
Published as a conference paper at ICLR 2023

NEURAL IMPLICIT SHAPE EDITING USING BOUNDARY
SENSITIVITY

Arturs Berzins
Department of Mathematics and Cybernetics
SINTEF
arturs.berzins@sintef.no

Moritz Ibing & Leif Kobbelt
Visual Computing Institute
RWTH Aachen University

ABSTRACT

Neural fields are receiving increased attention as a geometric representation due
to their ability to compactly store detailed and smooth shapes and easily undergo
topological changes. Compared to classic geometry representations, however,
neural representations do not allow the user to exert intuitive control over the shape.
Motivated by this, we leverage boundary sensitivity to express how perturbations
in parameters move the shape boundary. This allows to interpret the effect of each
learnable parameter and study achievable deformations. With this, we perform
geometric editing: finding a parameter update that best approximates a globally
prescribed deformation. Prescribing the deformation only locally allows the rest
of the shape to change according to some prior, such as semantics or deformation
rigidity. Our method is agnostic to the model its training and updates the NN
in-place. Furthermore, we show how boundary sensitivity helps to optimize and
constrain objectives (such as surface area and volume), which are difficult to
compute without first converting to another representation, such as a mesh.

1 INTRODUCTION

A neural field is a neural network (NN) mapping every point in a domain of interest, typically of
2 or 3 dimensions, to one or more outputs, such as a signed distance function (SDF), occupancy
probability, opacity or color. This allows to represent smooth, detailed, and watertight shapes with
topological flexibility, while being compact to store compared to classic implicit representations
(Davies et al., 2020). When the NN is trained not on a single shape but instead an entire collection,
each shape is encoded in a latent vector, which is an additional input to the NN (Park et al., 2019;
Chen & Zhang, 2019; Mescheder et al., 2019). As a result, neural fields are receiving increased
interest as a geometric representation in numerous applications, such as shape generation (Park et al.,
2019), shape completion (Chibane et al., 2020), shape optimization (Remelli et al., 2020), scene
representation (Sitzmann et al., 2020), and view synthesis (Mildenhall et al., 2020). Some pioneering
works have also investigated geometry processing, like smoothing and deformation, on neural implicit
shapes (Yang et al., 2021; Remelli et al., 2020; Mehta et al., 2022; Guillard et al., 2021), but these
can be computationally costly or resort to intermediate mesh representations. In part, this difficulty
stems from the shape being available only implicitly as the sub-level set of the field.

While intuitive (often synonymous with local) geometric control is a key design principle of classic
explicit or parametric representations (like meshes, splines, or subdivision schemes), it is not trivial
to edit even classic implicit representations, especially ones with global functions (Bærentzen &
Christensen, 2002). Previous works on neural implicit shape editing have focused on the shape
semantics, i.e. changing part-level features based on the whole shape structure, but achieve this
through tailored training procedures or architectures or resort to intermediate mesh representations.

We instead propose a framework which unifies geometric and semantic editing and which is agnostic
to the model and its training and modifies the given model in-place akin to classic representations.
To treat the geometry, not the field, as the primary object we consider boundary sensitivity to relate
changes in the function parameters and the implicit shape. This allows us to express and interpret a
basis for the displacement space.

1

Published as a conference paper at ICLR 2023

In this framework, the user supplies a target displacement on (a part) of the shape boundary in the
form of deformation vectors or normal displacements at a set of surface points. Employing boundary
sensitivity we find the parameter update which best approximates the prescribed deformation. In
geometric editing, we prescribe an exact geometric update on the entirety of the boundary. Akin to
local control in classic representations, we especially study the case where the prescribed displacement
is local and the rest of the boundary is fixed. In semantic editing only a part of the boundary is
prescribed a target displacement. The remaining unconstrained displacement is determined by
leveraging the generalization capability of the model as an additional prior, producing semantically
consistent results on the totality of the shape. Another prior often used in shape editing is based on
deformation energy, such as as-rigid-as-possible (Sorkine & Alexa, 2007) or as-Killing-as-possible
(Solomon et al., 2011), which generates physically plausible deformations minimizing stretch and
bending. This is not trivially applicable to implicit surfaces, as there is no natural notion of stretch due
to ambiguity in tangent directions. We discuss a few options to resolve this ambiguity and demonstrate
that boundary sensitivity can be leveraged to optimize directly in the space of expressible deformations.
Lastly, we use level-set theory and boundary sensitivity to constrain a class of functionals, which are
difficult to compute without first converting to another representation, such as a mesh. As a specific
use-case, we consider fixing the volume of a shape to prevent shrinkage during smoothing.

2 RELATED WORK

Implicit Shape Representations and Manipulation Implicit shape representations or level-sets
have been widely used in fields such as computer simulation (Sethian & Smereka, 2003), shape
optimization (van Dijk et al., 2013), imaging, vision, and graphics (Vese, 2003; Tsai & Osher, 2003).
Classically, an implicit function is represented as a linear combination of either a few global basis
functions, such as in blobby models (Muraki, 1991), or many local basis functions supported on a
(potentially adaptive) volumetric grid (Whitaker, 2002). While few global bases use less memory,
the task of expressing local displacements is generally ill-posed (Whitaker, 2002). Hence, methods
for interactive editing of implicit shapes are formulated for grid-supported level-sets (Museth et al.,
2002; Bærentzen & Christensen, 2002). These methods use a prescribed velocity field, for which
the level-set-equation – a partial differential equation (PDE) modelling the evolution the surface – is
solved using numerical schemes on the discrete spatiotemporal grid.

