
EUROGRAPHICS 2016 / J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

Adapting Feature Curve Networks to a Prescribed Scale

Anne Gehre Isaak Lim Leif Kobbelt

Visual Computing Institute, RWTH Aachen University

Figure 1: Feature curve networks (red edges) generated with our approach are adapted to different scales (from fine to coarse). Our goal is

to preserve as much feature information as possible while avoiding features that are too close to each other for a given target edge length.

This requires global optimization and cannot be solved by greedy approaches or combination of filtering and thresholding. Here, the feature

curves are used as boundary constraints for isotropic remeshing at different target edge lengths. The input-mesh with the initial feature

curves is shown on the left.

Abstract

Feature curves on surface meshes are usually defined solely based on local shape properties such as dihedral angles and prin-

cipal curvatures. From the application perspective, however, the meaningfulness of a network of feature curves also depends

on a global scale parameter that takes the distance between feature curves into account, i.e., on a coarse scale, nearby feature

curves should be merged or suppressed if the surface region between them is not representable at the given scale/resolution.

In this paper, we propose a computational approach to the intuitive notion of scale conforming feature curve networks where

the density of feature curves on the surface adapts to a global scale parameter. We present a constrained global optimiza-

tion algorithm that computes scale conforming feature curve networks by eliminating curve segments that represent surface

features, which are not compatible to the prescribed scale. To demonstrate the usefulness of our approach we apply isotropic

and anisotropic remeshing schemes that take our feature curve networks as input. For a number of example meshes, we thus

generate high quality shape approximations at various levels of detail.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry, Digital
Geometry Processing, and Level Of Detail Algorithms—Feature Curve Networks

1. Introduction

Acquisition techniques for 3D geometry have improved vastly and
the use of 3D digital models has found its way into many applica-
tion areas e.g., simulation, medical applications, or visualization.

Usually, the acquired raw data requires further geometric process-
ing to tackle problems such as bad element quality, noise, or large
storage requirements. Various processing techniques exist that es-
tablish good element quality (e.g. [ECBK14,CJL11,BZK09,BK04,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

ADVDI03]). The surface approximation is considered high quality
if elements have a high regularity and align to surface features.

These features or guiding constraints need to be computed in
advance and are given as input to the respective methods. Current
feature curve extraction approaches (e.g. [NSP10, WG09, YBS05,
OBS04]) take local shape properties into account, where the num-
ber of selected feature curves is controlled by filtering or by setting
thresholds on curvature values.

Typically, remeshing algorithms are provided with a user-
specified target edge length or complexity. Here, applications for
enforcing complexity constraints can range from noise suppression,
to removing small scale details (e.g. to reduce computation times
in simulations), or to depicting up to very coarse resolutions of the
mesh (e.g. when the image resolution or available storage is low).

curvature thresholding

our method
However, none

of the previously
mentioned feature
extraction algorithms
take the spatial
feature density into
account. Suppose
there are two feature
curves nearby, one
with a relatively
high "sharpness" and
the other one with
lower. Then a filter
and threshold approach would be able to suppress the less sharp
feature. At the same time, however, it would also unnecessarily
suppress other feature curves with the same (lower) sharpness
even if they are not close to another feature (see image above).
This example clearly shows that feature selection is a global opti-
mization problem and the decision to suppress a feature should be
dependent on the existence of other features in the vicinity. Hence,
using the aforementioned mechanisms we cannot preserve the
maximal set of feature curves representable at a given resolution.

Therefore, we propose a feature curve adaption mechanism as
a novel fully automatic alternative to this problem. Our approach
adapts feature curve networks (FCNs) to a prescribed scale by look-
ing at the network as a whole and not treating each feature curve
separately, i.e., we preserve all features which can be represented
at the given target resolution irrespectively of their sharpness.

Contribution In this paper we propose an algorithm that adapts
feature curve networks to a given scale. Our main contributions
can be summarized as follows:

• We present a computational approach to the intuitive notion of a
scale conforming feature curve network in Section 4.

• We propose an efficient method for the computation of scale con-
forming feature curve networks, which preserve the maximum
set of prominent feature curves within a prescribed scale from
an initial set of feature lines. Details are given in Section 5.

• As proof of concept we demonstrate the usefulness of scale con-
forming feature curve networks by generating meshes at several
resolutions that preserve the detected features at different scales.
Results are discussed in Section 6.

2. Related Work

Feature Line Detection A large body of work on detection of
feature lines in a 3D model exists. It is out of scope of this pa-
per to present an entire survey on feature extraction (see [LZH∗07,
Dem09] for more details), hence we will only describe a few rep-
resentatives. Several different approaches based on the detection of
ridges and ravines as curvature extrema of a surface exist. While
[BPK98,OBS04] extract these from an implicit surface representa-
tion, [WB01] find curvature extrema by detecting triangle degen-
eracies on focal surfaces. [YBS05] trace crest lines by employing
polynomial fitting in order to estimate curvatures. Weinkauf and
Günther [WG09] detect feature lines from the minimal- and maxi-
mal curvature fields of a mesh surface by connecting maxima and
saddle points to form a feature skeleton. By iteratively removing
saddle points, they can coarsen this skeleton. Nieser et al. [NSP10]
grow patches around seeds where the maximal curvature of a set of
neighboring faces lies below a predefined threshold. [CYW14] also
takes the curve length (but not the feature density) into account by
filtering a dense set of features for salient and long curves.

A further possibility for the generation of feature curves is to ex-
tract patch boundaries from segmentation algorithms based on nor-
mal clustering. Here, the amount of curves is related to the number
of clusters. Variational Shape Approximation (VSA) [CSAD04]
partitions faces based on Lloyd’s clustering. Lai et al. [LZHM06]
present a segmentation based on mean-shift clustering. Zhuang et
al. provide an interactive partitioning, where a user sets seed points
for "live-wires", which align along curvature directions [ZZCJ14].

Existing approaches perform feature suppression by either
smoothing the object surface in advance, to suppress small scale
details, or by thresholding curvature. Both mechanisms are based
on local surface properties. None of these approaches take the dis-
tance between feature curves into account. In contrast, we propose
a global optimization procedure that identifies a maximal set of fea-
ture edges that are representable at a given target resolution.

Shape Abstraction and Approximation Via Curve Networks A
set of abstraction mechanisms exist which exploit feature curve
networks for shape approximations. Sala et al. [SD08] developed
a 2D abstraction of contour edges by generating multi-scale im-
ages, which are based on a user specified part-vocabulary. Mi et
al. [MDS09] abstract 2D shapes by decomposing them into percep-
tual parts. For abstraction they remove parts based on user-specified
thresholds and reconstruct the shape from the remaining ones.

Mehra et al. [MZL∗09] generate hierarchical abstraction curve
networks for man-made objects. The object surface is approxi-
mated by fitting the outer hull of a voxel grid to it. Curve networks
are then extracted with VSA and simplified by thresholding the re-
construction error, based on the curve smoothness and the normal
deviation of the resulting mesh approximation. De Goes et al. [DG-
GDV11] define the concept of an Exoskeleton where they gener-
ate a segmentation of the surface, revealing meaningful perceptual
parts, which are refined by employing VSA. A user can further in-
fluence the amount of generated curves by adding seeds for VSA.

