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A B S T R A C T   

This article describes a complete unsupervised system for the segmentation of massive 3D point clouds. Our 
system bridges the missing components that permit to go from 99% automation to 100% automation for the 
construction industry. It scales up to billions of 3D points and targets a generic low-level grouping of planar 
regions usable by a wide range of applications. Furthermore, we introduce a hierarchical multi-level segment 
definition to cope with potential variations in high-level object definitions. The approach first leverages planar 
predominance in scenes through a normal-based region growing. Then, for usability and simplicity, we designed 
an automatic heuristic to determine without user supervision three RANSAC-inspired parameters. These are the 
distance threshold for the region growing, the threshold for the minimum number of points needed to form a 
valid planar region, and the decision criterion for adding points to a region. Our experiments are conducted on 
3D scans of complex buildings to test the robustness of the “one-click” method in varying scenarios. Labelled and 
instantiated point clouds from different sensors and platforms (depth sensor, terrestrial laser scanner, hand-held 
laser scanner, mobile mapping system), in different environments (indoor, outdoor, buildings) and with different 
objects of interests (AEC-related, BIM-related, navigation-related) are provided as a new extensive test-bench. 
The current implementation processes ten million points per minutes on a single thread CPU configuration. 
Moreover, the resulting segments are tested for the high-level task of semantic segmentation over 14 classes, to 
achieve an F1-score of 90+ averaged over all datasets while reducing the training phase to a fraction of state of 
the art point-based deep learning methods. We provide this baseline along with six new open-access datasets 
with 300+ million hand-labelled and instantiated 3D points at: https://www.graphics.rwth-aachen.de/project/ 
45/.   

1. Introduction 

The need to extract structure and knowledge from raw point cloud 
data is actively driving academic and industrial research. Due to the 
massive amounts of raw data lacking a structure, many applications 
require automated pre-processes which can speed up and make existing 
frameworks more reliable. 

Point cloud segmentation is a core component that facilitates the 
separation of spatial-spectral attributes into their individual constitu
ents. The cardinal motivations for point cloud segmentation are three
fold: firstly, it provides end-users with the flexibility to efficiently access 
and manipulate 3D scenes through higher-level primitives (segments). 
Secondly, it creates a compact representation of the data wherein all 

subsequent processing can be done at a region level instead of the in
dividual point level, resulting in potentially significant computational 
gains. Finally, it gives the ability to extract relationships between 
neighbourhoods, graphs and topology, which is non-existent in unor
dered point-based datasets and thus effectively enables the transition 
from sub-symbolic to symbolic 3D data analysis. 

Semantically-rich point cloud datasets can then be used in scenarios 
such as Building Information Modelling (BIM) reconstruction [1], in 
Architecture, Engineering, and Construction (AEC) [2], Facility Man
agement (FM) [3] or even automated semantic-based navigation [4]. 

For these reasons, segmentation is predominantly employed as a pre- 
processing step to annotate, consolidate, analyse, classify, categorize, 
extract and abstract information from point cloud data. 
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However, the biggest challenge lies in overfitting segmentation 
pipelines to one particular application or process through hand-tuned 
parameters, which implicitly adds supervision in “unsupervised” 
schemes. This paper tackles this challenge explicitly by providing a 
simple and efficient point cloud segmentation system that is fully 
unsupervised. 

We first investigate an objective solution for arbitrary 3D point 
clouds, transparent enough to be usable on different datasets and within 
different application domains. Our method considers the Gestalt theory, 
which states that the whole is more than the sum of its parts and that 
relationships between the parts can yield new properties/features. We 
want to leverage the predisposition of the human visual system to group 
sets of elements. We propose to structure a point cloud in Connected 
Elements as defined in [5], primarily motivated by the limitations of 
point-based approaches, where the amount of data, the redundancy, and 
the absence of relationships among points are significant performance 
issues. The solution proposes a region growing approach inspired by the 
“Efficient RANSAC for Point-Cloud Shape Detection” method proposed 
in [6]. It leverages only X, Y, Z coordinates, uses the same probabilistic 
paradigm and aim at an industry-ready solution for processing real- 
world scale datasets. 

