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Figure 1: Bijective map between genus-0 models, visualized via texture transfer. The map is represented by an approximating (rather than

exact) common triangulation, which remains in bijective correspondence to the input surfaces via spherical parametrizations. In a discrete-

continuous optimization, we treat both the connectivity and the geometric embeddings of the triangulation as degrees of freedom. This allows

optimizing genus-0 surface homeomorphisms at adaptive resolutions, independently of the input mesh complexity, which can be simpler,

faster, and more robust than existing overlay-based methods.

Abstract

We present a new method to compute continuous and bijective maps (surface homeomorphisms) between two or more genus-0

triangle meshes. In contrast to previous approaches, we decouple the resolution at which a map is represented from the resolu-

tion of the input meshes. We discretize maps via common triangulations that approximate the input meshes while remaining in

bijective correspondence to them. Both the geometry and the connectivity of these triangulations are optimized with respect to

a single objective function that simultaneously controls mapping distortion, triangulation quality, and approximation error. A

discrete-continuous optimization algorithm performs both energy-based remeshing as well as global second-order optimization

of vertex positions, parametrized via the sphere. With this, we combine the disciplines of compatible remeshing and surface map

optimization in a unified formulation and make a contribution in both fields. While existing compatible remeshing algorithms

often operate on a fixed pre-computed surface map, we can now globally update this correspondence during remeshing. On the

other hand, bijective surface-to-surface map optimization previously required computing costly overlay meshes that are inher-

ently tied to the input mesh resolution. We achieve significant complexity reduction by instead assessing distortion between the

approximating triangulations. This new map representation is inherently more robust than previous overlay-based approaches,

is less intricate to implement, and naturally supports mapping between more than two surfaces. Moreover, it enables adaptive

multi-resolution schemes that, e.g., first align corresponding surface regions at coarse resolutions before refining the map where

needed. We demonstrate significant speedups and increased flexibility over state-of-the art mapping algorithms at similar map

quality, and also provide a reference implementation of the method.

CCS Concepts

• Computing methodologies → Computer graphics; Mesh models; Mesh geometry models;
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Figure 2: Coarse-to-fine optimization of a common triangulation (top), which defines a bijective map between the genus-0 input surfaces

(bottom). (a) An extremely coarse triangulation is optimized to initially satisfy three landmark constraints. The implied homeomorphism

between the original surfaces is already of high quality near the landmarks, but lacks geometric feature alignment in other areas. (b) While

only slightly refining the triangulation, the map is optimized for low distortion, which properly aligns similarly curved regions. (c) Finally,

the common triangulation is refined to a target resolution, allowing for fine-level map adjustments. All three snapshots are part of a discrete-

continuous optimization sequence (taking 40 sec). The change in mesh resolution is driven solely by adjusting parameters of the objective

function between the stages (a), (b), and (c). A video of the full sequence is provided in the supplementary material.

1. Introduction

Maps between the surfaces of two or more 3D models are an impor-
tant ingredient in many different geometry processing tasks. They
are required when, e.g., transferring data between surfaces, pro-
cessing multiple surfaces in correspondence, interpolating between
shapes, etc. Of particular interest is the class of surface homeo-

morphisms: continuous and bijective maps that are defined at every
surface point and are guaranteed to be free of tearing or foldover
artifacts. Most desirable is optimizing such homeomorphisms for
low mapping distortion.

Despite vast literature on relaxed versions of this problem, opti-
mizing strict homeomorphisms between discrete surfaces remains
extremely challenging. Only a handful of methods [SAPH04,
LDRS05, SBCK19, SCBK20, Tak22] are known to combine both
bijectivity guarantees and optimization of surface-to-surface distor-
tion (as opposed to distortion into an intermediate domain). While
being the first to operate in this difficult problem setting at all, the
above approaches result in complex algorithms that are not easy to
implement, full of robustness challenges, and slow at run time (eas-
ily up to hours for a single pair of moderately-sized input meshes).
A key source of this complexity is the computation of common
tessellations that exactly represent a pair of input meshes via a set
of planar elements, which are necessary for distortion assessment.
These tessellations contain the vertices of both input meshes and
can come in form of overlay meshes [SAPH04,SBCK19,SCBK20]
(additionally containing all edge-edge intersections as vertices),
or compatible intrinsic triangulations [Tak22] (whose construction
currently remains heuristic). They usually need to be re-computed
[SBCK19, SCBK20, Tak22] or updated [SAPH04] in each step of
an optimization algorithm. Besides the mere cost of computing
these exact common tessellations, their use as integration domain
inevitably ties the size of the optimization problem to the input
mesh resolution. Moreover, it is difficult to achieve full numerical
robustness using overlay meshes, for example, due to the inherent

Figure 3: Approximating common triangulation with 581 vertices

vs. overlay mesh with 105 677 vertices as map representation.

presence of near-degenerate elements (Figure 3) or because of the
ill-conditioned problem of intersecting almost parallel edges.

We avoid computing overlay meshes altogether and instead mea-
sure distortion via common triangulations that only approximate

the input surfaces rather than representing them exactly. This im-
proves robustness (due to full control over element quality), in-
creases performance (due to independence from input resolution),
and eventually leads to simpler algorithms. That is, our approach
trades the robustness and complexity issues of overlay meshes for
having to control the approximation quality of common triangula-
tions. We find this trade-off to be extremely worthwhile: We are
now able to compute low-resolution homeomorphisms between the
original-resolution input meshes within seconds (rather than min-
utes or hours), making iterative workflows a lot more practical.

A related problem setting is compatible remeshing, where two
(or more) surfaces are re-triangulated in correspondence [KS04,
YFC∗18, YZL∗20]. This, however, requires an underlying surface
map, which is often computed in a pre-process. Such a two-step
approach requires solving the surface mapping problemÐwith all
its challengesÐbefore even starting a remeshing procedure. Exact
distortion assessment via overlay meshes in the first step can be a
superfluous effort, especially when switching to approximating tri-
angulations in the second step anyways. Moreover, the geometric
quality of a particular common triangulation in the second step can
often be improved by adjusting the underlying surface map; a de-
gree of freedom that is not always fully exploited (e.g. only by local
vertex re-locations [KS04, YZL∗20]).

© 2023 The Authors.
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Figure 4: Cycle-consistent maps between 18 meshes, simultaneously optimized in 5 minutes via a common triangulation of only 513 vertices.