In contrast to existing approaches our goal is to generate approx-
imations of various kinds of shapes (not only man-made), where the
level of detail is clearly defined by a prescribed scale parameter.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

Proximity Based

Conflict Detection

Feature Curve

Selection

Input Feature

Curves

Abstraction

Detect

Vertex - and

Edge Conflicts

Resample

FCN
Global

Optimization

Collapse

Short Edges

Figure 2: Overview over our feature curve network adaptation

scheme: As input we receive an initial feature network. In the prox-

imity based conflict detection we check whether the network con-

forms to the prescribed scale. For this we have to find a discrete rep-

resentation via resampling. We can then describe scale-conformity

as vertex and edge conflicts. In the feature curve selection the de-

tected conflicts are resolved. Since edges are weighted according to

their relevance, we resolve conflicts between edges by suppressing

the less significant edges in a global optimization step. Remaining

edges that are shorter than the minimal scale are collapsed. This

can change the network topology, which requires further conflict

detection. We iterate this process until no conflicts exist and the

transformed feature network conforms to the prescribed scale.

Triangulations with Feature Curves Ruppert et al. present an
approach to generate 2D triangulations around planar shape line
graphs which are guaranteed to have a prescribed minimum inner
angle [Rup95]. By only constraining angles we cannot make any
assumptions on the curve density in our formulation. Hence, we
present a similar idea in the formalization of a scale conforming
FCN, only that we constrain the minimum edge length, to restrict
the curve density. Details are given in Section 4.

3. Problem Statement

Conceptually, our scale adaptation approach is quite different from
previous ones. Existing approaches that are based a (pre-)filter op-
eration eliminate features by locally blurring the sharpness until it
falls below a given threshold. Hence, the decision whether a feature
curve is eliminated is made just locally without considering other
features in the vicinity. This leads to situations where more features
than necessary are removed since even a less pronounced feature
(which is smoothed out by the filter) could be valuable on a given
scale if neighboring features are sufficiently far away. In contrast
to this local filter approach, we are following a globally optimal
sub-sampling approach where feature curves are eliminated only if
there is another (more relevant) conflicting feature curve nearby.

Given an initial set of feature curves on a surface mesh M we
generate abstractions in form of FCNs, which are guaranteed to
comply with a prescribed global proximity constraint. This con-
straint is given in form of a scale parameter rmin, which limits the
target resolution (e.g. the minimum edge-lengths of the respective
approximation). To extract the final FCN we follow the workflow
depicted in Figure 2, which consists of two main building blocks.

The first module involves a proximity based conflict detection

procedure, which identifies curve segments that cannot coexist at
the given scale. In this continuous setting finding appropriate seg-
ments is intractable (because there exist infinitely many possible

segments). Thus, we discretize this problem by introducing the def-
inition of a scale conforming FCN in Section 4, which resamples
feature arcs into scale conforming segments. This discretization al-
lows for the identification of conflicting curve segments (which we
denote as edges of the FCN in the following) and the formulation
of an objective function measuring the quality of the edges.

The identified set of conflicting features serves as input to the
second component: the feature curve selection. Feature selection is
performed with the goal to best preserve the structure of the initial
network. In particular we resample features such that the geometric
error is minimal and remove a minimal set of edges so that the
remaining (non-conflicting) edges preserve as much as possible of
the original feature network.

Due to the discrete representation of the feature curves we are
able to evaluate the relevance of each edge. Since the requirements
imposed upon a feature curve network are highly application de-
pendent, we allow the user to combine different quality criteria. The
first set of criteria evaluates the quality of a single edge based on
its local properties: across edge sharpness, curve length, symmetry,
and whether the feature edge belongs to a closed loop. Secondly,
we also regard combined quality criteria, which rate pairs of edges
according to their smoothness, orthogonality, and parallelism. Ex-
act details will be described in Section 5.3.1. Depending on the
application any other combination of criteria can also be integrated
into our approach (e.g. different saliency based edge weights).

For feature curve selection, the described quality criteria are in-
corporated in a functional. In a global optimization scheme, we se-
lect those curve segments of the FCN which maximize this func-
tion, while abiding proximity constraints.

4. Scale Conforming Feature Curve Networks

State of the art remeshing algorithms produce high quality surface
approximations based on a set of features or guiding constraints
which is either precomputed or provided as input. Moreover, a tar-
get scale can be prescribed to control the mesh complexity. In order
to abide to such a density constraint, mesh elements can only align
along a subset of surface features which are not contradictory to the
prescribed target edge length. We denote such a subset as a scale

conforming FCN. In the following we will define FCNs and de-
scribe conditions that they must fulfill to achieve scale conformity.

Definition 1 (FCN) For a given mesh M we define a feature curve

network as a 3-tuple N = (V,E,A) where the vertices v ∈ V lie on
the continuous surface defined by M but not necessarily at a vertex
of M. According to their valence in N, we split the set of vertices V

into two disjoint subsets V̄ and V∗ that contain the regular vertices
(valence = 2) and the extraordinary vertices (valence 6= 2) respec-
tively. E is the set of edges which connect two vertices in the feature
network. The set A consists of (mutually disjoint) arcs. An arc a is
a sequence of feature edges that either connects two extraordinary
vertices or forms a closed loop.

The input scale parameter rmin provides a lower bound for the
sampling rate across the continuous surface defined by M. Hence,
a remeshing procedure should adapt the vertex positions to this

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

lower bound such that all edges are longer than rmin. Accord-
ingly, we denote an FCN as scale conforming to a given scale
rmin if it can be extended to a manifold triangle mesh N (by
adding vertices and edges) that fulfills the following conditions:

dg

de

dg

de
= 1

dg

de
= 2

de
dg

1. Each edge e of N has its length ||e|| ≥
rmin.

2. The ratio of the geodesic distance
dg in N to the Euclidean distance
de between nearby feature curves is
bounded by some q < 2. This condi-
tion ensures that the surface N ap-
proximates M well, avoiding high
amplitude surface oscillations between feature curves. E.g. the
image above shows two triangulations between the (red) feature
curves. In contrast to the upper triangulation the lower one in-
troduces implausible detail.

This definition of a scale conforming FCN serves as a conceptual
goal that the network should achieve, according to which we derive
conflict detection and suppression schemes for feature edges in the
following. These are required to find a maximal subset of feature
curves, which are scale conforming.

4.1. Quality Criteria

Mesh Quality The triangles that are adjacent to the scale con-
forming FCN should have sufficient quality. If we allow arbitrar-
ily long edges, degenerate triangle configurations can occur. We
can limit their aspect ratio by providing an upper bound rmax on
the edges of the scale conforming FCN, bounding aspect ratios to
[

1, rmax
rmin

]

. Thus, to ensure triangle quality we define a scale interval

S = [rmin,rmax] so that all edges of the FCN have their length in S.

Feature Edge Angles The upper and lower bounds on the edge
lengths also impose upper and lower bounds [αmin,αmax] on
the inner angles of each triangle (see image below). Conse-
quently, each pair of adjacent edges in E has to enclose an an-
gle from [αmin,αmax]∪ [2αmin,2αmax]∪ [3αmin,3αmax]. This set

αmax

αmina

(a)

αminb

(b)

of feasible angles may consist of one, two,
or three intervals, depending on whether
αmax < 2αmin or even 2αmax < 3αmin.
The smallest maximal angle in a trian-
gle is π

3 . Hence, 3 ·αmax ≥ π is the max-
imal possible angle between two edges,
so we do not need to consider any fur-
ther intervals. Depending on the scale in-
terval S the smallest representable angle
αmin is either found in triangle type (a)
with αmina

= arccos(rmax/2rmin) or in triangle type (b) where
αminb

= 2 · arcsin(rmin/2rmax). If rmax/rmin < 1.618 the angle in
triangle (b) is smaller.