To cope with the sometimes unintuitive and tedious tuning of pa
rameters and thresholds, we provide an automatic heuristic that permits 
a “one-click” automatic segmentation. To assess the possibilities pro
vided by the clustering scheme, we present our results on several real- 
world ground truth datasets. These come from various platforms, sen
sors and with varying characteristics (density, resolution, precision, 
noise, occlusion) obtained from terrestrial laser scanners, mobile laser- 
scanners and passive sensors using photogrammetry, structure from 
motion and dense-matching. Finally, we provide new open-access 
dataset(s) with a baseline for scientific benchmarking for the tasks of 
segmentation, instance segmentation and semantic segmentation. 
Indeed, in recent years, we noticed a massive shift in the literature from 
traditional classification methodologies to machine learning. There is 
now an interest in developing deep neural networks that will hopefully 
unseat tree-based algorithms from their reigning status as the best 
learners on tabular data. Specifically, for semantic segmentation work
flows, recent architectures such as PointNet++ [7], Superpoint graphs 
[8], KPConv [9], Minkowski Engine [10] or RandLA-Net [11] are very 
promising, and have the potential to become central methodologies for 
specific applications. However, these supervised learning approaches 
suffer from the need of having specific application-based labelled 
datasets, which is a current major issue with point cloud data which 
demands open datasets initiatives such as in [12]. Moreover, the het
erogeneity and class variation in which objects are found for example 
within Cultural Heritage and the difficulty gathering enough training 
data limit the current application of Deep Learning architectures. 
Motivated by these strong factors, we provide an unsupervised (in the 
sense there is no need for training data or human intervention) system 
that permit to obtain robust segments, simply, in a short time frame and 
on low-cost infrastructures. 

Briefly, this paper makes the following three main contributions:  

● a new planar-based region growing segmentation system for massive 
3D point clouds;  

● An unsupervised heuristic to automatically set optimal parameters;  
● A substantial open-source labelled point cloud dataset incl. Instances 

and classes. 

The remainder of this paper is structured, as follows: Section 2 briefly 
reviews recent related works dealing with point cloud segmentation. 
Section 3 gives the details of the proposed region-growing segmentation 
and parameters determination. In Section 4, we present the experi
mental setup including several indoor datasets, where we let parameters 
vary and provide details on the implementation. In Section 5, we study 
the impact of these experiments on the results and analyse the 

performance of the approach. In Section 6, we discuss our findings and 
highlight limitations as well as future research directions. 

2. Related work 

Point Cloud « pure » segmentation algorithms are mainly based on 
strict hand-crafted features from geometric constraints, heuristics and 
rules. The main process aims at grouping raw 3D points into unique 
regions. Those regions correspond to specific structures or objects in one 
scene with a certain degree of representativity (an object of interest can 
be “over-segmented” or “under-segmented”). Since no supervised prior 
knowledge is required, the delivered results have no “strong” semantic 
information, which is the task of classification also known as semantic 
segmentation or labelling. However, to reduce the calculation cost, a 
frequently used strategy is to over-segment a raw point cloud into small 
regions before applying computationally expensive algorithms that 
benefit from the new grouping. Voxels can be regarded as the simplest 
over-segmentation structures, extended to supervoxels which can 
largely reduce the data volume of a raw point cloud at the cost of some 
information loss and minimal overlapping. 

We propose to categorize the existing segmentation approaches into 
four major groups as illustrated in Fig. 1. 