Neural Fields In neural fields, a NN is used to represent an implicit function. Different from classic
implicit representations, these are non-linear and circumvent the memory-expressivity dilemma
Davies et al. (2020). In addition, automatic differentiation also provides easy access to differential
surface properties, such as normals and curvatures, useful for smoothing and deformation (Yang et al.,
2021; Mehta et al., 2022; Atzmon et al., 2021) or more exact shape fitting (Novello et al., 2022).
Early works propose to use vanilla multilayer perceptrons (MLPs) to learn occupancy probability
(Mescheder et al., 2019; Chen & Zhang, 2019) or signed distance functions (Park et al., 2019; Atzmon
& Lipman, 2020), whose level-sets define the shape boundary. Conditioning the NN on a latent code
as an additional input allows to decode a collection of shapes with a single NN (Chen & Zhang, 2019;
Mescheder et al., 2019; Park et al., 2019). Later works build upon these constructions by introducing
a spatial structure on the latent codes using (potentially adaptive) grids, which affords more spatial
control when generating novel shapes (Ibing et al., 2021) and allows to reconstruct more complex
shapes and scenes (Jiang et al., 2020; Peng et al., 2020; Chibane et al., 2020). In this work, we
develop a method to interactively modify shapes generated by any of these methods.

Neural Shape Manipulation Although there are many previous works on the deformation of shapes
with NNs, we focus only on methods that use neural implicit representations. These can roughly be
sorted into two groups based on their guiding principle. Methods in the first group manipulate shapes
based on a semantic principle. Hertz et al. (2022) create a generative framework with part-level
control consisting of three NNs decomposing and mixing shapes in the latent space. Elsner et al.
(2021) encourage the latent code to act as geometric control points, allowing to manipulate the
geometry by moving the control points. Chen et al. (2021) demonstrate how to interpolate between
shapes while balancing their semantics by choosing which layer’s features to track. Similar to our
method, this is agnostic to the training and the model. Hao et al. (2020) learn a joint latent space
between an SDFs and its coarse approximation in the form of a union of spherical primitives. This way
modifications of the spheres can be translated to the best matching change of the high-fidelity shape.

2

Published as a conference paper at ICLR 2023

In our work, we allow a similar editing approach, but through insights from boundary sensitivity, we
are able to apply such manipulation to arbitrary NNs.

Methods in the second group are based on some well defined energy. Yang et al. (2021) demonstrate
shape smoothing using a curvature-based loss. Similarly, shape deformation is performed by optimiz-
ing the deformation energy for which another invertible correspondence NN is needed. Niemeyer
et al. (2019) train an additional NN as a spatio-temporally continuous velocity field, along which the
points of a shape are integrated.

Boundary Sensitivity Boundary sensitivity has already been introduced in the context of implicit
neural shapes in several previous works. Atzmon et al. (2019) use it to translate geometric losses
defined on points sampled from a classifier or SDF level-sets to parameter updates during training.
Atzmon et al. (2021) use approximate Killing vector fields (AKVFs) and boundary sensitivity
during training to encourage latent space interpolation to act as physically plausible deformation.
Neural implicit shape manipulation has also been achieved by leveraging meshes as an intermediate
representation to benefit from the well studied geometry processing operations on those. Remelli
et al. (2020) propose differentiable mesh extraction to then propagate gradients from a differentiable
operation on the mesh through to the implicit NN. Mehta et al. (2022) study this link in more
detail using classic theory of level-sets, using boundary sensitivity to translate several mesh-based
operations to SDF updates. Guillard et al. (2021) builds upon differentiable mesh extraction for
sketch-based editing by translating an image-based error to shape updates. Similar to our work,
Sketch2Mesh uses boundary sensitivity only for the editing, being model and training agnostic. While
our method trivially generalizes to meshes, we require only points sampled from the surface. We
further show how to restrict the editing process by introducing explicit constraints or by using the
NN’s semantic prior.

3 BOUNDARY SENSITIVITY

Let f be a differentiable function mapping a spatial coordinate x ∈ D ⊂ RD to a scalar f(x;Θ) ∈ R
on a domain of interest D. Let the vector Θ ∈ RP gather the parameters of f . For a given
Θ, the sign of f implicitly defines the shape Ω(Θ) = {x ∈ D|f(x;Θ) ≤ 0} and its boundary
Γ(Θ) = {x ∈ D|f(x;Θ) = 0}.