Feature Edge Angles for Quad Meshes We can further extend
this definition to apply to quad meshes. In this case the diagonal
should not be represented in the FCN. Therefore, the minimal and
maximal angles have to be adapted in the following way: Since
we want to constrain the diagonal to have a length in the interval

1.0 1.14 1.35 1.5
Figure 3: Effect of constraining FCNs to different aspect ratios for

the fandisc at the same scale. The selected aspect ratios rmax
rmin

are

given below. Aspect ratios close to one constrain angles of adja-

cent features to be close to multiples of 60 degrees. We found as-

pect ratios of 1.5 to give a good tradeoff between triangle shape

and representable angles. For values greater than 1.5 no further

changes would be visible in this example.

ei

e j
α

(a)

e j

ei

(b)

ei

e j
ei

e j

(c)

β1 β2

ei

e j

(d)
Figure 4: Conflict detection: (a) shows the case where two edges ei

and e j share a common node. By testing the angle α between them

it is possible to determine whether they are in conflict. (b), (c), and

(d) show possible triangulations of non-adjacent edges ei and e j.

α0

r min

r m
in

√ 2
r m

ax

α1
rmax

rm
ax

√ 2r m
in

(d)(c)

[
√

2rmin,
√

2rmax], we can derive
the minimal and maximal angles
from the two configurations shown
to the right. Thus, the minimal an-
gle is αmin = 2min(α0,α1). The
maximal angle can be derived anal-
ogously by switching rmin and rmax

in configurations (c) and (d).

Aspect Ratio The range S should be chosen such that a sufficient
quality of the output mesh N is guaranteed while not being to
rigidly confined to (close to) equilateral triangles. Figure 3 demon-
strates the effect of constraining the upper bound of edge-lengths
in abstractions of the fan-disc model. The first two FCNs with as-
pect ratios of rmax

rmin
close to one lead to gaps in the feature lines

because the angles between the line-segments are not representable
in the angle intervals. For ratios rmax

rmin
> 1.365 the representable an-

gle intervals merge (ie. αmax < 2αmin), which allows to represent
a broad range of angles. In practice we found that rmax

rmin
= 1.5 is a

good choice since it includes ’triangulated quad meshes’ in the set
of acceptable output meshes (because the lengths of the diagonals
in a triangulated quad mesh are about

√
2 times the lengths of the

quad edges).

4.2. Achieving Scale Conformity

The definition of a FCN conforming to a given scale gives rise to a
number of conditions that N has to satisfy, especially when fulfill-
ing the quality criteria discussed above. First of all, N conforming
to rmin trivially implies that all edges in E have to be longer than
rmin. Furthermore, constraining the aspect ratio of the triangles that
are adjacent to E implies that all edges have their length in S.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

rmin

iteration 1 iteration 2input abstraction

(a) (b) (c) (d) (e) (f)

Figure 5: Intermediate steps of the FCN abstraction. (a) Input.(b)

First resampling with red curves in the prescribed lengths, cyan

curves are short curves, which will induce vertex conflicts. (c) After

proximity based conflict detection and optimization. Orange curve

segments are marked as ’delete’ by the optimization due to con-

flicts with other curves. (d) Conflicts are removed and the arcs are

resampled. (e) Resampled arc set that was formerly composed of

short arcs introduces new conflicts, which are removed (orange).

(f) Final abstraction.

Different conditions need to apply for adjacent and non-adjacent

edge pairs:

In order to adjust to the prescribed quality criteria, angles be-
tween adjacent edge-pairs need to be in the described bounds (cf.
Figure 4a). Also, edge-pairs that are connected by a short edge es

(||es||< rmin) are treated as if they were adjacent (since we remove
short edges by collapsing them later, see Section 5.3.3). Hence, the
same angle-criterion needs to hold for such edge-pairs.

For non-adjacent edges we need to ensure that no two arcs in A

are closer than rmin to each other since then the sampling rate in-
duced by the scale parameter rmin could no longer resolve both fea-
ture curves properly. We classify a pair of feature edges e1 and e2 as
potentially conflicting if their minimum distance (edge-to-edge) is
below rmin. The triangulation between two potentially conflicting
edges can essentially be one out of four possible configurations,
which are depicted in Figure 4(b), (c), and (d). Configuration (b)
can be excluded if rmax/rmin <

√
3 since then the minimum height

of a triangle is larger than rmin/2 and thus configuration (b) could
be replaced by one of the configurations in (c). The required con-
dition for non-adjacent edges is thus that at least one of the config-
urations (c) or (d) can be built with all edges having at least length
rmin, where in configuration (d) we additionally have to make sure
that the angles β1 and β2 are both ≥ 2αmin allowing for two further
triangles to be fitted inbetween. If we would only require βi ≥αmin,
this would reduce to configuration (c).

5. Feature Network Adaptation

The idea of our scale adaptation scheme is that we start with a given
feature network N and then iteratively convert it into a network N′

that is conforming to a given scale (see example in Figure 5). In
order to make N conform to rmin, we iterate a four step procedure
as shown in Figure 2.

During the proximity based conflict detection phase, we first re-
sample each arc of the network in order to satisfy the feature edge

length condition (Section 5.2.1). Secondly, we identify conflicts
in the current FCN (Section 5.2.2). In the feature curve selection

phase we first compute a weight coefficient for each feature edge to
rate its relevance (Section 5.3.1). In the third step we solve a global
labeling problem that finds the maximum set of non-conflicting
edges in the network (Section 5.3.2). Because these three steps can-
not resolve complex constellations of multiple extraordinary fea-
ture vertices lying closer to another than rmin, we have to perform
a fourth step in which singularities are merged if required (Section
5.3.3). Since this changes the FCN topology, we have to run the
entire four-step procedure again, starting with the resampling of
the arcs. We do this until no further changes occur. This procedure
always converges, since at least one edge is removed in each itera-
tion. Usually, it converges after 2-5 iterations. The pseudo-code of
the entire procedure is given in the supplemental material.

5.1. Initial Feature Network

We used three different feature detection methods to generate the
initial FCNs N in our experiments: Variational Shape Approx-
imation [CSAD04], the feature detection approach presented in
[YBS05], and live-wire mesh segmentation [ZZCJ14]. The initial
network has the same topology as the feature curves (e.g. segmen-
tation boundaries as in Figure 5(a) or crest lines) and with arcs ge-
ometrically following relevant feature curves on the input surface.

Note, that we preserve all features of the initial network that are
not suppressed by a stronger feature. E.g. the VSA algorithm gener-
ates long streched patches in regions with constant curvature along
one direction (e.g. inside of Rocker Arm, Figure 8). Since there are
no stronger features nearby they are preserved in the abstraction.

5.2. Proximity Based Conflict Detection

Taking a feature network as input we have to determine whether it
is scale conforming (cf. Section 4). In order to do this efficiently
we have to resample the network. Non-conformity can then be rep-
resented as vertex and edge conflicts.

5.2.1. Feature Curve Resampling

Since the edge lengths along the arcs of the initial feature network
N might not lie in the prescribed scale interval S, we apply a resam-
pling procedure to each arc. Let p1, . . . , pn be a set of dense samples
along an arc in the initial network. Our goal is to find the best pos-
sible piecewise linear approximation v1, . . . ,vk such that the length
of each resulting feature edge (vi,vi+1) lies in S. We formulate this
optimization problem as a shortest path search.