1.1. Contribution

We combine the tasks of surface map optimization and compatible
remeshing in a single problem formulation. Our approach is based
on a new map representation that defines

• continuous and bijective maps (surface homeomorphisms) be-
tween two or more genus-0 triangle meshes

• via common approximating triangulations (with guaranteed bi-
jective correspondence to the input surfaces).

Depending on the application, either the homeomorphism or the
common triangulation can be viewed as the output of our method.
We present a discrete-continuous optimization algorithm that

• leverages both the connectivity of the common triangulation as
well as its geometric embeddings as degrees of freedom,

• allows flexible control over mapping distortion, mesh quality,
and surface approximation via a single objective function, and

• enables adaptive multi-resolution schemes that, e.g., perform
alignment of geometric features at coarse resolutions before re-
fining the map to target quality.

This new approach is a step towards making bijective surface map
optimization more practically available. It is inherently more ro-
bust than previous overlay-based mapping approaches [SAPH04,
SBCK19,SCBK20], as it avoids their most intricate challenges. We
demonstrate significant speedups while attaining similar map qual-
ity. Compared to state-of-the-art compatible remeshing algorithms
[YZL∗20] we are able to fulfill the same kinds of error bounds
while, in addition, directly optimizing surface-to-surface distortion.
Our formulation naturally allows mapping between more than two
surfaces and can be adapted to different scenarios by adding custom
objective terms. We argue that it is also simpler to implement than
many overlay-based mapping algorithms and provide a reference
implementation1.

To demonstrate the practical applicability of our method, we re-
peat a surface mapping and compatible remeshing task from de-
velopmental biology [ESD∗22], where a time-continuous model of
heart tube formation in mice is estimated by interpolating within a
data set of 51 surfaces. We reduce the total computation time of the
experiment from originally 36 hours via [SCBK20] to 38 minutes
using our method.

1
github.com/patr-schm/surface-maps-via-adaptive-triangulations

1.2. Method Overview

We start by introducing our approach for a pair of genus-0 input
surfaces and later generalize it to more than two shapes (Section 7).

First, we independently map both input surfaces to instances of
the unit sphere and keep these maps fixed throughout our algo-
rithm. We then construct a common triangulation which we also
bijectively embed on both spheres, establishing a correspondence
between them. This defines a surface homeomorphism as the com-
position of three maps: (1) from the first input surface to the sphere,
(2) from one sphere to the other sphere, (3) from the sphere to the
second input surface (Section 4). Only the intermediate map is con-
sidered variable.

Lifting the vertices of the common triangulation to the two input
surfaces and connecting them via flat triangles in 3D defines the
geometry of the common triangulation, based on which we formu-
late an objective function (Section 5). In a continuous optimization
step, we differentiate the objective with respect to the vertex posi-
tions of the common triangulation on the sphere and perform global
second-order updates via a projected-Newton method (Section 6.2).

To update the connectivity of the common triangulation, we per-
form incremental remeshing via edge splits, collapses, and flips
(Section 6.1). In contrast to classical algorithms [BK04,DVBB13],
we replace the criterion for these operations by our objective func-
tion: we perform local connectivity updates if they improve the cur-
rent objective value. Instead of a subsequent smoothing step, we
alternate remeshing with continuous optimization iterations.

2. Related Work

We give a brief overview of adjacent literature in surface mapping
and compatible remeshing.

2.1. Strict Surface Homeomorphisms

Via Intermediate Domains. A variety of methods represents sur-
face homeomorphisms by composing bijective maps into an inter-
mediate domain such as the plane [KSK97, LDRS05, TDIN∗11,
WZ14,APL14,APL15,AL15,SBCK19,SCBK20,Liv21,YZL∗20],
the sphere [Ale00, APH05, PT16, AKL17, BCK18, SCBK20], the
hyperbolic plane [LBG∗08, TFV∗13, AL16, SZS∗16, SCBK20], or
a piecewise flat base mesh [LDSS99,PSS01,KS04]. The supported
surface topology (e.g. disk or closed surfaces of a specific genus) is
often restricted by the total curvature of the intermediate domain.

© 2023 The Authors.
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Some approaches achieve more flexibility by introducing cone sin-
gularities [TFV∗13, AL15, AL16, AKL17], which allow extra cur-
vature at specific points, but usually dictate a fixed correspondence
at these points.

Without Intermediate Domains. Direct representations avoid the
extra step through an intermediate domain, but are faced with addi-
tional consistency challenges. Notably, [SAPH04] need to carefully
maintain an overlay connectivity throughout their algorithm (in-
stead of re-computing it from an intermediate domain in each step).
A recent work [Tak22] defines homeomorphisms via compatible in-
trinsic triangulations, constructed from a pair of vertex-to-surface
maps in each step. While the representation is conceptually very
attractive, current algorithms for its construction are not guaran-
teed to succeed. In a different context, [JSZP20] define homeomor-
phisms between a family of surfaces within a volume around the
input surface via a bijective projection operator in ambient space.

Map Topology. Choosing a map’s homotopy class (cf. [FM11]),
i.e., how it twists around surface handles, tunnels, and fixed corre-
spondences is an ongoing research effort [KS04,SAPH04,LGQ08,
BSK21, BSCK21]. In this paper, we separate our problem setting
from these research questions by focusing on the topologically sim-
pler case of mapping between genus-0 surfaces via the sphere.

Distortion Optimization and Overlay Meshes. Optimizing dis-
tortion from a surface to an intermediate domain, e.g., the plane,
is well-studied [KGL16, RPPSH17, CBSS17, SPSH∗17, LYNF18,
ZBK18, NZZ20, SYLF20, BN21], but does not in general yield
low distortion of the composed, surface-to-surface map. An excep-
tion are conformal maps, whose composition is conformal again
[LBG∗08, APL15, BCK18]. However, isometric distortion mea-
sures are often of higher practical interest. The main challenge in
optimizing surface-to-surface distortion arises from different mesh
connectivities of source and target surface. Methods evaluate dis-
tortion either inexactly via sampling [LDRS05], or exactly via over-
lay meshes [SAPH04, SBCK19, SCBK20] or intrinsic triangula-
tions [Tak22]. Overlay meshes as (piecewise-linear) map represen-
tation, but not necessarily for distortion optimization, are also used
in [KSK97, LDSS99, Ale00]. They also appear (implicitly or ex-
plicitly) in works that consider different (intrinsic) triangulations
of the same surface [FSSB07,SSC19,CCS∗21,GSC21b,GSC21a].