Consider the variation of Ω(Θ) by a displacement field (also known as velocity field) δx : D 7→ RD,
denoted by Ωδx(Θ) = {x+ δx(x) ∈ D|f(x+ δx(x);Θ) ≤ 0}. If δx is sufficiently small, the
initial and the perturbed shapes are diffeomorphic (Allaire et al., 2004), meaning there is a one-to-
one correspondence between the points of both. Consider the displacement field δx induced by a
sufficiently small parameter perturbation δΘ and the perturbed shape Ωδx(Θ) = Ω(Θ+ δΘ). To
compute δx, consider the total derivative of the boundary condition f(x;Θ) = 0:

df(x;Θ) = ∇xf
⊤ dx+∇Θf⊤ dΘ = 0 ∀x ∈ Γ . (1)

We can replace the infinitesimal increments dx and dΘ with sufficiently small perturbations
∇xf

⊤δx + ∇Θf⊤δΘ = 0. Assuming bounded gradients ∇xf = ∇xf(x;Θ) ∈ RD and
∇Θf = ∇Θf(x;Θ) ∈ RP allows to express δx = δx(x;Θ, δΘ) as

δx =
−∇xf∇Θf⊤δΘ

∥∇xf∥2
+ δxt . (2)

This is what we refer to as boundary sensitivity – the movement of the boundary δx caused by
the parameter perturbations δΘ. Equation 2 consists of normal and tangent components δx =
δxn + δxt = nδxn + tδxt. With n = ∇xf/∥∇xf∥ the outward facing normal, we rewrite the
normal part as the weighted sum of the basis b = b(x;Θ) ∈ RP

δxn = b⊤δΘ , b =
−∇Θf

∥∇xf∥
. (3)

For each positive parameter perturbation δΘp, p ∈ {1..P}, a positive gradient ∂f/∂Θp implies that
the boundary moves inward along the normal, since the value of f at x increases. The total movement

3

Published as a conference paper at ICLR 2023

caused by all parameter perturbations is their superposition. We show some basis functions in Figures
2 and 3.

The tangential component δxt is ambiguous since per definition ∇xf
⊤δxt = 0. This is transport of

the surface along itself which has no effect on the implicit representation. However, this ambiguity
can be resolved to recover δxt based on an additional assumption. In the context of classic implicit
representations two such assumptions considered are that normals of points do not change during the
deformation (Jos & Schmidt, 2011) and that they are nearly-isometric (Tao et al., 2016).

Editing Let δx̄ : Γ̄ 7→ RD be a prescribed displacement on (a part of) the boundary Γ̄ ⊆ Γ.
EC =

∫
Γ̄
||δx̄−δx||2 ds is the energy associated with the deviation from the prescribed displacement.

The task in editing is to find a parameter update δΘ inducing the displacement δx which minimizes
this energy. Since a parameter update can cause movement only in the normal direction, it can only
approximate the normal component of the target.

δΘ = argmin
δΘ̃

EC = argmin
δΘ̃

∫
Γ̄

∥δx̄n − δxn + δx̄t − δxt∥2 ds

= argmin
δΘ̃

∫
Γ̄

∥δx̄n − b⊤δΘ̃∥2 ds+
∫
Γ̄

∥δx̄t − δxt∥2 ds
(4)

In practice, the displacement is provided as a finite set of surface vectors at the locations {xi}i=1..I ⊂
Γ̄ and the integral is estimated with the sum:

δΘ = argmin
δΘ̃

∑
i

∥δx̄n(xi)− b(xi)
⊤δΘ̃∥2 . (5)

This is a linear-least-squares problem BδΘ = δȳ with B = [b⊤(xi)]
⊤ ∈ RI×P and δȳ =

[δx̄n(xi)] ∈ RI .

To improve the numerical stability one often uses Tikhonov regularization which penalizes the norm
of the solution minδΘ EC +λ∥δΘ∥2 for some small positive regularization constant λ. In our setting,
Tikhonov regularization serves an additional purpose: small δΘ are necessary for the valididity of
the linear expansion in Equation 1. Furthermore, especially in semantic editing, we might sample
less points than parameters I < P , which would lead to an underdetermined system if regularization
is not used. Lastly, regularization can also control how similar the final shape is to the source shape,
as indicated in Figure 9.

Target Deformation We sample points xi on the boundary Γ̄ via iterative rejection sampling on
the domain of interest or near the farthest point samples of the existing points. This is a sufficiently
efficient method for our needs, although more advanced methods exist (Hart et al., 2002). Target
deformations are then prescribed on the sampled points. If these are not given as the magnitude
along the normal deformation δx̄n, but as a vector δx̄, we project them δx̄n = n⊤δx̄. With partially
prescribed targets, one must be careful about the target being unintentionally restrictive if the normals
at the sampled points are nearly orthogonal to the target vector. This can be remedied by additionally
filtering the points based on their normals.

Large Displacements Despite the boundary sensitivity in Equation 1 being valid only for small
displacements due to the assumption of locally constant gradients, large displacements can be
achieved via several iterations. The initially sampled surface points are moved by the computed δx
in order to obtain the samples of the next iteration. To obtain the respective target deformations we
split the initially user-provided target (either scalar along normal or vector) into equal parts. If the
target is a vector, for each iteration we project the divided target vector onto the current normal. In
the demonstrated geometric and semantic editing applications a small number of iterations (<15) is
sufficient. Note, that the number of iterations will in general scale with the magnitude of the desired
deformation.