We define a search graph as follows:
p1, . . . , pn are the nodes of the graph
(black points) and we define a directed
edge (cyan) between pi and p j (j > i) if
their Euclidean distance lies in the pre-
scribed scale interval S (light blue). We
assign a weight to this edge which is
proportional to the geometric deviation (i.e. integral Euclidean dis-
tance) of the edge (pi, p j) from the (sub-)polygon pi, . . . , p j. The
optimal re-sampling is then found as the shortest path from p1

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

e0 e3es

e1 e2

v0 v1

e0 e3

e1 e2

(a)

e0 e3es

e1

(b)
Figure 6: Resolution of vertex conflicts: Vertex conflicts occur if

||v0 − v1|| ≤ rmin (top row). There are two possibilities to resolve

such a conflict. (a) The vertices are collapsed into a common vertex.

(b) The incident short edge is integrated into a neighboring arc. The

choice between (a) and (b) is made by the global optimization (cf.

Section 5.3.2). If the binary value of the edge es results in 0, (a) is

applied. Otherwise, if it is 1, one of the adjacent vertices will have

been downgraded to a regular vertex by the optimization.

(green) to pn (red) by using Dijkstra’s algorithm. We label the
nodes that are visited on this shortest path as v1, . . . ,vk. In case
of loops where p1 = pn we run Dijkstra’s algorithm several times
from different starting points to find the best p1.

In the following two situations we cannot resample the feature
curve to have all lengths in S. An obvious problem occurs when the
entire initial arc is shorter than rmin. This is handled by assigning a
special short edge es with ||es||< rmin to this arc. Short edges will
be removed in the post-processing step (Section 5.3.3) by collaps-
ing them. Another, less obvious problem occurs if the arc length
is larger than rmax but shorter than 2rmin or more generally in an
interval of the form [k · rmax,(k+1) · rmin], which does not contain
a solution in the given bounds. In this case we assign a special long

edge el to the beginning or end of this arc with ||el ||> rmax.

5.2.2. Edge and Vertex Conflict Detection

In the resampled FCN it is possible to identify edge- and vertex-
pairs that violate the conditions which need to be fulfilled in a scale
conforming network defined in Section 4.

Edge-Conflicts: Neighboring edges that do not fulfill the angle
criteria are labeled as conflicting. Also, the unconnected potentially
conflicting edges described in Section 4 are tested for the listed
configurations. If none of these configurations apply the edge-pair
is labeled as conflicting.

Vertex-Conflicts: We define a pair of extraordinary vertices v0
and v1 as conflicting if and only if ||v0 − v1|| < rmin. If the FCN
contains a short edge es (top row in Figure 6), it is incident to two
extraordinary vertices v0,v1 ∈V∗. In case the valence of these ver-
tices is one, the short edge is not representable in the network and
it will be removed. Otherwise, either v0 and v1 are collapsed into
a common vertex (Figure 6a), or es is fused into one of the neigh-
boring arcs. In the latter case, one of the two extraordinary vertices
needs to be downgraded to a vertex with valence two (Figure 6b).
es is then removed in the resampling step of the next iteration.

5.3. Feature Curve Selection

To achieve conformity for the FCN we have to resolve the detected
conflicts found in Section 5.2. This is done by suppressing conflict-

ing edges that are not as relevant as the edges they are in conflict
with. Thus, we extract a globally optimal set of feature curves, not
only respecting the amount of curves but also their quality. Find-
ing such a globally optimal set outperforms possible greedy alter-
natives (e.g. farthest point/edge/curve sampling) since all conflicts
and weights are regarded simultaneously, which is not possible for
greedy solutions that inevitably lead to less appealing results.

5.3.1. Feature Edge Weights

As stated before, the relevance of a feature edge e can depend
on several different properties (cf. Section 3). We account for
both single-edge and combined-edge quality criteria by assigning
weights to individual edges as well as to pairs of edges.

We compute individual edge weights as a product of different
weighting factors:

w(e) = I(e) ·L(e) ·Sym(e) ·Loop(e).

The factor I(e) measures the local sharpness by averaging the
maximum (= across-feature) curvature κmax, computed using the
shape operator [ACSD∗03], along the segment boundary polygon
pi, . . . , p j which is approximated by e (cf. Section 5.2.1):

I(e) =
∑

j−1
k=i

‖pk+1 − pk‖(|κmax(pk)|+ |κmax(pk+1)|)/2

∑
j−1
k=i

‖pk+1 − pk‖
.

In general, a feature edge is embedded in a connected feature
curve and its length hints at the relevance of respective edges [DG-
GDV11]. Hence, the second factor L(e) measures the length of the
feature curve, to which e belongs. A simple choice would be to take
the length of the respective arc in N. However, this would ignore
the fact that feature curves can geometrically (and "semantically")
extend beyond extraordinary vertices. The algorithms in [YBS05]
and [ZZCJ14] provide us with an appropriate segment membership.
In the case of VSA, we compute the length of a supporting feature
curve for each feature edge. Starting with the arc to which e be-
longs, we extend this curve at both ends by adding that arc, which
continues the existing feature curve in the most straight (i.e. tan-
gent continuous) direction. The extension stops when the straight-
est arc no longer corresponds to a boundary of the same VSA patch
as the starting arc. This stopping criterion restricts the extension
to T-type-vertices in the feature network and makes sure that each
feature curve remains a subset of a VSA segment boundary.

Symmetry is an important perceptual feature to identify a shape
[MZL∗09]. Hence, Sym(e) weights symmetric curve segments
stronger than non-symmetric segments, i.e.:

Sym(e) =

{

αsym , if e has symmetric edge e′

1 , otherwise

where αsym is a constant factor. We choose αsym = 2 in our exper-
iments. Symmetric feature curves are detected in a preprocessing
step (e.g. with [MGP06]). Each edge that is labeled symmetric has
a second (symmetric) representative, which only exists as long as
its symmetric counterpart is preserved.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

A feature curve that is connected to a closed loop describes a
perceptual component, which should be preferred:

Loop(e) =

{

αloop , if e lies on a loop

1 , otherwise.

We choose αloop = 100 in our experiments.

The geometric quality of the result can be improved by not only
considering the weight of individual feature edges but by also re-
garding pairs of edges. Smoothly connected segments convey the
shape of an object better than highly curved segments and are
considered more relevant [DGGDV11]. In order to promote con-
nected curves over fragmented segments and interleaved edges ap-
proximating parallel curves, we introduce a smoothness measure
as(ei,e j). For this we consider all pairs of edges ei,e j ∈ E which
are adjacent to a common feature vertex. We choose:

as(ei,e j) =

{

cosp(2 · γi, j) , for γi, j ≤ π
4

0 , otherwise

where γi, j is the angle between ei and e j. as(ei,e j) smoothly de-
creases from 1 to 0 as γi, j increases from 0 to 45 degrees. The pa-
rameter p controls the fall-off. In all experiments we set p = 2.

For the purpose of quad-meshing, feature segments should be
continued smoothly and intersect orthogonally to establish high
quality meshes [BCE∗13]. We can evaluate parallelism and orthog-
onality by introducing a combined weight a||,⊥ between all edges
that are within a prescribed radius:

a||,⊥(ei,e j) = cos2p(2 · γi, j)

a||,⊥ is close to 1 for angles near multiples of 90 degrees, which
favors orthogonal configurations and parallel edge configurations.