2.2. Relaxed Map Representations

Distortion assessment can become easier when relaxing the strict
continuity and bijectivity constraints. One option is to extrinsically
deform the source mesh towards the target surface [SBSCO06,
ZLJW06, WPYM07, HAWG08, LSP08, TCL∗13] and sometimes
also vice versa [ESBC19, EHA∗19]. This allows working with a
fixed mesh connectivity, but comes with the additional challenge of
constraining the deformation to the target surface. Methods often
rely on extrinsic projection operators, which usually cannot guaran-
tee continuity and bijectivity, although some methods can optimize
towards these goals [ESBC19,EHA∗19]. Furthermore, a number of
recent works use neural networks to represent such deformations,
either optimized for each pair of input shapes [MAKM21,HPG∗22]
or trained on shape collections [AGK∗22].

Other methods further relax the problem of mapping between
surface points to mapping between soft distributions [SNB∗12,
MCSK∗17] or mapping between surface functions expressed in a
spectral basis [OBCS∗12, RMC15, GBKS18, MRR∗19]. The func-
tional settings is attractive, because maps can be represented in a
linear and low-dimensional manner, however no guaranteed con-
version to strict homeomorphisms is known.

2.3. (Compatible) Remeshing

Incremental remeshing algorithms on single shapes typically gen-
erate approximating surface meshes via a series of local mesh con-
nectivity modifications and geometric update steps. While clas-
sical methods are driven solely by a target edge length criterion
[BK04, DVBB13], a different approach is to formulate the task
as an energy minimization problem [ZWG∗22]. Besides soft op-
timization goals, many methods are able to achieve hard quality
bounds, e.g., in terms of surface approximation error [MCSA15,
HYB∗16, CFZC19, JSZP20, ZWG∗22] or mesh quality [YW15,
YLH18, ZWG∗22]. Yet, only very few of these parametrization-
free approaches offer a bijection to the input surface [JSZP20].

In compatible remeshing, a single mesh connectivity with geo-
metric embeddings on two (or more) target surfaces is generated.
To this end, most methods initially pre-compute a surface map,
which is then kept fixed [MKFC01, PT16] or only updated in a
very limited manner during remeshing, e.g., via local vertex re-
location [KS04, YZL∗20]. Distortion optimization via global up-
dates is addressed in [YFC∗18], however, at the expense of having
to solve a volumetric map construction problem in 3D and losing
bijectivity to the target surface.

In a 2D setting, [Liv20] and [ZPBK17] also address a mapping
problem via mesh generation. Similarly to our method, the latter
performs discrete-continuous optimization based on a single objec-
tive that combines mapping distortion and triangulation quality.

3. Preliminaries: Triangulations on the Sphere

Given a closed 2-manifold triangle mesh
A = (VA,EA,FA) of genus 0, a spheri-

cal embedding is defined by assigning to
each vertex a position on the unit sphere
S2 ⊂ R

3. Spherical triangles are formed
by connecting adjacent vertices via shortest
geodesics (great-circle arcs). A triangle is
positively oriented if the signed volume of the tetrahedron spanned
by the origin 0 and the vertices a,b,c ∈ S2 is positive (see inset).
Note that this condition also excludes adjacent vertices from being
antipodal and triangles from spanning a full hemisphere. We choose
to parametrize the interior of spherical triangles via barycentric in-
terpolation between a,b,c in the ambient space R

3, followed by a
central projection to the sphere (cf. [GGS03]):

p
′ = αa+βb+(1−α−β)c, p =

p′

∥p′∥
. (1)

Equipped with this interpolation operator, a spherical embedding
establishes a piecewise map fA : A → S2 from all points on the
surface A⊂R

3 to the sphere. As interpolation in adjacent triangles

© 2023 The Authors.
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agrees along their common edge, fA is continuous. If all spherical
triangles are positively oriented (via the above condition) and the
sphere is covered exactly once, the map fA is bijective. Its inverse
map f−1

A
can be evaluated at p ∈ S2 by intersecting the ray from 0

through p with the flat triangle spanned by a,b,c in R
3 and express-

ing the intersection point p′ in barycentric coordinates [SCBK20]:

α =
det[p,c,c−b]

det[p,c−a,c−b]
β =

det[p,c−a,c]

det[p,c−a,c−b]
. (2)

4. Map Representation

The input to our method is a pair of genus-0 triangle meshes
A = (VA,EA,FA) and B = (VB,EB,FB), embedded in R

3 with
no degenerate triangles. Optionally, a sparse set of corresponding
landmark vertices can be supplied. The output is a continuous and
bijective map Φ : A → B assigning to every point on the surface
of A a point on the surface of B. A generalization to maps be-
tween more than two surfaces is straightforward and described in
Section 7.

Map Composition. We consider bijective sphere embeddings fA :
A→S2 and fB : B → S2 of the input meshes. In contrast to other
approaches, these do not directly define a map between A and B.
Instead, they are brought into correspondence via a third triangula-
tion T = (VT ,ET ,FT ). This abstract triangulation has two differ-
ent spherical embeddings gA and gB that define a piecewise map
ψ : S2 → S2 from the sphere to the sphere (see Figure 5). The
composition of these three maps, each of which is continuous and
bijective and uses the interpolation operator from Section 3, yields
the surface homeomorphism

Φ := f
−1
B ◦ψ◦ fA.

Degrees of Freedom. By introducing the additional intermediate
map ψ, we are able to keep the input mesh embeddings fA and
fB fixed, while only optimizing ψ. The geometry of the map ψ is
parametrized via the two sets of vertex positions of T on the sphere,
i.e., via gA and gB. In addition, we treat the mesh connectivity of T
as a degree of freedom. That is, we can adaptively refine T where
more map resolution is needed and coarsen it in other regions to
reduce computational complexity. Depending on the application, T
can be significantly coarser than the input meshes A and B. At any
time, the state of our algorithm is fully represented by the meshes
A,B,T and the sphere embeddings fA, fB,gA,gB. A state is valid
if all sphere embeddings are bijective.