Constraints Furthermore, we demonstrate the use of boundary sensitivity to fix a value of a
functional during parameter updates. If the functional is expressed as a surface or volume integral,

4

Published as a conference paper at ICLR 2023

this can be done without computing the integrals themselves. An example of this is constant area,
which can simulate the behaviour of unstretchable, but bendable materials, such as rope in 2D or
textile in 3D. Similarly, volume preservation is characteristic to incompressible materials (Desbrun &
Gascuel, 1995) and is desirable in smoothing to prevent shrinkage (Taubin, 1995).

To this end, we loosely introduce shape derivatives and refer to Allaire et al. (2021) for more detail.
H ′(Ω)(δx) denotes a shape derivative of the functional H(Ω) ∈ R if the expansion H(Ωδx) =
H(Ω) + H ′(Ω)(δx) holds for small δx. We rewrite this using perturbations as δH(Ω)(δx) =
H(Ωδx) − H(Ω). For several functionals the shape derivatives are known analytically. For the
functional H(Ω) =

∫
Ω
hdx defined as a volume integral of h = h(x) ∈ R the shape derivative is

δH(Ω)(δx) =

∫
Ω

div (hδx) dx =

∫
Γ

hδx⊤n dx (6)

where the last equality is due to the divergence theorem on a bounded and Lipschitz domain Ω.
Inserting the boundary sensitivity from Equation 2 we arrive at

δH = δΘ⊤
∫
Γ

hbdx = b⊤
HδΘ (7)

where bH :=
∫
Γ
h(x)b(x) dx ∈ RP again acts as a basis, but for the perturbed integral quantity.

δH = 0 can now be enforced either as soft constraint or as a hard constraint by projecting any
parameter update δΘ onto the RP−1 linear subspace where the integral stays constant δΘδH=0 =
(I− bHb⊤

H)δΘ.

Analogously, for a functional G(Ω) =
∫
Γ
g dx defined as a surface integral of g = g(x) ∈ R the

shape derivative as a perturbation is δG(Ω)(δx) =
∫
Γ
(∂g/∂n+ κg) δx⊤ndx, where ∂g/∂n is the

directional derivative of g along n and κ = κ(x) = div(n(x)) ∈ R is the mean-curvature. The
corresponding basis for δG = b⊤

GδΘ is bG =
∫
Γ
(∂g/∂n+ κg)bdx.

4 APPLICATIONS

Having established the framework for editing implicit shapes through boundary sensitivity, we
consider its applications. We emphasize geometric and semantic editing since our framework unifies
both while being agnostic to the architecture and training of the model. We also address deformation-
rigidity-based editing since it classically is a widely used approach to shape editing. Lastly, we
demonstrate the use of constraints with an example of volume-preserving smoothing.

In all cases, we include Tikhonov regularization with λ = 0.1 (see Appendix B). However, the
behavior of regularization depends on the number of points I and the magnitude of the prescribed
displacement. In turn, λ influences the number of required iterations and the residual.

4.1 GEOMETRIC EDITING

In geometric editing, the displacement is prescribed on the entirety of the boundary. In this section,
we focus on studying the case where the prescribed displacement is local and the rest of the boundary
is fixed, akin to local control in classic representations. Deformation in Section 4.3 and smoothing in
Section 4.4 are examples of geometric editing with a global target displacement.

For each considered shape, we train a separate network to fit the value and surface normals of the SDF.
All networks share the same architecture: 3 hidden layers of 32 neurons each with sin activations.
In total, there are P = 2273 learnable parameters, all of which are manipulated during editing. We
demonstrate several examples of geometric editing in Figure 1 where we displace parts of both
man-made and organic neural implicit shapes. In addition, we quantify and plot the relative geometric
error between the computed shape and prescribed target normalized by the largest target displacement
(δxn − δx̄n)/maxx∈Γ |δx̄n|. When the displacements are, loosely speaking, natural to the shape,
the approximations recover the target well. However, not arbitrarily complex displacements can
be approximated as in the example of inscribing letters. The characteristic length of the target is
much smaller than that of the shape, especially in the relevant region. We hypothesize that the good
memory-expressiveness trade-off of neural fields requires the NN to allocate geometric complexity

5

Published as a conference paper at ICLR 2023

Figure 1: Geometric editing. Top: non-zero target displacement is prescribed on the highlighted
regions and the remaining boundary is fixed with δx̄n = 0. Bottom: the resulting shape and
normalized error. Natural displacements are approximated well. A counter-example is given in the
last column: the prescribed displacements (imprinting letters) are too complex and outside the limits
of expressible deformations, resulting in a coarse dent in the general area.

Figure 2: Basis functions of several neural implicit shapes trained on a single geometry. Each column
depicts a weight from each layer increasing in depth left-to-right. Red/blue denote positive/negative
deformation w.r.t. the outward normal. These bases do not strongly encode semantic or geometric
meaning, different from latent basis functions in generative models in Figure 3.

where it is needed during training. To illustrate this, some basis functions are shown in Figure 2. As
can be seen, their characteristic length is similar to that of the shape features. As all possible edits are
a combination of these basis functions, it is unlikely that modifications on a much smaller scale can
be reconstructed faithfully.

4.2 SEMANTIC EDITING

In representation learning the aim is to explain observations with a small number of latent variables
(Bengio et al., 2013), which we will denote by l. Generative models f(x; l,Θ), such as (variational)
auto-encoders or generative adversarial networks, attempt to map novel latent codes to novel outputs
within the same distribution as the observations. When interpolating between two latent codes, the
appearance of the generated output changes continuously (Shen et al., 2020a).