This categorization sort point-based, edge-based, region-based and 
energy-based methods (i.e. probability distributions over point data), 
each holding a wide variety of tactic such as histogram thresholding 
[13], unsupervised clustering (k-means [14], fuzzy clustering [15], 
mean-shift [16], graph-based [17]), over-segmentation [5] or gradient 
method [18]. We encourage the reader to study the exhaustive recent 
reviews [19–22] for an in-depth understanding of each non-highlighted 
possibilities and extension to semantic segmentation workflows. For the 
sake of conciseness and to keep the focus on the content of the paper, we 

Fig. 1. Taxonomy of existing segmentation approaches. Neighbourhood 
oblivious are methods that essentially do not uses direct information from a 
local neighbourhood to create segments, whereas neighbourhood aware build 
on it. 
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will specifically provide details of the region growing and model-fitting 
literature by building on the highly recommended [20] review. 

2.1. Region growing 

Region growing is a classical point cloud segmentation method 
which is still widely used today. It is initially derived from images at the 
pixel level (2D), emerged in 2.5D LiDAR data (possible raster projec
tion), and is now employed at the point level (3D) or the voxel level 
(3D). 3D region growing comprises two main steps: the selection of seed 
points or seed units and then the region growing driven by some prin
ciples to obtain groups of points following some similarity measure. This 
technique has been applied in the segmentation of planar building 
structures in [23,24] or more recently in [25,26]. However, we note that 
the validation was made on low density dataset or with point cloud 
never exceeding more than some millions of points, which doesn’t 
presume the complexity of large-scale datasets. 

A region growing approach demand the definition of three crucial 
factors: a seed point selection, a growth unit and a criterion for assessing 
the similarity between points. 

For the seed point selection, since many region growing algorithms 
aim at a planar segmentation, a usual practice is to fit a plane to a certain 
point and its neighbours first, and then choose the point with the min
imum residual to the fitting plane as a seed point [27]. The residual is 
usually estimated by the distance between one point and its fitting plane 
(or the curvature of the point [28]). 

For the growth unit factor, there are usually three strategies: (1) 
single points, (2) region units (voxel grids or octree structures), and (3) 
hybrid units. Selecting single points as region units was the primary 
approach in the early stages [27]. However, for massive point clouds, 
point-wise calculation is time-consuming. To reduce the data volume of 
the raw point cloud and improve calculation efficiency, e.g., neigh
bourhood search with a kD-tree in raw data [23], the region unit is an 
alternative idea of direct points in 3D region growing. In a point cloud 
scene, the number of voxelized units is smaller than the number of 
points. In this way, the region growing process can be accelerated 
significantly. Guided by this strategy, Deschaud et al. [23] presented a 
voxel-based region growing algorithm to improve efficiency by replac
ing points with voxels during the region growing procedure. Vo et al. 
[25] proposed an adaptive octree-based region growing algorithm for 
fast surface patch segmentation by incrementally grouping adjacent 
voxels with a similar saliency feature. As a balance of accuracy and ef
ficiency, hybrid units were also proposed and tested by several studies. 
For example, Xiao et al. [24] combined single points with subwindows 
as growth units to detect planes. Dong et al. [26] utilized a hybrid region 
growing algorithm, based on units of both single points and supervoxels, 
to realize coarse segmentation before global energy optimization. 

For the criteria factor, geometric features, such as Euclidean distance 
or normal vectors, proved efficient. For example, Tovari et al. [29] 
applied normal vectors, the distance of the neighbouring points to the 
adjusting plane, and the distance between the current point and candi
date points as the criteria for merging a point to a seed region that was 
randomly picked from the dataset after manually filtering areas near 
edges. Of course, inaccurate estimations of the normals and curvatures 
of points near region boundaries are main problematics for these 
approaches. 

Non-universality is a non-trivial problem for region growing [25]. 
The accuracy of these algorithms relies on the growth criteria and lo
cations of the seeds, which should be predefined and adjusted for 
different datasets. In addition, these implementations are computa
tionally intensive and may require a reduction in data volume for a 
trade-off between accuracy and efficiency. Furthermore, we note that all 
the region growing approaches only work on small scale datasets with a 
few million points, without a large variability in testing. Also, the 
definition of the parameters which drive the underlying approaches is 
supervised with prior knowledge. It essentially limits the generalization 

of such approaches. 

