functional is too shallow. The same effect
would occur if subjects would use a lot of makeup.

In general we observed that surfel fitting sometimes produces strong outliers
if the surfel is only visible by two cameras, which usually occurs at the face tem-
plate’s boundary, but this problem could be solved by adding more cameras to the
rig. If such an outlier was not discarded, it is possible that it has still a large influ-
ence in the modeling step, since we solve the system in the least squares sense. In
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future work we plan to use RANSAC [39] methods to detect and eliminate outliers
more robustly.

The current design of the system cannot deal with occlusion. Occluding the
face for some frames of the video would induce a strong drift during the mesh
tracking and would cause surfel fitting to produce surfels which do not lie on the
face. Related to this, strong rotation of the head would also cause drifting artifacts
during mesh tracking. To avoid such drifting artifacts in general, we want to use
a global facial feature detector which can fix corresponding vertices of the 2D
mesh to facial feature points like corners of the eyes and lips. In addition such a
feature detector makes the manual selection of facial features, as needed for the
first frame, redundant.

7. Discussion and Conclusion

In this paper we introduced a system for markerless reconstruction of dynamic
faces. Our system is able to establish inter-subject correspondence as well as tem-
poral correspondence. In numerous examples we show that the system performs
well and that the results can be used in different applications.

Standard 3D reconstruction approaches from sparse feature points are gener-
ally quite sensitive to noise. The reason for this is that in the energy function to
be minimized only a small local image region is considered. We overcome this
problem by using a simple morphable model of neutral faces to estimate the more
global appearance of the face seen in the first image. This generates a surface
similar to the one being reconstructed, which strongly increases the robustness of
the surfel fitting.

Instead of using the proposed 2D mesh tracking one could also employ opti-
cal flow methods [36] to establish temporal correspondences. In our setting it is
possible to adapt the topology of the 2D mesh such that it contains holes at mouth
and eyes. This makes the 2D mesh tracking superior to optical flow, since it can
handle discontinuities at potentially separating regions, like eyes or lips, in a more
natural way.

In general spatial-temporal correspondence can be obtained by tracking fea-
tures between views and frames. We mainly had two problems with feature tracker
like the KLT tracker introduced in [32] or deriving correspondences by using SIFT
features proposed by Lowe [40]: First, the temporal tracking does not take the
neighboring features into account. Because of that, it often produces trajecto-
ries which slide past each other. These foldovers induce high distortions in the
tracked face template. To correct this, we chose the proposed 2D mesh tracking
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since it allows us to control the global smoothness and prevent the features from
sliding. Second, tracking features between views produces only a very sparse
set of 3D features, which do not provide enough constraints for the modeling
step to get reliable results. In our proposed method, we distribute a large set of
(redundant) image-samples, so we are able to omit wrongly reconstructed image-
samples but still end up with a large set of constraints for the modeling phase.
Since each image-sample is considered independently, the 3D reconstruction is
simple. By combining this computer vision technique with a simple modeling ap-
proach which fulfills each constraint in the least squares sense, a smooth surface
can be produced and the robustness of the reconstruction method can be increased
(visibility, good initial solutions), while simultaneously maintaining full corre-
spondence between frames and subjects.

We showed that these correspondences allow us to automatically enhance our
model by placing eyes, lids and lashes. We presented the deformation transfer in
an intuitive way and used it to transfer expressions from one subject to another,
to attenuate expressions or to blend expressions of different subjects. Finally we
introduced a dynamic face model, built from a principal component analysis of
the deformation gradients. Since the target shape can be produced by blending
the shapes of different faces or be computed by a morphable model, the user can
easily produce a broad variety of shapes and facial expressions from only a few
examples. In our experimental validation we only used five subjects to build a
model for one particular emotion. In future works we would like to build models
for different emotions and incorporate more subjects.
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