For a generative neural implicit shape model, the basis for the boundary movement is locally
described by b = −∇lf/∥∇xf∥ (Equation 3). Figure 3 illustrates a few of such basis functions for
the generative decoder of the IM-Net model (Chen & Zhang, 2019). The decoder is trained as part
of an auto-encoder reconstructing the entire ShapeNet dataset (Chang et al., 2015) from l ∈ R256

6

Published as a conference paper at ICLR 2023

Figure 3: Basis functions of IM-Net. They partially encode semantics, such as segmentation and
symmetries. Each column represents the same basis function. For similar shapes, such as the two
chairs, the bases are qualitatively similar. Red/blue denote positive/negative deformation w.r.t. the
normal.

latent variables. We use a pretrained model available at https://github.com/czq142857/
IM-NET-pytorch, which is implemented as an MLP with 8 layers of 1024 neurons each and
leaky-ReLU activations.

These basis functions can be observed to encode semantics, such as rotation and reflection symmetries,
and segment semantically meaningful parts, such as windscreen on the car, rim of the lamp and
different surfaces on chairs. For similar parts, such as the two chairs, the bases show similar behaviour.

However, it is known that not all directions in the latent space are (equally) viable (Chen et al., 2022;
Vyas et al., 2021), hence, a similar argument can be made for the bases. Furthermore, while each
basis function might cause meaningful deformation, they are not necessarily disentangled, i.e. each
basis function does not explain a single generative factor, unless latent disentanglement is used in
training (Bengio et al., 2013; Shen et al., 2020b; Tschannen et al., 2018). This could further increase
the interpretability of the basis.

Despite this, with our method we can intuitively traverse the latent space by considering the link
between geometric and latent variable changes. We present several examples in Figure 4, where
the highlighted areas Γ̄ of an initial shape are prescribed a local, high-level displacement, such
as shortening a leg of a chair or squeezing the sides of the boat. We sample roughly 100 points
in these areas, prescribe the same target vector at each point, and leave the remaining boundary
unconstrained. After projecting the target onto the current normal and finding the best fit parameter
update according to Equation 5, we repeat this process for a few (< 15) iterations to achieve visually
obvious changes. User input is provided only at the beginning. Note that we only consider the latent
parameters for our basis and leave all network parameters unchanged. Despite only prescribing local
geometric deformation, we observe global and semantically consistent changes. Not only are obvious
symmetries preserved, but also the morphology of the shape can change significantly, such as with
the boat.

In Appendix A, we repeat the same set of experiments with the DualSDF (Hao et al., 2020) architec-
ture. Each model is trained on a single ShapeNet category. This gives better generative results and a
more semantically pronounced basis.

Compared to geometric editing, semantic editing has the computational advantage of sampling points
on just a small part of the boundary Γ̄. Furthermore, the number of latent parameters is much smaller
than the number of NN parameters, leading to very small least-squares systems. Per iteration, the
method only requires a single forward- and backward-pass through the model, altogether being fit for
interactive use.

4.3 RIGID EDITING

As a final approach to editing, we briefly address deformation-rigidity since it classically is a widely
used approach to shape editing. On the one hand, deformation energy is one of the many alternative
priors to semantic prior discussed previously. A simple approach is to consider pure bending energy

7

https://github.com/czq142857/IM-NET-pytorch
https://github.com/czq142857/IM-NET-pytorch

Published as a conference paper at ICLR 2023

Figure 4: Semantic editing. Top: non-zero target displacement is prescribed on the highlighted
regions Γ̄ and the rest is unconstrained. Bottom: the result after < 15 iterations. A semantically
plausible result is produced from a plausible locally prescribed displacement. A counter-example is
given in the last column: prescribing each wing to move in opposite directions is not a semantically
viable displacement and the method fails to approximate the displacements and produce meaningful
results.

since it can be computed only from the implicit representation itself. On the other hand, typical
applications, such as as-rigid-as-possible (Sorkine & Alexa, 2007) or as-Killing-as-possible (Solomon
et al., 2011), also include the stretching energy. This is not trivially applicable to implicit surfaces, as
there is no natural notion of stretch due to ambiguity in the tangent directions. As discussed in Section
3, there are several choices for recovering tangential displacements, but we consider perhaps the
simplest one – using the tangential projection δxt(x; Ξ) =

(
I− n(x)n(x)⊤

)
ft(x; Ξ) of a separate

sufficiently smooth NN ft(x; Ξ) : R3 7→ R3 parameterized in Ξ.

To quantify the deformation energy, we leverage Killing vector fields (KVFs) which generate
isometric deformations (Solomon et al., 2011). δx is a KVF if it has an anti-symmetric Jaco-
bian J(δx) = J(δx)(x) ∈ R3×3 everywhere on the boundary: J(δx) + J(δx)⊤ = 0 ∀x ∈
Γ. A vector fields’ deviation from being Killing can be measured with its Killing energy
EK(δx,Γ) =

∫
Γ
∥J(δx) + J(δx)⊤∥2 dx.