2.2. Model fitting 

The core idea of model fitting is to match a point cloud or some 
subset to different primitives (geometric shapes). It is mainly used as a 
shape detection or shape extraction method such as in [30]. However, as 
artificial objects are presents in BIM, AEC, indoor and outdoor scenes are 
heavily constituted of an assembly of geometric shapes/models such as 
planes, spheres, cylinders. Therefore, model fitting can be regarded as a 
segmentation approach to cluster depending on the detected fitted 
models. The most widely used model-fitting methods are built on two 
well-known concepts, (1) the Hough Transform (HT) and (2) the 
RANdom SAmple Consensus (RANSAC). 

(1) HT is initially a feature detection technique for digital image 
processing. It was first presented in [31] for line detection in 2D images. 
There are three main steps in HT: mapping every sample (e.g., pixels in 
2D images and 3D points in point clouds) of the original space into a 
discretized parameter space; laying an accumulator with a cell array on 
the parameter space and then, for each input sample, casting a vote for 
the basic geometric element of which they are inliers in the parameter 
space; and selecting the cell with the local maximal score, of which 
parameter coordinates are used to represent a geometric segment in 
original space. The most basic version of HT is the Generalized Hough 
Transform (GHT), also called the Standard Hough Transform (SHT), 
which is introduced in [32]. GHT uses an angle-radius parameterization 
instead of the original slope-intercept form, in order to avoid the infinite 
slope problem and simplify the computation. First introduced on a 3D 
grid, angle-radius parameterization can also be extended into 3D space, 
and thus can be used in 3D feature detection and regular geometric 
structure segmentation, as presented in Eq. 1: 

ρ = xcos(θ)sin(ϕ) + ysin(θ)sin(ϕ)+ zcos(ϕ) (1)  

where x, y, and z are corresponding coordinates of a 3D sample (e.g., one 
specific point from the whole point cloud), and θ and ϕ are polar co
ordinates of the average vector of the plane, which includes the 3D 
sample. 

One of the significant disadvantages of GHT is the lack of boundaries 
in the parameter space, which leads to high memory consumption and 
long calculation time. Therefore, some studies have been conducted to 
improve the performance of HT by reducing the cost of the voting pro
cess. Such algorithms can be found in the review, including Probabilistic 
Hough transform (PHT), Adaptive probabilistic Hough transform 
(APHT), Progressive Probabilistic Hough Transform (PPHT), Random
ized Hough Transform, and Kernel-based Hough Transform (KHT). In 
addition to computational costs, choosing a proper accumulator repre
sentation is also a way to optimize HT performance as discussed in the 
review [21]. 

As with region growing in the 3D field, planes are the most frequent 
research objects in HT-based segmentation [22,33,34]. In addition to 
planes, other basic geometric primitives can also be segmented by HT. 
For example, Rabbani et al. [27] used a Hough-based method to detect 
cylinders in point clouds, similar to plane detection. In addition, a 
comprehensive introduction to sphere recognition based on HT methods 
is presented in [35]. 

To evaluate different HT algorithms on point clouds, Borrmann et al. 
[34] compared improved HT algorithms. They concluded that RHT was 
the best one for point cloud segmentation at that time, due to its high 
efficiency. Limberger et al. [33] extended KHT to 3D space and proved 
that 3D KHT performed better than previous HT techniques, including 
RHT, for plane detection. 