5.3.2. Conflict Removal and Feature Edge Selection

In order to find the maximum conflict-free subset of the feature
edges in N we formulate the problem-statement described in Sec-
tions 3 and 4 as a binary labeling problem for a set of optimiza-
tion variables bi, each indicating whether the corresponding fea-
ture edge ei ∈ E belongs to the conflict-free subset (bi = 1) or
not (bi = 0). Since black-box numerical solvers can solve lin-
ear constrained problems more efficiently than quadratically con-
strained problems, we formulate the optimization as a linear pro-
gram (e.g. by introducing binary pseudo variables).

A conflict-free subset of E is optimal if it maximizes the objec-
tive function:

T +λ0Us +λ1U||,⊥

T = ∑
i

bi ·w(ei).

Ux = ∑
i, j

ai, j ·ax(ei,e j).

(1)

The objective function is composed of the terms T and U refer-
ring to the respective single-edge and combined-edge weights (cf.
Section 5.3.1) with weighting factors λ0 and λ1 set by the user. In
all our experiments we choose λ0 = 100. For quad meshing related
experiments we set λ1 = 10, otherwise λ1 = 0. For the combined
objective, we introduce an additional set of binary pseudo variables

ai, j which merely indicate if the combined term between ei and e j

is active (ai, j = 1) or not (ai, j = 0). In case the combined term is
not computed for the edges ei and e j (e.g. edges are not adjacent to
a common vertex for the smoothness term) then ai, j = 0. Otherwise
the boundary constraints:

ai, j ≤ bi & ai, j ≤ b j (2)

make sure that the combined term is active only if both involved
edges are.

In the following we will further refine this mathematical model
to generate scale-conforming networks. For this we translate con-
flicts described in Section 5.2.2 into constraints of the optimization.

If the feature edges ei and e j have a conflict (according to the
definition in Section 4) then we add a constraint of the type

bi +b j ≤ 1 (3)

to the optimization problem, which makes sure that not both edges
can belong to the optimal subset. Note that symmetric edge pairs ei

and e′i share the same optimization variable bi, since a symmetric
edge exists if and only if its symmetric counterpart exists. In case
of n-fold symmetries n edges share the same optimization variable.

To handle vertex conflicts (cf. Section 5.2.2) where extraordinary
feature vertices lie closer than rmin to each other, we introduce fur-
ther binary variables ci, which indicate for each extraordinary fea-
ture vertex vi ∈V∗ whether it should be kept (ci = 1) or be removed
(ci = 0). First, for every pair of extraordinary feature vertices vi and
v j whose distance is less than rmin, we add a constraint

ci + c j ≤ 1, (4)

which is analog to the constraint for conflicting edges. Being la-
beled as "remove" does not necessarily mean that an extraordinary
vertex is deleted. It can be sufficient to downgrade it to a regular
feature vertex and then remove it in the feature arc resampling step
of the next iteration, as described in Section 5.2.2. I.e. one of the
conflicting vertices needs to become regular, which means its va-
lence must become less or equal to 2. This condition for a vertex vi

can be formulated as another constraint:

(1− ci) ∑
e j∈one-ring(vi)

b j ≤ 2 (5)

A special case of this condition applies to extraordinary vertices
vi with valence 1 before conflict resolution. Here, the one adjacent
edge e j has to be removed as well, leading to the constraint:

(1− ci) · b j ≤ 0. (6)

These quadratic constraints can be linearized in the following way:
For every edge ei a pseudo variable pi is added. An equivalent for-
mulation to Constraint 5 (and analogously Constraint 6) is:

∑
e j∈one-ring(vi)

p j ≤ 2

p j −b j ≤ ci & b j − p j ≤ ci.

(7)

With the above constraints, we guarantee that all conflicts are prop-
erly handled. We can further improve the quality of the resulting
FCN by regarding two further types of conflicts. So far we might
end up with isolated short edges, which cannot be resampled and

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

are not representable at the given resolution. To avoid this we intro-
duce another constraint for all edges es = (vi,v j) shorter than rmin:

∑
ek∈one-ring(vi)\es

bk + ∑
ek∈one-ring(v j)\es

bk ≥ bes , (8)

which implies that if es is removed (bes = 0) then the constraint
does not have any effect, but if the short edge is kept (bes = 1) then
at least one of the two end vertices must be connected to at least
one more edge, leaving no isolated short edges in the abstraction.

As described above (Section 5.2.2), we will remove a short edge
es (bes = 0) by collapsing its two end vertices (cf. Section 5.3.3).
Then we must consider the following situation on the right: It can
occur that there is a set Ec of other feature edges (e.g. ec) that had
a conflict with es. These conflicts (dashed line) are inherited after

ei e jesvi v j

ec

the collapse by the edges adjacent to es

(e.g. ei and e j). Since these are foresee-
able conflicts, we can take them into ac-
count preemptively by adding another
set of constraints to our optimization problem. For every short edge
es = (vi,v j) and every edge ec from its conflicting set Ec we require

bc +bi +b j ≤ 2 (9)

for all pairs of edges ei and e j that are adjacent to vi and v j re-
spectively. This constraint can be interpreted as follows: if es wins
against all its conflicting edges (i.e. bs = 1) then bc = 0 (accord-
ing to Constraint (3)) for all edges in Ec and thus Constraint 9 is
automatically satisfied. If es loses (bs = 0) and an edge ec ∈ Ec is
preserved by the optimization (bc = 1) then in each pair ei, e j only
one edge can be kept.

Overall, the task of finding the optimal non-conflicting subset
of the given feature network N amounts to solving a linear pro-
gram (1) with linear constraints (3)-(4), and (7)-(9). These types of
optimization problems can be solved quite efficiently by off-the-
shelf solvers such as the linearly constrained mixed integer solver
by GUROBI [GO15].

The objective of this optimization is the preservation of as much
feature information as possible. Since the edges are treated sepa-
rately it can occur that feature curves are fragmented. Applications
such as segmentation layout generation might require the retain-
ment of a patch structure. Incorporating higher order structure and
treating an entire feature curve as a whole (and thus avoiding frag-
mentation and invalid segmentation layouts) can be implemented
by assigning the same binary optimization variable to all edges be-
longing to a curve.

5.3.3. Short Edge Collapsing

The result of the labeling problem is a set of binary variables that
indicate, which edges belong to the maximum non-conflicting sub-
set. Short edges es that are assigned bs = 0 are now removed from
the network by edge collapses where we pull the vertex with lower
sharpness value into the one with higher sharpness. This process to-
gether with the deletion of suppressed regular edges leads to topo-
logical changes in the feature network, since entire branches can

our method
0.0195

Quadric Decimation
0.0194

Isotropic Remeshing
0.0883

Figure 7: Comparison with Quadric and Isotropic Remeshing. The

Quadric decimation was performed until the mesh-complexity (ver-

tices) was equal, while isotropic remeshing was performed for the

same target edge length. The numbers below give the Hausdorff

distance (Hd) (bounding box diagonal of length 1.4). Although the

Hd of the Quadric decimation is similar to that of our abstraction,

ours has well-shaped triangles and suppresses features that cannot

be represented, while the decimated object has many degenerate,

pointy triangles aligning along the features. The isotropic remesh-

ing has a much higher Hd, since features are smoothed away.

disappear and formerly separate arcs can be joined. Hence, we iter-
ate the process by feeding the result back into the resampling step
(cf. Section 5.2.1).