Classically, the Jacobian is computed using a discrete operator on a spatial discretization, while
Atzmon et al. (2021) formulates AKVF on a neural implicit directly. We follow this approach and
seek an AKVF respecting the prescribed boundary deformations δx̄(xi) weighted by some small
α > 0: minδx̃ EK + αEC .

Boundary sensitivity allows to search for the energy minimizing deformation directly in the space of
expressible deformations and to directly optimize the normal component over δΘ using Equation 2.
The EC in Equation 4 is expressed trivially but can now also accommodate the tangential component.
To express EK , we can leverage J being a linear operator J(δx) = J(δxn) + J(δxt). Here
J(δxn) = J(b⊤δΘ) = J(b⊤)δΘ with J(b⊤) ∈ R3×3×P and J(δxt) = J(ft) straight-forward.

Figure 5 illustrates the results of AKVF deformation. Comparing these results with a mesh-based
method, after sufficient iterations we achieve qualitatively similar results and comparable energies:
Emesh

K = 254, EK = 320 for the bunny and Emesh
K = 11, EK = 6 for the cactus. However, due to the

need to train an additional NN and perform second-order differentiation, our approach is about an
order of magnitude slower than the mesh-based LSTSQ solver.

4.4 VOLUME PRESERVING SMOOTHING

As an example of fixing the value of a surface or volume integral, we fix the volume itself during
smoothing. Fixing the volume of an implicit shape is difficult without resorting to an intermediate
representation, such as a mesh (Remelli et al., 2020; Mehta et al., 2022), since there is no trivial
way to differentiably compute the volume of an implicit shape. Smoothing on neural fields has been
previously formulated using gradient descent on an objective penalizing the deviation from a specified
mean-curvature (Yang et al., 2021) and as mean-curvature flow computed on an intermediate mesh
(Mehta et al., 2022). We also use mean-curvature flow without resorting to the intermediate mesh, but

8

Published as a conference paper at ICLR 2023

Figure 5: Rigid editing. Target displacement is prescribed in the highlighted regions Γ̄ and the rest is
unconstrained. In both cases, the bottom of the shapes is anchored.

Figure 6: Select iterations of smoothing via mean-curvature flow without and with a volume constraint.
The volume after 86 iterations decreases by 80% and 1.6%, respectively. The constraint is achieved
by projecting the parameter update onto the locally linear isochronic subspace found using boundary
sensitivity.

the proposed volume-constraint is agnostic to the choice of the smoothing method. We first compute
the mean curvature by expanding κ(x) = div(n(x)). From there, we can reuse the geometric editing
framework with the globally prescribed target displacement δxn(x) = −κ(x) ∀ x ∈ Γ̄ = Γ. Note,
that this approach induces the correct geometric flow as discussed by Mehta et al. (2022). To fix
the volume V while smoothing, we simply set h = 1 in the bases introduced in Equation 7. We
enforce volume preservation by projecting the parameter update onto the isochronic subspace. Figure
6 compares smoothing with and without this constraint. After 86 iterations, the volume decreases by
1.6% with and 80% without the constraint. Ultimately, the shapes converge to a sphere and a singular
point, respectively.

5 CONCLUSIONS

With implicit neural shapes becoming a widespread representation, we have demonstrated a unifying
approach to perform geometric and semantic editing without the need for tailored training or archi-
tectures, while being simple to implement, and, especially in the case of semantic editing, fast and
fit for interactive use. While we touched upon optimizing directly in the deformation space with a
rigidity-prior, using other priors for unconstrained and tangential deformations remains an interesting
problem. We used signed-distance and occupancy fields, but the editing framework can also be
extended to other neural fields, where NeRFs especially provide tantalizing options. We hope that
formulating a basis for the deformation space allows future work to further study and build models
with desirable properties, such as interpretability, tailored degrees-of-freedom, linear-independence,
and compactness or use them for segmentation or symmetry detection.

ACKNOWLEDGMENTS

This was supported by the European Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement number 860843.

9

Published as a conference paper at ICLR 2023

REFERENCES

Grégoire Allaire, François Jouve, and Anca-Maria Toader. Structural optimization using sensitivity
analysis and a level-set method. Journal of Computational Physics, 194(1):363–393, 2004. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2003.09.032.

Grégoire Allaire, Charles Dapogny, and François Jouve. Chapter 1 - shape and topology optimization.
In Andrea Bonito and Ricardo H. Nochetto (eds.), Geometric Partial Differential Equations -
Part II, volume 22 of Handbook of Numerical Analysis, pp. 1–132. Elsevier, 2021. doi: https:
//doi.org/10.1016/bs.hna.2020.10.004.

Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning of shapes from raw data. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman. Controlling
neural level sets. In Advances in Neural Information Processing Systems, pp. 2032–2041, 2019.

Matan Atzmon, David Novotny, Andrea Vedaldi, and Yaron Lipman. Augmenting implicit neural
shape representations with explicit deformation fields. arXiv preprint arXiv:2108.08931, 2021.

J. A. Bærentzen and N. J. Christensen. Volume sculpting using the level-set method. In International
Conference on Shape Modelling and Applications (SMI) 2002, may 2002. URL http://www2.
compute.dtu.dk/pubdb/pubs/704-full.html.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:1798–1828,
2013.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at Chicago,
2015.