Approximating Common Triangulation. Lifting the vertices of
T to the input surfaces A and B (via f−1

A
◦ gA and f−1

B
◦ gB) and

connecting them via flat triangles in R
3 yields meshes TA and TB

that approximate the input surfaces. Since these share the same con-
nectivity T , a piecewise-linear homeomorphism ÅΦ : TA → TB is
trivially defined per triangle. A key choice of our approach is opti-
mizing the quality of this approximating map ÅΦ (which is a lot eas-
ier to assess) as a proxy for the quality of the exact map Φ (which
would require costly mesh overlay computations). In applications
where we are eventually interested in the full map Φ, this approx-
imation can be seen as a speedup. However, in some applications

Figure 5: A homeomorphism Φ between the input surfaces A
(blue) and B (green) is represented by composing three maps: fA
from A to the sphere, ψ from one sphere to the other, and f−1

B
from

the sphere to B. The intermediate map ψ is defined via the common

triangulation T (pink) on both spheres. Lifting the vertices of T
to the input surfaces defines approximating triangulations TA and

TB , connected by the piecewise-linear homeomorphism ÅΦ.

(e.g. Section 8.5) the approximating meshes themselves are the de-
sired output and we benefit from direct control over their resolution
and geometry.

Initialization. The fixed sphere embeddings fA, fB can be pre-
computed independently of each other via standard methods (Sec-
tion 8.1). Mesh T and its embeddings can be initialized as any tri-
angulation of the sphere. We chose a copy of mesh A in our experi-
ments, i.e., T :=A and gA,gB := fA. This means that the interme-
diate map ψ is initialized as the identity. Satisfaction of landmark
constraints is discussed in Section 8.2.

5. Objective Function

Both the continuous optimization and the remeshing algorithm are
driven by the same objective function E(T ,x) ∈ R. It depends on
the mesh connectivity T and its two sets of vertex positions on the
sphere, parametrized via a variable vector x ∈ R

n. E is a sum of
multiple terms controlling map distortion (Section 5.2), mesh qual-
ity (Section 5.3), surface approximation (Section 5.4), and main-
taining strict bijectivity (Section 5.1). However, this formulation is
flexible and custom objective terms can be added or removed de-
pending on the application (see e.g. Section 8.4).

All terms are carefully designed to be (1) differentiable with re-
spect to x and (2) at least C0 continuous in the vertex positions on
the sphere. This allows us to practically perform second-order opti-
mization in the style of Newton’s method, moving all vertices of T

© 2023 The Authors.
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Figure 6: Quality of the induced surface homeomorphism depending on the resolution of the common triangulation T . Each column shows

a converged result for a specific target resolution. While extremely coarse triangulations do not provide the necessary degrees of freedom to

effectively reduce distortion, the map quality converges already at a moderate resolution of less than 3000 vertices. The plot shows, for each

resolution, the amount of surface area below a distortion threshold.

at once (Section 6.2). Note that a higher degree of continuity can-
not easily be achieved without switching to higher-order surface
representations: already the map f−1

A
is C1 discontinuous across

the edges of A due to the piecewise linear nature of the input mesh
(as elaborated by e.g. [SBCK19, SCBK20]).

5.1. Bijectivity Barrier

The validity of our map representation depends on maintaining bi-
jectivity of both sphere embeddings of T . For gA(T ) (analogously
for gB(T )) we impose a barrier function implementing the bijec-
tivity condition from Section 3:

E
A
bij(T ,x) =















∞ any vol(t)≤ 0 (3a)

∞ ∑t area(t) ̸= 4π (3b)

−∑
t

log(vol(t)) otherwise. (3c)

Cases 3a and 3c form a smooth barrier for positive triangle orien-
tation by preventing the tetrahedral volume vol(t) = 1/6 det[a,b,c],
spanned by each triangle t with the origin, from degenerating. Ad-
ditionally, Case 3b rejects jumps to multi-covers of the sphere, by
checking the total oriented spherical area of the embedding.

5.2. Map Distortion

We measure distortion of the map ÅΦ between the two surface ap-
proximations via the symmetric Dirichlet energy. Because TA and
TB share the same connectivity, the map is linear between each pair
of corresponding triangles tA and tB . Their vertex positions on the
sphere are first lifted to R

3 via the fixed maps f−1
A

and f−1
B

and
then expressed in orthonormal 2D coordinate systems of tA and tB
as aA,bA,cA and aB,bB,cB ∈ R

2. Based on the Jacobian

Jt = [bB−aB,cB−aB][bA−aA,cA−aA]−1 ∈ R
2×2,

we measure the Symmetric Dirichlet energy [SAPH04,SS15] of ÅΦ:

E
AB
map(T ,x) =

1
4 ∑

t∈FT

(

area(tB)∥Jt∥
2
F + area(tA)∥J

−1
t ∥2

F

)

, (4)

which we divide by 4 such that its minimum is 1 in case of unit
surface area. Note that any other distortion energy based on the 3D

vertex positions of TA and TB could be used as well. In particu-
lar, it is not necessary to choose a flip-preventing energy, as map
bijectivity is already guaranteed by the barrier term in Section 5.1.

5.3. Mesh Quality

Besides map distortion, we also control the resolution and element
quality of the approximating triangulations TA and TB . This is of
particular importance in applications where the common triangu-
lation, rather than the induced homeomorphism between the input
surfaces, is considered the output of our method.

For each triangle tA (and analogously for tB), we choose as its
target shape t∗A an equilateral triangle whose size s(t∗A) is adap-
tively determined depending on the location on the input surface.
The term EA

mesh(T ,x) then measures the deviation of each triangle
from its target shape, again via the symmetric Dirichlet energy as
in Equation 4.

5.3.1. Adaptive Sizing

Consider a pair of sizing fields sA : A → R
>0 and sB : B → R

>0

on the input surfaces (defined at their vertices and linearly interpo-
lated inside triangles). These fields control the adaptive resolution
of T in different surface regions and also drive the multi-resolution
aspect of our coarse-to-fine optimization strategy (Section 8.2). At
corresponding locations on A and B we respect the finer of the two
target resolutions, i.e., we treat undersampling as more severe than

Figure 7: (left) Curvature-based sizing field. (right) Our algorithm

optimizes a symmetric Dirichlet energy between each triangle and

an equilateral triangle whose size depends on the underlying field.

© 2023 The Authors.
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oversampling (following [YZL∗20]). Specifically, for a pair of cor-
responding triangles tA and tB, we pick the values of sA and sB at
their triangle midpoints and choose the smaller one as the common
target size

s(t∗) = min(sA(mA),sB(mB))) ,

where the triangle midpoints mA ∈ A and mB ∈ B are computed
via the spherical interpolation operator in Equation 1.