6. Results and Applications

Figure 8 shows a variety of exemplary FCNs generated by our
method. We observe that for each scale interval, continuous and
prominent feature-lines are preserved, while less salient curves,
which are not representable are suppressed. Exact timings and mea-
surements of the optimization are given in the supplemental mate-
rial. As proof of concept we will present two different applications,
which demonstrate the usefulness of the generated FCNs.

6.1. Isotropic Remeshing

Advances in triangle remeshing focus on goals such as high qual-
ity, feature preservation, or fidelity [ADVDI03, AUGA08]. While
features can be preserved, it is not possible to suppress them in a
controlled manner for a given target edge length. For demonstra-
tion, we apply quadric decimation [GH97] and isotropic remeshing
[BK04] on the Skyscraper model in Figure 7 (middle and right). We
can observe that quadric decimation, preserves features although
they cannot be represented properly at the given resolution, which
leads to many degenerated and pointy triangles. Isotropic remesh-
ing on the other hand smoothes the features away. Both methods
rely on local shape information. In contrast, our feature curve sup-
pression method takes the global feature spacing into account and
generates a subsampling of features which leads to well-shaped tri-
angles, which align along feature curves (Figure 7(left)).

To achieve this we leverage the FCN as input to the isotropic
remeshing algorithm described in [BK04]. Figures 1 and 8 show
the scale adapted feature curves and the respective abstracted trian-
gle meshes at different target scales S (fine-to-coarse). In contrast

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

Figure 8: Scale conforming FCNs at different scales. Initial feature sets are depicted leftmost with the length of the bounding box diagonal

given above the respective object. These were generated with VSA (Trumpet, Octaflower, Fandisc, Iphigenie, Rockerarm), [YBS05] (Moai,

Chiniese Dragon, Camel), or Livewire (Candel, Isidore Horse, Elephant). Extracted FCNs at different scales were used as input to isotropic

triangle remeshing [BK04], or level of detail quad meshing [ECBK14]. The number below the objects gives the mesh complexity number of

vertices). The one above gives the Hausdorff distance (Hd) for triangle meshes and Hd/average Scaled Jacobian (aSJ) for quad meshes.

to previous feature suppression mechanisms, where curves are re-
moved via filtering or smoothing, we can observe a subsampling of
the feature-curves which is based on global scale parameter.

We compare the curvature-filtering approach presented in
[YBS05] to our feature subsampling in Figure 9. Examples are
generated with the curvature thresholding parameter set to T = 0,

T = 0.5 and T = 0.8. In the case where no thresholding is per-
formed (T = 0) we observe several small and dense features. Tri-
angles that align along these features do not satisfy the target res-
olution. We increase T to remove small scale details. At the same
time features are removed and smoothed away in the remeshing
procedure which could have been represented at the given scale

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

our method
0.18/954

T = 0.8
0.23/1685

T = 0.5
0.22/1734

T = 0
0.1/1951

Figure 9: Comparison of our feature line abstraction method to

curvature thresholding. The top row depicts the boundary con-

straints used for isotropic triangle remeshings (bottom row). The

numbers below give Hausdorff distance (Hd)/vertices. The left col-

umn shows results from our feature line abstraction. On the right,

isotropic remeshing constrained by the ridges and ravines from

[YBS05] is applied with decreasing curvature thresholding param-

eter T . For T = 0 the prescribed resolution cannot be guaranteed

and shows a much higher mesh complexity, while for increasing T

features are removed that could have been represented (e.g. tip of

the nose, ear). It is not surprising that the Hd is smaller for T = 0,

since all features are preserved during remeshing.

(e.g. the tip of the nose or the ears in Figure 9). With our method,
the feature curves are adapted to the target resolution, i.e., all fea-
tures which can be represented at the given scale are preserved and
resulting triangles are well shaped. Further comparisons are given
in the supplemental material.

6.2. Guiding Constraints for Level-of-Detail Quad Meshing

quad meshing with
our method as

guiding constraints

without
guiding constraints

State of the art quad
meshing and quad lay-
out methods are not able
to suppress or select fea-
tures based on their den-
sity. They create high
quality surface represen-
tations only if they are
provided with (or pre-
compute) proper guiding
constraints. These guiding
constraints give a direction along which the quads should align.
E.g. the image below (two camels) depicts two quad meshes (gen-
erated with [EBCK13, ECBK14]). On the left, our feature ab-
stractions were supplied as guiding constraints, while for the right
mesh no constraints were given. Note that in contrast to the im-
age on the right, the quads in the left image align along features

sm
oo

th
in

g
ou

r
m

et
ho

d

Figure 10: Comparison of our FCN adaptation to conventional fil-

ter approaches in the context of quad mesh generation. The top row

shows our extracted FCNs used as guiding constraints for Level-

of-Detail Quad Meshing [ECBK14] with the respective target edge

length. The bottom row shows the results obtained by applying a

smoothing filter to the input mesh to suppress fine detail before

quad meshing. Here, the target edge length is not adapted to avoid

undersampling artifacts. Notice that in the top row, the number of

ribs is incrementally decreasing while in the bottom row, the num-

ber of ribs remains constant and only their amplitude decreases.

and curvature directions, which demonstrates the need for such
guiding constraints. So far, guiding constraints are usually either
manually supplied or obtained from filtered curvature directions
[KNP07, BZK09, NPPZ12, CBK12, BCE∗13, ECBK14]. Although
user-supplied constraints lead to high quality results, their acquisi-
tion is tedious. Guiding constraints obtained via filtering are sensi-
tive to noise and ignorant of the feature density. Furthermore, cer-
tain thresholds need to be set manually by a user. In Figure 10, we
demonstrate the effect of feature suppression by smoothing (bot-
tom row) in contrast to our sub-sampling approach (top). For com-
parison we generate quad meshes guided by curvature constraints,
which were smoothed in advance to remove small-scale details.
Note that the number of ribs remains constant and only their ampli-
tude decreases, while the number of ribs is incrementally reduced
with our sub-sampling approach and hence gives a representation
of the feature set at different resolutions.

Furthermore, we compare quad meshes generated with curvature
thresholded guiding constraints [BZK09] to those constrained by
our scale conforming FCNs in Figure 11. In Figure 11a we choose
a high curvature threshold, to preserve only strong features. By in-
creasing the threshold further (11b) nearly all constraints are re-
moved simultaneously since all features of the same magnitude will
either be preserved or removed. Also, less prominent features (e.g.
the collar around the Chinese Dragons neck or the eyes’ region in
Figure 11a) are not represented in the curvature thresholded fea-
ture set and thus smoothed away. They can only be included by
thresholding if all other features of the same strength are incor-
porated. This can lead to overconstrained parametrizations. Our
subsampling preserves the representable features and quads align
along them with high element quality (the average scaled Jacobian
is close to that of the nearly unconstrained mesh). Hence, using the
scale conforming FCNs obtained from our method as soft guiding
constraints introduces a high-quality, automatic alternative in this
context. By combining our scale conforming approach with Level-
of-Detail Quad Meshing from [ECBK14] we can suppress densely
spaced features and noise, while preserving dominant large-scale
features. The final quad meshes are extracted with QEx [EBCK13].
Figure 8 shows a variety of quad meshes at different levels of de-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

our method
0.022/0.94

(a)
0.024/0.90

(b)
0.025/0.95

Figure 11: Comparison of our scale conforming FCN as guiding

contraints for quadmeshing to contraints induced by setting cur-

vature thresholds as in [BZK09]. The top row depicts the guiding

constraints. We choose a high curvature threshold in (a) to preserve

only strong features and avoid degeneracies in the parametrization.