Nutan Chen, Patrick van der Smagt, and Botond Cseke. Local distance preserving auto-encoders
using continuous k-nearest neighbours graphs. ArXiv, abs/2206.05909, 2022.

Yunlu Chen, Basura Fernando, Hakan Bilen, Thomas Mensink, and Efstratios Gavves. Neural feature
matching in implicit 3d representations. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 1582–1593. PMLR, 18–24 Jul 2021.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948, 2019.

Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space for 3d
shape reconstruction and completion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6970–6981, 2020.

Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. On the effectiveness of weight-encoded
neural implicit 3d shapes. arXiv preprint arXiv:2009.09808, 2020.

Mathieu Desbrun and Marie-Paule Gascuel. Animating soft substances with implicit surfaces. In
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’95, pp. 287–290, New York, NY, USA, 1995. Association for Computing Machinery.
ISBN 0897917014. doi: 10.1145/218380.218456. URL https://doi.org/10.1145/
218380.218456.

Tim Elsner, Moritz Ibing, Victor Czech, Julius Nehring-Wirxel, and Leif Kobbelt. Intuitive shape
editing in latent space, 2021.

Benoit Guillard, Edoardo Remelli, Pierre Yvernay, and Pascal Fua. Sketch2mesh: Reconstructing
and editing 3d shapes from sketches. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 13023–13032, 2021.

10

http://www2.compute.dtu.dk/pubdb/pubs/704-full.html
http://www2.compute.dtu.dk/pubdb/pubs/704-full.html
https://doi.org/10.1145/218380.218456
https://doi.org/10.1145/218380.218456

Published as a conference paper at ICLR 2023

Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. Dualsdf: Semantic shape
manipulation using a two-level representation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020.

John C. Hart, Ed Bachta, Wojciech Jarosz, and Terry Fleury. Using particles to sample and control
more complex implicit surfaces. In SMI ’02: Proceedings of the Shape Modeling International
2002 (SMI’02), pp. 129, Washington, DC, USA, August 2002. IEEE Computer Society. doi:
10/dfw2ss.

Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. Spaghetti: Editing
implicit shapes through part aware generation. arXiv preprint arXiv:2201.13168, 2022.

Moritz Ibing, Isaak Lim, and Leif Kobbelt. 3d shape generation with grid-based implicit functions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13559–13568, 2021.

Chiyu Max Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and Thomas
Funkhouser. Local implicit grid representations for 3d scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

Stam Jos and Ryan Schmidt. On the velocity of an implicit surface. ACM Transactions on Graphics,
30:1–7, 2011. ISSN 15577368. doi: 10.1145/1966394.1966400.

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. A level set theory for neural implicit
evolution under explicit flows. arXiv preprint arXiv:2204.07159, 2022.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470, 2019.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Shigeru Muraki. Volumetric shape description of range data using “blobby model”. In Proceedings
of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’91, pp. 227–235, New York, NY, USA, 1991. Association for Computing Machinery. ISBN
0897914368. doi: 10.1145/122718.122743.

Ken Museth, David E. Breen, Ross T. Whitaker, and Alan H. Barr. Level set surface editing operators.
ACM Trans. Graph., 21(3):330–338, jul 2002. ISSN 0730-0301. doi: 10.1145/566654.566585.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow: 4d
reconstruction by learning particle dynamics. In International Conference on Computer Vision,
October 2019.

Tiago Novello, Guilherme Schardong, Luiz Schirmer, Vinicius da Silva, Helio Lopes, and Luiz Velho.
Exploring differential geometry in neural implicits, 2022. URL https://arxiv.org/abs/
2201.09263.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174, 2019.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolu-
tional occupancy networks. In European Conference on Computer Vision, pp. 523–540. Springer,
2020.

Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit Guillard, Timur Bagautdinov,
Pierre Baque, and Pascal Fua. Meshsdf: Differentiable iso-surface extraction. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 22468–22478. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf.

11

https://arxiv.org/abs/2201.09263
https://arxiv.org/abs/2201.09263
https://proceedings.neurips.cc/paper/2020/file/fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fe40fb944ee700392ed51bfe84dd4e3d-Paper.pdf

Published as a conference paper at ICLR 2023

J. A. Sethian and Peter Smereka. Level set methods for fluid interfaces. Annual Review of Fluid
Mechanics, 35(1):341–372, 2003. doi: 10.1146/annurev.fluid.35.101101.161105.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
semantic face editing. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9240–9249, 2020a.

Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
semantic face editing. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9243–9252, 2020b.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In Proc. NeurIPS,
2020.

Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. As-killing-as-possible
vector fields for planar deformation. Computer Graphics Forum, 30(5):1543–1552, 2011. doi:
https://doi.org/10.1111/j.1467-8659.2011.02028.x.

Olga Sorkine and Marc Alexa. As-Rigid-As-Possible Surface Modeling. In Alexander Belyaev
and Michael Garland (eds.), Geometry Processing. The Eurographics Association, 2007. ISBN
978-3-905673-46-3. doi: 10.2312/SGP/SGP07/109-116.

Michael Tao, Justin Solomon, and Adrian Butscher. Near-isometric level set tracking. In Proceedings
of the Symposium on Geometry Processing, SGP ’16, pp. 65–77. Eurographics Association, 2016.