Curvature-Based Sizing. By default, we compute the sizing fields
sA and sB based on the maximum principal curvature and a de-
sired surface approximation error ε̃, as described in [DVBB13].
That is, we choose finer resolutions in regions of high curvature
and coarser resolutions in regions of low curvature (Figure 7). Our
multi-resolution schedule (Section 8.2) is driven by adjusting the
approximation parameter ε̃.

User-Supplied Sizing. Alternatively, one or both sizing fields can
be provided as input to our method, which gives users manual res-
olution control (see Figure 8).

In Figure 6, we evaluate the effect of mesh resolution in T on
the quality of the induced homeomorphism.

5.4. Surface Approximation

While the vertices of the approxi-
mating triangulation TA always lie
on the input surface A by construc-
tion, the reverse statement is not
true. Vertices of A do not lie ex-
actly on TA, because the flat trian-
gles of TA in R

3 leave the input
surface. In the worst case, this al-
lows thin geometric features of the
input surface to poke through approximating triangles, even if the
resolution is relatively fine (see inset, left).

To control the approximation error of TA (similarly for
TB), we measure the Euclidean distance from each input ver-
tex position v of A to its corresponding base point Åv on TA.
Instead of choosing the closest
point on TA, we use the base point
Åv defined by our bijective corre-
spondence (see inset). This overes-
timates the shortest distance to the
surface, but is better suited for opti-
mization because Åv slides over TA
continuously as TA moves in R

3.

The base point Åv is obtained from v by computing its barycentric
coordinates α,β in a triangle a,b,c of T on the sphere (Equation 2)
and evaluating them again in R

3:

Åv = α f
−1
A (a)+β f

−1
A (b)+(1−α−β) f

−1
A (c).

We set up a quadratic penalty term measuring the approximation
error per vertex of A (similarly for B):

E
A
approx(T ,x) =

1
ε̃2 ∑

v∈VA

area(v) · ∥v− Åv(x)∥2,

Figure 8: (left) Mesh A with user-designed sizing field as input.

(center, right) Common triangulation T embedded on A and B,

respecting the specified sizing.

where area(v) is the normalized Voronoi area of vertex v. We di-
vide by ε̃2 to help balancing with other objective terms: EA

approx
integrates to 1 if the approximation error matches the target error
ε̃ (that determines the mesh resolution) everywhere. In Section 8.4,
we demonstrate replacing this soft penalty by a hard error bound.

The surface approximation term is the only one in our objective
function that sums over the input vertices instead of over the ele-
ments of T , implying a linear dependency on the input mesh com-
plexity. For too high-resolution inputs, we break this dependency
by only summing over a constant-sized subset of vertices.

5.5. Landmarks

A sparse set L = {(vA,vB), ...} of landmark vertices can be sup-
plied as input. Since vA and vB might not initially correspond under
Φ, we select a vertex vT of T to represent this pair and encourage
its two instances to move towards vA and vB via penalty terms

E
A
land = ∑

vA∈L

∥ fA(vA)−gA(vT )∥2

and EB
land, respectively. These terms compare vertex positions on

the sphere, instead of on the surfaces, to avoid local minima and
use the Euclidean distance for simplicity. For each pair, the repre-
senting vertex vT is chosen as the one minimizing EA

land +EB
land at

initialization.

Once a landmark correspondence is fulfilled, i.e., the two in-
stances of vT coincide with vA and vB up to some tolerance, we
can lock them in place by eliminating gA(vT ) and gB(vT ) from
the optimization problem in Section 6.2.

5.6. Parameters

Finally, the combined objective function E(T ,x) is a weighted sum
of the above terms for bijectivity, mesh quality, surface approxima-
tion, landmark constraints, and map distortion:

E = ωbij
1
2

(

E
A
bij +E

B
bij

)

+ ωmesh
1
2

(

E
A
mesh +E

B
mesh

)

+ ωapprox
1
2

(

E
A
approx +E

B
approx

)

+ ωland
1
2

(

E
A
land +E

B
land

)

+ ωmap E
AB
map .

(5)
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Fortunately, we can choose reasonable default values for all
weights: We set ωbij to a small number (e.g. 10−6), as we are only
interested in the term’s barrier character. Conversely, ωland can al-
ways be a large number (e.g. 106), because we expect the landmark
penalty term to vanish. Furthermore, we choose ωmesh = 1 and
ωmap = 1 to weigh mesh quality and mapping distortion equally.
Both are comparable because they are symmetric Dirichlet ener-
gies, integrated over T , with minimum 1. We normalize the size of
all integration domains by initially scaling the input meshes A and
B to unit surface area. The remaining weight ωapprox, does pose a
trade-off between surface approximation and the ability of mesh T
to slide over the input surfaces unobstructedly. However, since we
normalized the approximation term to 1 for the case that the tar-
get error ε̃ is attained everywhere, we can also choose ωapprox = 1.
Intuitively, the approximation term does not dominate if the target
error is respected.

This only leaves the target approximation error ε̃ to be chosen.
We adapt this parameter to drive the different stages of our coarse-
to-fine optimization schedule (Section 8.2), but eventually its final
value is a user-parameter that defines the target resolution.

6. Discrete-Continuous Optimization

The optimization algorithm (Figure 9) alternates between discrete
steps (updating the mesh connectivity of the common triangulation
T ) and continuous steps (moving the vertices of T on the sphere),
both such that the objective E(T ,x) decreases monotonously.

6.1. Remeshing

The discrete step performs a series of edge splits, edge collapses,
and edge flips. In contrast to classical incremental remeshing algo-
rithms [BK04,DVBB13,YZL∗20] with specialized criteria for each
operation, we simply apply the ones that decrease the objective E.
In addition, we disallow removal of landmark vertices.

We use a simple parallelization strategy: Per type of operation
(split, collapse, flip), we first evaluate all possible candidates lo-
cally and in parallel. We then sort the ones that yield an improve-
ment in E in descending order and apply them in serial (to avoid
parallel mesh modifications). Because operations with overlapping
area of effect influence each other, we check for improvement in E

again before applying an operation.

For edge splits (and collapses), we choose the position of the new
(remaining) vertex as the respective edge midpoint on the sphere.
Instead of subsequent Laplacian smoothing, as e.g. in [BK04], we
continue with one iteration of continuous optimization.