If this threshold is increased in (b) nearly all strong features are

removed simultaneously. The numbers below give the Hd/average

Scaled Jacobian (aSJ). While in (a) the quads align along the fea-

tures the aSJ is much lower than in (b), which has a high aSJ due

to the low number of constraints, but quads do not align well along

features. We can observe that the aSJ is similar to that of (b), while

still aligning well to the features at the given scale.

tail, which were generated using the extracted FCNs as soft guiding
constraints.

Limitations Since we strive to maintain a maximum amount of
salient feature curves in the final network, we cannot guarantee that
it will result in a connected B-Rep, as it is done in [MZL∗09]. Also,
the connectivity of the final feature-graph is strongly dependent on
the initial network. E.g. the feature curves generated with [YBS05]
are mostly isolated ridges or ravines without many junctions. The
gaps between curves are also visible in our scale conforming FCNs,
which should be acknowledged when choosing the method to gen-
erate the initial feature curves. Moreover, we do not close gaps be-
tween feature lines during the abstraction for two reasons. First of
all, we do not want to "invent" additional information to the initial
feature set, since we would require a heuristic which selects two
curves to close the gap. Secondly, we can guarantee that the algo-
rithm terminates since we remove at least one feature edge in each
iteration. Extending features could affect termination.

Furthermore, our arc resampling strategy restricts the possible
abstractions. We only resample along the arc and do not take any

points into account that deviate from the arc. E.g. the image to the
right shows a rounded surface. Our resampling cuts this curve off
(middle). A better abstraction (in the sense
of a least squares error) might be to extend
the curves as it is done in the image below.
The benefit of our approach is that it has a
comparatively small solution space, allow-
ing an efficient computation. To extend fea-
tures as discussed above would involve find-
ing an appropriate formulation to solve this
problem efficiently.

Another limitation derives from the NP-hardness of binary op-
timization. This can affect performance in cases with a large
amount of inter-dependent conflicts. A greedy approximation strat-
egy could be of value in such a setting. However, in our examples
the duration of the optimization procedure ranged from 0.0023s
(Octaflower) to 72.09s (Iphigenie) with an Intel Core i7-4770 CPU.
More details on timings are given in the supplemental material.

7. Conclusion

We have presented a computational approach to the intuitive no-
tion of scale conforming FCNs, which poses it as a binary labeling
problem. It guarantees that the spacing between feature curves is
large enough such that they can be meshed properly at a prescribed
resolution.Conflict suppression was implemented as a global opti-
mization procedure, allowing for all detected conflicts to be han-
dled at once, without the need for local or greedy decisions. The
resulting feature line based abstractions were used to generate fea-
ture preserving level-of-detail mesh approximations.

Tracing the arcs for scale conforming FCNs relies on the as-
sumption that smoothly connected edges define a perceptual seg-
ment. We could refine this heuristic by considering geodesic curva-
ture only. Moreover, our approach provides the option to take ad-
ditional information into account, which can be provided by a user.
Also, including further semantic information, e.g. adding texture
awareness to the abstraction process, could be worth investigating.

A further interesting direction of research could be to make the
FCN conform to a scalar sizing field over the mesh, which could
e.g. be computed from the local feature size or given by a user.
This would allow to resolve different levels of detail on one object,
which could be used to e.g. remove noise from a feature network.

The scale conforming feature curves computed by our algorithm
provide a new automatic alternative for feature based level-of-detail
methods. Instead of requiring user supplied feature constraints we
provide the means to automatically generate feature abstractions
at variable levels of detail. As input a user has to precompute the
initial FCNs. However, this is not a problem since features can be
quite dense, because small, weak features are suppressed by the
algorithm. We believe that the detection and preservation of salient
and representable features can be useful for various kinds of level-
of-detail algorithms.

Acknowledgements

The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

A. Gehre, I. Lim, L. Kobbelt / Adapting FCNs to a Prescribed Scale

Framework Programme (FP7/2007-2013)/ERC grant agreement n◦

[340884]. Several models are provided courtesy of INRIA and Yu-
taka Ohtake by the AIM@SHAPE-VISIONAIR Shape Repository.
Furthermore, we thank Hans-Christian Ebke for providing us with
the software for Level-of-Detail Quad Meshing and QEx. Last but
not least, we would like to thank Jan Möbius for creating and main-
taining the geometry processing framework OpenFlipper as well as
the reviewers for their insightful comments.

References

[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEVILLERS O., LÉVY

B., DESBRUN M.: Anisotropic polygonal remeshing. In ACM Transac-

tions on Graphics (TOG) (2003), vol. 22, ACM, pp. 485–493. 6

[ADVDI03] ALLIEZ P., DE VERDIRE E., DEVILLERS O., ISENBURG

M.: Isotropic surface remeshing. In Shape Modeling International, 2003

(2003), IEEE, pp. 49–58. 1, 8

[AUGA08] ALLIEZ P., UCELLI G., GOTSMAN C., ATTENE M.: Recent
advances in remeshing of surfaces. In Shape Analysis and Structuring,

Mathematics and Visualization (2008), Springer. 8

[BCE∗13] BOMMES D., CAMPEN M., EBKE H.-C., ALLIEZ P.,
KOBBELT L.: Integer-grid maps for reliable quad meshing. ACM Trans.

Graph. 32, 4 (July 2013), 98:1–98:12. doi:10.1145/2461912.

2462014. 7, 10

[BK04] BOTSCH M., KOBBELT L.: A remeshing approach to multireso-
lution modeling. In Proceedings of the 2004 Eurographics/ACM SIG-

GRAPH Symposium on Geometry Processing (New York, NY, USA,
2004), SGP ’04, ACM, pp. 185–192. doi:10.1145/1057432.

1057457. 1, 8, 9

[BPK98] BELYAEV A. G., PASKO A. A., KUNII T. L.: Ridges and
ravines on implicit surfaces. In Computer Graphics International, 1998.

Proceedings (1998), IEEE, pp. 530–535. 2

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer quad-
rangulation. In ACM SIGGRAPH 2009 Papers (New York, NY, USA,
2009), SIGGRAPH ’09, ACM, pp. 77:1–77:10. doi:10.1145/

1576246.1531383. 1, 10, 11

[CBK12] CAMPEN M., BOMMES D., KOBBELT L.: Dual loops mesh-
ing: Quality quad layouts on manifolds. ACM Trans. Graph. 31, 4 (July
2012), 110:1–110:11. doi:10.1145/2185520.2185606. 10

[CJL11] CHIANG C.-H., JONG B.-S., LIN T.-W.: A robust feature-
preserving semi-regular remeshing method for triangular meshes.
The Visual Computer 27, 9 (2011), 811–825. doi:10.1007/

s00371-011-0555-1. 1

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational
shape approximation. In ACM SIGGRAPH 2004 Papers (New York, NY,
USA, 2004), SIGGRAPH ’04, ACM, pp. 905–914. doi:10.1145/

1186562.1015817. 2, 5

[CYW14] CAO Y., YAN D.-M., WONKA P.: Patch layout generation by
detecting feature networks. Computers & Graphics (2014). 2

[Dem09] DEMARSIN K.: Extraction of Closed Feature Lines from Point

Clouds Based on Graph Theory. PhD thesis, Numerical Analysis and
Applied Mathematics Section, Department of Computer Science, Fac-
ulty of Engineering Science, Jan. 2009. URL: https://lirias.
kuleuven.be/handle/1979/2027. 2

[DGGDV11] DE GOES F., GOLDENSTEIN S., DESBRUN M., VELHO

L.: Exoskeleton: Curve network abstraction for 3d shapes. Comput.