G. Taubin. Curve and surface smoothing without shrinkage. In Proceedings of IEEE International
Conference on Computer Vision, pp. 852–857, 1995. doi: 10.1109/ICCV.1995.466848.

Richard Tsai and Stanley Osher. Level set methods and their applications in image science. Commu-
nications in mathematical sciences, 1, 12 2003. doi: 10.4310/CMS.2003.v1.n4.a1.

Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in autoencoder-based
representation learning. arXiv preprint arXiv:1812.05069, 2018.

Nico van Dijk, Kurt Maute, Matthijs Langelaar, and Fred Keulen. Level-set methods for structural
topology optimization: A review. Structural and Multidisciplinary Optimization, 48, 09 2013. doi:
10.1007/s00158-013-0912-y.

Luminita Vese. Multiphase Object Detection and Image Segmentation, pp. 175–194. Springer New
York, New York, NY, 2003. ISBN 978-0-387-21810-6. doi: 10.1007/0-387-21810-6_10. URL
https://doi.org/10.1007/0-387-21810-6_10.

Shantanu Vyas, Ting-Ju Chen, Ronak R. Mohanty, Peng Jiang, and Vinayak R. Krishnamurthy.
Latent embedded graphs for image and shape interpolation. Computer-Aided Design, 140:103091,
2021. ISSN 0010-4485. doi: https://doi.org/10.1016/j.cad.2021.103091. URL https://www.
sciencedirect.com/science/article/pii/S0010448521001020.

Ross T Whitaker. Isosurfaces and level-set surface models. School of Computing, University of Utah,
2002.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. Geometry processing with
neural fields. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

12

https://doi.org/10.1007/0-387-21810-6_10
https://www.sciencedirect.com/science/article/pii/S0010448521001020
https://www.sciencedirect.com/science/article/pii/S0010448521001020

Published as a conference paper at ICLR 2023

A SEMANTIC EDITING WITH DUALSDF

We repeat the experiments from Section 4.2 with a different architecture, namely, DualSDF (Hao
et al., 2020). DualSDF learns a joint latent space for a fine-scale shape and its coarse approximation
as a union of spheres. When a sphere is manipulated, an optimization process is run to find a latent
code that explains the new sphere configuration, i.e. coarse shape. From the updated latent code the
fine-scale shape can be generated.

Different to IM-Net, DualSDF is trained on individual ShapeNet categories. We use pretrained
models on planes and chairs available at https://github.com/zekunhao1995/DualSDF.
In addition, we train another model on cars following the provided training procedure on all 3515 car
shapes available after preprocessing the ShapeNet category.

Figure 7 shows a few select basis functions of the three different DualSDF models. Figure 8 show the
semantic editing results with our method, compared with the method described in DualSDF. For both
methods, the shapes are generated with the same generative network. The difference lies only in how
the edit is prescribed. In our approach we prescribe the movement directly on the sampled surface,
while in DualSDF we move the spherical primitives, selecting them according to a similar design
intent.

Both DualSDF and our method achieve plausible, though different, results. Both methods fail to
adhere to the semantically implausible updates prescribed in the last column. However, the main
benefit of our approach is that we are able to apply such manipulation to arbitrary NNs, whereas
DualSDF needs a second NN for the coarse approximation and task-specific training.

Figure 7: Select basis functions of three different DualSDF models. The semantics in most basis
functions are not as prominent as the ones shown here. The two sets of chairs show the same
respective basis functions, which can be seen to have the same semantic quality.

13

https://github.com/zekunhao1995/DualSDF

Published as a conference paper at ICLR 2023

Figure 8: Semantic editing. The first two rows are similar to Figure 4, but use the generative network
of the DualSDF architecture. The third and fourth rows show the prescribed deformation and the
result using the editing procedure as described by Hao et al. (2020).

B EFFECT OF TIKHONOV REGULARIZATION ON SEMANTIC EDITING

Figure 9: Effect of Tikhonov regularization on semantic editing. Left: source shape is prescribed an
inward displacement on the highlighted regions while the rest is unconstrained. The three figures
on the right have decreasing amount of Tikhonov regularization λ = 101, 10−1, 10−3. Stronger
regularization better preserves similarity to the source shape, which is especially noticeable on the
unconstrained front of the boat remaining wider. Stronger regularization also requires much more
iterations to converge to a similar result (860 for λ = 101 compared to < 10 for the other two) since
the the constraint violation EC is weighted less heavily than regularization.

14

Published as a conference paper at ICLR 2023

C SPLITTING LARGE DEFORMATIONS

Figure 10: Effect of splitting a large target deformation in geometric editing. Displayed are the results
after splitting the target into 1,2,4,8,16 equal parts. As the figure illustrates, this helps accurately
recover large deformations which violate the first-order approximation. For comparison, the black
silhouette in the background shows the target.

15

	Introduction
	Related Work
	Boundary Sensitivity
	Applications
	Geometric Editing
	Semantic Editing
	Rigid Editing
	Volume Preserving Smoothing

	Conclusions
	Semantic editing with DualSDF
	Effect of Tikhonov regularization on semantic editing
	Splitting large deformations