6.2. Continuous Optimization

We simultaneously move the vertex positions gA(T ) and gB(T )
on the sphere via projected-Newton updates. Following the instruc-
tions in [SBB∗22, Sec. 4.4], we parametrize vertex trajectories as
tangent vectors of the sphere under a retraction operator: We be-
gin an iteration by choosing local 2D coordinate systems, tangent
to the sphere, centered at the current vertex positions in gA(T )
and gB(T ). The variable vector x ∈R

n then encodes trajectories in

Algorithm 1: Discrete-Continuous Optimization

repeat

1. Split edges of T if they improve E

2. Collapse edges of T if they improve E

3. Flip edges of T if they improve E

4. Move vertices of T on the sphere (Newton step)
until converged or max iters reached

Figure 9: Driven by the objective E(T ,x), we alternate between

updating the mesh connectivity of the common triangulation T and

continuously moving its vertices over all input surfaces at once.

these tangent spaces, i.e. n = 4|VT |, and we initially have x = 0 in
each iteration. The objective E(x) first applies the trajectories x in
3D ambient space and then retracts them to the unit sphere via nor-
malization, before evaluating Equation 5. That is, E(x) is defined
via composition with a retraction operator.

Based on the current choice of tangent spaces, we compute the
derivatives of E with respect to x via automatic differentiation using
TinyAD [SBB∗22]. These are the gradient g ∈ R

n and sparse Hes-
sian H+ ∈ R

n×n (projected to a positive definite matrix [TSIF05]).
We then compute the Newton direction d ∈ R

n by solving the lin-
ear system H+d =−g, find a step size s ∈ R via backtracking line
search, and set x := sd. Finally, we apply x (again via the retraction
operator), to obtain the new vertex positions of gA(T ) and gB(T ).
The next iteration begins by choosing a new set of local coordinate
systems at the updated vertex positions and resetting x := 0.

We consider the discrete-continuous algorithm to be converged
when no more edge splits, collapses, or flips can yield improvement
in E and the Newton decrement

√

−dTg falls below a threshold
(10−4 in our experiments).

7. Maps Between Multiple Surfaces

The map representation and algorithm introduced so far naturally
extend to mapping between N ≥ 1 surfaces. For N = 1 the method
reduces to a remeshing algorithm for single surfaces, that maintains
a bijection between input and output surface.

Map Representation. For N input meshes M1, . . . ,MN , we in-
dependently pre-compute sphere embeddings f1, . . . , fN . The com-
mon triangulation is still defined via a single mesh connectivity T ,
that now has N sphere embeddings g1, . . . ,gN . This representation
yields pairwise homeomorphisms Φi j between all input surfaces.
These homeomorphisms are cycle-consistent by construction, i.e.,
any composition of maps starting and ending at the same surface
yields the identity map: Φi,• ◦ · · · ◦Φ•,i = Id. This is because any
point on any surface is uniquely represented by its barycentric coor-
dinates in a triangle of T . See Figure 4 for an example with N = 18.

Objective Function. The terms for bijectivity (Section 5.1), mesh
quality (Section 5.3), and surface approximation (Section 5.4) are
defined individually per mesh Ti. Only mapping distortion (Sec-
tion 5.2) is measured between pairs Ti,T j . While considering all
pairwise maps ÅΦi j for distortion assessment seems most natural,
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this leads to a number of terms quadratic in N, which is only prac-
tical for relatively small N. However, depending on the application
scenario, measuring distortion only between a subset of pairs can be
sufficient: e.g. sequentially (between surfaces with consecutive in-
dex), cyclic (additionally between first and last), or with star topol-
ogy (compare a reference surface to all others), etc. The objective
E is again a weighted sum as in Equation 5, where all per-surface
terms are now normalized by N and the distortion term by the num-
ber of pairs. In the remeshing algorithm, E is still evaluated locally
around a split/collapse/flip in T , but now considering all N embed-
dings. In the continuous step, we differentiate E w.r.t. all 2N|VT |
variables and move the vertices of all N sphere embeddings at once.

8. Results & Applications

After giving some details on the setup of our experiments, we com-
pare our method to current surface mapping algorithms, where we
find large improvements in run time and convergence radius at com-
parable mapping distortion (Section 8.3). We then conduct an ex-
periment in which we achieve the same bounds on surface approx-
imation as a state-of-the art compatible remeshing algorithm (Sec-
tion 8.4). Finally, we demonstrate an application to shape averag-
ing and interpolation that benefits from mapping between multiple
shapes at once (Section 8.5).

8.1. Initialization

Our algorithm initially requires bijective spherical embeddings of
all input meshes. Conceptually, many different methods can be used
for this step [KSBC12, CPS13, BCK18]. However, strict bijectiv-
ity is not always guaranteed and conformal methods may yield ex-
treme scale distortion in the intermediate domain. For increased
robustness, we instead construct embeddings via the hierarchical
strategy of [PH03], while encouraging isometry: We decimate the
genus-0 input mesh until only a tetrahedron remains (cf. [Hop96]),
canonically embed the tetrahedron on the unit sphere, and then
undo the decimation sequence while bijectively inserting vertices
inside their one-ring on the sphere (see also [HFL17, SJZP19]).
We locally optimize each inserted vertex and interleave the se-
quence with a few iterations of global optimization w.r.t. the an-
gle and area-based objective function in [SCBK20, Sec. 6.6], using
the same algorithm as in Section 6.2. Finally, we rotationally align
all sphere embeddings to each other with respect to the supplied
landmark correspondences.

8.2. Coarse-to-Fine Optimization

Depending on the application scenario our general algorithm can
be applied in different ways. In our experiments, we use a simple
coarse-to-fine schedule comprised of the following three phases.