Graph. 35, 1 (Feb. 2011), 112–121. doi:10.1016/j.cag.2010.
11.012. 2, 6, 7

[EBCK13] EBKE H.-C., BOMMES D., CAMPEN M., KOBBELT L.:
QEx: Robust quad mesh extraction. ACM Trans. Graph. 32, 6 (Nov.
2013), 168:1–168:10. doi:10.1145/2508363.2508372. 10

[ECBK14] EBKE H.-C., CAMPEN M., BOMMES D., KOBBELT L.:
Level-of-detail quad meshing. ACM Trans. Graph. 33, 6 (Nov. 2014),
184:1–184:11. doi:10.1145/2661229.2661240. 1, 9, 10

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In Proceedings of the 24th Annual Conference on

Computer Graphics and Interactive Techniques (New York, NY, USA,
1997), SIGGRAPH ’97, ACM Press/Addison-Wesley Publishing Co.,
pp. 209–216. doi:10.1145/258734.258849. 8

[GO15] GUROBI OPTIMIZATION I.: Gurobi optimizer reference manual,
2015. URL: http://www.gurobi.com. 8

[KNP07] KÄLBERER F., NIESER M., POLTHIER K.: Quadcover-surface
parameterization using branched coverings. In Computer Graphics Fo-

rum (2007), vol. 26, Wiley Online Library, pp. 375–384. 10

[LZH∗07] LAI Y.-K., ZHOU Q.-Y., HU S.-M., WALLNER J.,
POTTMANN H.: Robust feature classification and editing. IEEE Trans.

Visualization and Computer Graphics (2007). 2

[LZHM06] LAI Y.-K., ZHOU Q.-Y., HU S.-M., MARTIN R. R.: Feature
sensitive mesh segmentation. In Proceedings of the 2006 ACM Sympo-

sium on Solid and Physical Modeling (New York, NY, USA, 2006), SPM
’06, ACM, pp. 17–25. doi:10.1145/1128888.1128891. 2

[MDS09] MI X., DECARLO D., STONE M.: Abstraction of 2d shapes
in terms of parts. In Proceedings of the 7th International Symposium

on Non-Photorealistic Animation and Rendering (New York, NY, USA,
2009), NPAR ’09, ACM, pp. 15–24. doi:10.1145/1572614.

1572617. 2

[MGP06] MITRA N. J., GUIBAS L., PAULY M.: Partial and approximate
symmetry detection for 3d geometry. ACM Transactions on Graphics

(SIGGRAPH) 25, 3 (2006), 560–568. 6

[MZL∗09] MEHRA R., ZHOU Q., LONG J., SHEFFER A., GOOCH A.,
MITRA N. J.: Abstraction of man-made shapes". ACM Transactions on

Graphics" 28, 5 (2009), #137, 1–10. 2, 6, 11

[NPPZ12] NIESER M., PALACIOS J., POLTHIER K., ZHANG E.: Hexag-
onal global parameterization of arbitrary surfaces. Visualization and

Computer Graphics, IEEE Transactions on 18, 6 (2012), 865–878. 10

[NSP10] NIESER M., SCHULZ C., POLTHIER K.: Patch layout from
feature graphs. Comput. Aided Des. 42, 3 (Mar. 2010), 213–220. doi:
10.1016/j.cad.2009.11.002. 2

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-P.: Ridge-valley lines
on meshes via implicit surface fitting. ACM Trans. Graph. 23, 3 (Aug.
2004), 609–612. doi:10.1145/1015706.1015768. 2

[Rup95] RUPPERT J.: A delaunay refinement algorithm for quality 2-
dimensional mesh generation. Journal of algorithms 18, 3 (1995), 548–
585. 3

[SD08] SALA P., DICKINSON S.: Model-based perceptual grouping and
shape abstraction. In Computer Vision and Pattern Recognition Work-

shops, 2008. CVPRW ’08. IEEE Computer Society Conference on (June
2008), pp. 1–8. doi:10.1109/CVPRW.2008.4562979. 2

[WB01] WATANABE K., BELYAEV A. G.: Detection of salient curvature
features on polygonal surfaces. In Computer Graphics Forum (2001),
vol. 20, Wiley Online Library, pp. 385–392. 2

[WG09] WEINKAUF T., GÜNTHER D.: Separatrix persistence: Ex-
traction of salient edges on surfaces using topological methods. In
Proceedings of the Symposium on Geometry Processing (Aire-la-Ville,
Switzerland, Switzerland, 2009), SGP ’09, Eurographics Association,
pp. 1519–1528. URL: http://dl.acm.org/citation.cfm?
id=1735603.1735638. 2

[YBS05] YOSHIZAWA S., BELYAEV A., SEIDEL H.-P.: Fast and robust
detection of crest lines on meshes. In Proceedings of the 2005 ACM Sym-

posium on Solid and Physical Modeling (New York, NY, USA, 2005),
SPM ’05, ACM, pp. 227–232. doi:10.1145/1060244.1060270.
2, 5, 6, 9, 10, 11

[ZZCJ14] ZHUANG Y., ZOU M., CARR N., JU T.: Anisotropic
Geodesics for Live-wire Mesh Segmentation. Computer Graphics Fo-

rum 33, 7 (2014), 111–120. doi:10.1111/cgf.12479. 2, 5, 6

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

http://dx.doi.org/10.1145/2461912.2462014
http://dx.doi.org/10.1145/2461912.2462014
http://dx.doi.org/10.1145/1057432.1057457
http://dx.doi.org/10.1145/1057432.1057457
http://dx.doi.org/10.1145/1576246.1531383
http://dx.doi.org/10.1145/1576246.1531383
http://dx.doi.org/10.1145/2185520.2185606
http://dx.doi.org/10.1007/s00371-011-0555-1
http://dx.doi.org/10.1007/s00371-011-0555-1
http://dx.doi.org/10.1145/1186562.1015817
http://dx.doi.org/10.1145/1186562.1015817
https://lirias.kuleuven.be/handle/1979/2027
https://lirias.kuleuven.be/handle/1979/2027
http://dx.doi.org/10.1016/j.cag.2010.11.012
http://dx.doi.org/10.1016/j.cag.2010.11.012
http://dx.doi.org/10.1145/2508363.2508372
http://dx.doi.org/10.1145/2661229.2661240
http://dx.doi.org/10.1145/258734.258849
http://www.gurobi.com
http://dx.doi.org/10.1145/1128888.1128891
http://dx.doi.org/10.1145/1572614.1572617
http://dx.doi.org/10.1145/1572614.1572617
http://dx.doi.org/10.1016/j.cad.2009.11.002
http://dx.doi.org/10.1016/j.cad.2009.11.002
http://dx.doi.org/10.1145/1015706.1015768
http://dx.doi.org/10.1109/CVPRW.2008.4562979
http://dl.acm.org/citation.cfm?id=1735603.1735638
http://dl.acm.org/citation.cfm?id=1735603.1735638
http://dx.doi.org/10.1145/1060244.1060270
http://dx.doi.org/10.1111/cgf.12479