Landmark Satisfaction. The above initialization procedure (with
rigid spherical alignment) does not fulfill landmark constraints. In
a first phase, we switch to an extremely coarse triangulation T to
quickly optimize for constraint satisfaction (i.e. move landmark
vertices of T towards fixed target positions on the spheres). We
disable all objective terms except for the bijectivity barrier (Sec-
tion 5.1) and landmark penalty (Section 5.5). Since the bijectivity

Figure 10: Maps between two cat models with no landmarks at the

ears. On this input, all three distortion-minimizing methods find the

desired minimum (see heatmap). However, [Tak22] and [SCBK20],

which are tied to the input mesh resolution, take 8 hours and 48

minutes, respectively. Our method completes the task in 45 seconds.

barrier regularizes towards large triangles on the sphere, the algo-
rithm automatically coarsens mesh T until almost only landmark
vertices remain. We perform a maximum of 100 iterations or stop
early when when all landmarks are within a threshold of their tar-
get position. We then lock the landmarks in place for all follow-
ing phases (or release them if only supplied to initially guide the
map towards the desired distortion minimum). Note that this pro-
cedure for initial landmark satisfaction is a simple heuristic to a
difficult problem that involves choosing a map homotopy class (be-
tween the genus-0 input surfaces punctured at the landmark posi-
tions, cf. [BSK21]). While it is not in general guaranteed that our
penalty term satisfies all landmark constraints, it succeeded within
a few seconds in all examples shown here. In principle, if a land-
mark cannot be satisfied, the rest of our algorithm is still able to
proceed without this constraint.

Coarse Map Optimization. We then perform the main map opti-
mization workload, e.g., aligning similarly curved regions, at a rel-
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Figure 11: Cumulative distortion over 8 maps. Each time, we dis-

abled one of the input landmarks to test if the algorithm still cor-

rectly aligns geometric features and finds the global distortion min-

imum. [Tak22] and [SCBK20] get stuck more often than our algo-

rithm does. [AL16] does not directly optimize mapping distortion.

atively coarse resolution. That is, we enable all objective terms as
described in Section 5.6 and choose a target approximation error of
ε̃ = 0.01 in all examples, which causes the algorithm to refine mesh
T from the extremely coarse result of the landmark phase within a
few iterations. We apply a total of 50 iterations in this coarse map
optimization phase by default.

Map Refinement. Finally, we reduce the target approximation er-
ror to the desired value, depending on the application. We choose
ε̃ = 0.001 as default and perform another 50 iterations. As a conse-
quence, additional map refinement is performed, giving the distor-
tion minimization the necessary degrees of freedom to make fine-
level map improvements. Note again, that the parameter ε̃ spec-
ifies a soft approximation goal which is translated into adaptive
target edge lengths fields. We experiment with hard approximation
bounds in Section 8.4. An example of the result after each algo-
rithm phase is shown in Figure 2.

8.3. Comparison: Homeomorphic Map Optimization

We compare against two recent methods for distortion minimiza-
tion of continuous and bijective maps: Inter-Surface Maps via
Constant-Curvature Metrics [SCBK20] and Compatible Intrinsic
Triangulations [Tak22]. For reference, we also include Hyperbolic
Orbifold Tutte Embeddings [AL16], which is used as initialization
for [Tak22]. We use the author’s implementations with their default
settings and evaluate run time, mapping distortion, and robustness
with respect to different input landmark configurations. For compa-
rability across different map representations, we measure distortion
by deforming input mesh A according to its mapped vertex posi-
tions on B. Throughout our evaluation, we show cumulative dis-
tortion plots stating the percentage of surface area that is below a
certain distortion threshold, i.e., curves closer to the top left corner
of the plot represent less distortion.

In Figure 10, we map between two near-isometric shapes with
about 10k vertices combined and landmarks placed at all geometric
extremities except for the cat’s ears. [AL16], which does not opti-
mize surface-to-surface distortion, quickly produces a smooth map,
but slightly misaligns the ears. Starting from this input, [Tak22]
correctly aligns the ears and also reduces distortion in other areas as
much as possible, but takes 8 hours to terminate. [SCBK20] finds a
similar low-distortion map within 48 minutes. We speculate that the

Figure 12: Experiment from [SCBK20] testing resilience w.r.t.

challenging initializations. After satisfying different sets of land-

mark constraints (top row), we release all landmarks and continue

our optimization (bottom row). We find the global distortion mini-

mum in cases where the initial map is reasonably close.

marginally higher overall distortion of [SCBK20] (see plot) could
be due to regularization terms in the intermediate domain, which
are absent in [Tak22]. Our method also successfully aligns the ears
with comparable overall distortion. The distortion heatmap appears
slightly less smooth due to the much lower resolution of our map
representation (1665 vertices in our compatible triangulation vs.
roughly 50k vertices in the overlay mesh of [SCBK20]). Our map
computation took a total of 45 seconds (15 of which are spent
on the initial sphere embeddings). This is a 64-fold improvement
over [SCBK20] and 640-fold improvement over [Tak22]. Qualita-
tive results of our method on less isometric inputs can be found in
Figures 2,4,6,8,13, and 15.

To further test robustness and convergence radius, we again map
between the same pair of shapes multiple times, each time releasing
a different landmark (out of 9, see Figure 11). Missing landmarks at
geometric extremities cause all methods to initially produce highly
distorted maps (e.g. due to a leg mapped to a flat part of the surface).
As all three distortion-minimizing methods ( [Tak22], [SCBK20],
ours) then attempt to solve a non-convex C1-discontinuous opti-
mization problem, it is possible for them to converge to local op-
tima or get stuck in other ways. In one case (no landmark at tail) all
but our method failed without producing a result (presumably due
to too high distortion in the intermediate domains). [Tak22] failed
or made no progress in 4 more cases (no landmarks at legs), but
produced the desired map the other 4 cases. [SCBK20] did pro-
duce results in all 8 remaining cases but converged to local optima
when landmarks at the legs were missing. Due to our coarse-to-fine
approach, our method reached the desired map in all but one case
(where it did not fully extend one of the legs). We report the cu-
mulative distortion over all cases (except the one where all others
failed) in Figure 11. When [Tak22] failed, we report the distortion
of its initialization.

In Figure 12, we repeat an experiment from [SCBK20] where
we compute initial maps between two hands from increasingly bad
landmark correspondences. We then release these landmarks to see
if the algorithm still converges to the desired distortion minimum,
correctly aligning all fingers. Our method reaches the global opti-
mum in 4 out of 5 cases; one more than [SCBK20]. However, on
adversarial inputs, e.g., when the initial map provokes two fingers
being mapped to one, our method converges to a local optimum as
well.
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Figure 13: Common triangulation with bounded surface approximation error. Similarly to [YZL∗20] (left) we are able to satisfy error bounds

via adaptive refinement. We then maintain these bounds using barrier functions, while reducing distortion via global map optimization (right).

8.4. Comparison: Compatible Remeshing

To demonstrate a setting in which our common triangulation, in-
stead of the homeomorphism, is considered the output of our
method, we compare against a state-of-the art compatible remesh-
ing algorithm [YZL∗20]. The method pre-computes a map without
surface-to-surface distortion optimization and can afterwards only
deviate from it via local vertex re-locations. Hard error bounds on
surface approximation are initially fulfilled via adaptive refinement
and subsequently maintained by disallowing violating operations.

In an experiment we adapt our formulation to practically ful-
fill the same bounds as [YZL∗20], while additionally maintain-
ing access to global map optimization. After applying our default
coarse-to-fine schedule, we satisfy an error bound ε on the sym-
metric Hausdorff distance (sampled at the input mesh vertices) by
locally and iteratively decreasing the sizing fields sA and sB in ar-
eas where the bound is violated (following [CFZC19]). After bound
satisfaction, we continue our optimization, but replace the soft sur-
face approximation term EA

approx by a barrier

E
A
bound(T ,x) =

{

∞ any d(v)≥ ε

∑v∈VA
area(v) ·bε (d(v)) otherwise,

where d(v) is the Euclidean distance from
an input mesh vertex to its base point on
the approximating mesh (cf. Section 5.4).
Inspired by [SKPSH13, Eq. 6], we use

the barrier function bε(d(v)) =
d(v)3

ε3−d(v)3 ,

which diverges to infinity when d(v) ap-
proaches ε and smoothly reaches 0 when
d(v) goes to 0 (see inset). Similarly to our
bijectivity barrier, this disallows mesh modifications that violate the
approximation bound and pushes the continuous optimization away
from violating configurations.

Figure 13 shows three examples in which we satisfy the same
bound as [YZL∗20] (0.3% of the bounding box diagonal) while re-
ducing mapping distortion. In a highly non-isometric case we dis-
tribute the inevitable distortion more evenly while using slightly
more vertices, whereas in simpler cases, we reduce both total dis-
tortion and vertex count compared to [YZL∗20].

8.5. Application: Shape Averaging & Interpolation

Two operations that often appear in applications are shape av-
eraging and interpolation between keyframe surfaces (e.g. via
[HRS∗16]). Both require establishing a common tessellation. To
demonstrate the practical applicability of our method, we repeat an
experiment from developmental biology [ESD∗22], where an av-
erage growth process of the early mouse heart is estimated from
a dataset of 51 surface meshes, obtained via confocal microscopy.
The surfaces are clustered into 10 groups of similar developmental
stage and the tasks are (1) computing an average surface per group
and (2) sequentially interpolating between these average surfaces
via a common triangulation. The original experiment in [ESD∗22]
was performed via [SCBK20] (initialized with [BSK21]), which
only allows computing pairwise maps. Within each group, one sur-
face was mapped to all others to allow averaging, and sequential
maps were computed between consecutive pairs of average sur-
faces. This required computing a total of 50 pairwise maps, for
each of which [SCBK20] took between 27 and 58 minutes on in-
put meshes with 5k vertices each. In a post process, a remeshing
algorithm [DVBB13, YZL∗20] was run to improve the common
triangulation of the sequence, based on fixed surface maps.

In contrast, since we are able to map between more than two
surfaces, we can compute the average shapes with a single run
of our method per group, followed by another run for the sequen-
tial mapping. Despite mapping between 3 to 10 surfaces at a time,
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Figure 14: (a) Dataset of 51 embryonic heart shapes of the mouse, organized in 10 groups of similar developmental stage [ESD∗22]. Per

group, we run our algorithm once to compute an average shape. (b) We then sequentially map between the 10 average shapes to establish a

common triangulation describing the entire growth process. (c) Executing our algorithm 11 times (blue crosses) took a total of 38 minutes,

with run time approximately linear in the number of input meshes. The reference solution via [SCBK20] required computing 50 pairwise

maps (yellow crosses), which took a total of 36 hours.

each run of our algorithm is significantly faster than a pairwise run
via [SCBK20], reducing the total computation time from 36 hours
to 38 minutes. In Figure 14 we show the resulting compatible tri-
angulation of the animation sequence as well as a run time plot
revealing an approximately linear dependency on the number of in-
put meshes per run.

9. Limitations & Future Work

Our method offers great flexibility to express different optimiza-
tion goals in the objective function. However, this also means that
a number of weights and parameters have to be chosen, in partic-
ular as we add a term for surface approximation to the mapping
problem. While application-dependent adjustment of parameters or
input constraints is, in one form or another, necessary using any
of the known approaches, we argue that our improved turnaround
times make such iterative surface mapping workflows more practi-
cal. Still, finding fully automatic algorithms with fewer approxima-
tions and fewer parameters remains an important goal.

Mapping via the sphere without cutting in-
evitably causes high distortion in the inter-
mediate domain. Numerically, this poses a
limit on handling long geometric features,
which undergo extreme shrinking (a limita-
tion shared with [SCBK20] and others). Our
method sometimes struggles with untwist-
ing a map around thin features (e.g. because
the bijectivity barrier can easily dominate in
such regions). Alternative map representations with cone singulari-
ties (e.g. [AL16]) offer a possible remedy, but have other disadvan-
tages such as fixed correspondence at these points. Direct mapping
methods such as [Tak22] open an interesting new direction.

Bijective surface-to-surface map optimization on piecewise lin-
ear triangle meshes, in its currently available representations, in-
evitably amounts to optimization problems that are only C0 con-
tinuous but C1 discontinuous. These do not meet the theoretical
pre-conditions necessary to safely employ Newton-style methods.
Some heuristic remedies are used in [SBCK19, SCBK20, Tak22],
but a fully satisfying solution is yet to be found. While we are prac-
tically able to obtain high-quality maps, all of the above algorithms,
as well as our method, can potentially get stuck at discontinuities.

An obvious next step is extending the method to higher genus
cases, for example, via tilings of the (hyperbolic) plane as in
[SCBK20]. Besides practical challenges (handling the interplay be-
tween embeddings of A, B, and T with different cuts and transition
functions), this problem also requires an explicit choice and repre-
sentation of map homotopy. While [BSCK21] gives an answer to
this question in terms of homology, a robust conversion to homo-
topy remains open.
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Figure 15: Spot and friends. The map computed by our method

can be used to transfer any kind of surface data, e.g., textures, from

a source mesh (top right) to multiple target meshes.
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