2.3. Model-fitting: RANSAC 

The well-known RANSAC technique is another popular model-fitting 
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method first introduced in 1981 by Fischler and Bolles in [36]. High- 
quality reviews about general RANSAC-based methods have been pub
lished in [21], and provide necessary references. While overlapping with 
these, we clarify the base principle. The RANSAC-based algorithm has 
two main phases: first, it generates a hypothesis from random samples 
(hypothesis generation), and secondly, it verifies it to the data (hy
pothesis evaluation/model verification). Before the first step, as it is the 
case of HT-based methods, models must be manually defined or selected. 
Depending on the structure of 3D scenes, these models are generally 
picked among linear algebraic formulations for planes, spheres, or other 
geometric primitives. 

In the first step of hypothesis generation, RANSAC randomly chooses 
N sample points and estimates a set of model parameters using those 
sample points. For example, if the given model is a plane, then N =3, 
since 3 non-collinear points are needed to determine a plane. The plane 
model can be represented by Eq. 2: 

aX + bY + cZ + d = 0 (2)  

where [a,b,c,d]T is the parameter set to be estimated. 
In hypothesis evaluation, RANSAC chooses the most probable hy

pothesis from all estimated parameter sets by solving the selection 
problem as an optimization problem [37] Eq. 3: 

M̂ = min
M

{
∑

d∈D
Loss(Err(d,M) )

}

(3)  

where D is data, Loss represents a loss function, and Err is an error 
function such as the Euclidean distance. 

What is appealing with this sampling approach, is that it does not 
require complex optimization or high memory resources. Compared to 
HT methods, the efficiency and the percentage of successfully detected 
objects are two main advantages for RANSAC in 3D point cloud seg
mentation. Moreover, RANSAC algorithms have the ability to process 
data with a high amount of noise, even considering outliers. Analogi
cally to the HT, RANSAC is used in plane-based region-growing seg
mentation, such as building facades [38], building roofs [39], and 
indoor scenes [40]. In some fields there is demand for the segmentation 
of more complex structures than planes. Schnabel et al. [6] proposed an 
automatic RANSAC-based algorithm framework to detect basic geo
metric shapes in unorganized point clouds. Those shapes include not 
only planes but also spheres, cylinders, cones, and tori. 

RANSAC is a nondeterministic algorithm, and thus its main short
coming is its spurious surface: the probability exists that models detec
ted by RANSAC-based algorithm do not exist in reality. To overcome the 
adverse effect of RANSAC in point cloud segmentation, Li et al. [41] 
proposed an improved RANSAC method based on NDT cells, also to 
avoid the spurious surface problem. 

Many improved algorithms based on RANSAC have emerged over the 
past decades to improve its efficiency, accuracy and robustness further 
as described in [21]. We specifically note the Schnabel et al. approach 
[6] currently acts as an admitted state of the art resource. 

From these targeted related works, it appears that region growing 
based on normals and RANSAC model fitting are an excellent inspiration 
to obtain relevant results. However, one has to consider the following 
points strongly:  

● the definition of parameters for the region growing approach;  
● the performances and scalability;  
● the level of supervision necessary  
● the generalization to complex scenes with non-geometrical features 

3. Method 

Our method considers real-world scans as input and aims at 
providing a segmented cloud accompanied by an optional 

neighbourhood graph, as illustrated in Fig. 2. The segmented cloud 
outputs contain a new scalar field which holds the index of the planar 
region for each point (X Y Z region). 

3.1. Normal estimation 

To develop a robust normal-based region growing approach, one 
needs to extract low-noise normals. Thus, the first step of our approach is 
to estimate a normal per point. We start by constructing a kD-tree spatial 
structure of the point cloud to permit quick nearest neighbour queries 
for each point. A radius search is used to obtain a locally representative 
subset of the point-cloud. 

We then use a principal component analysis (PCA) as in Section 3.1.2 
to estimate a local tangent plane and thus we extract an unoriented 
normal for the point. 

If additional knowledge about the position of the scanner or a pre
vious estimate of oriented normals is available (E.g. from terrestrial laser 
scanners in .e57), we can obtain oriented normals by flipping the 
computed normals toward the original normals or the scanner position 
respectively. Oriented normals, however, are not a hard requirement for 
our method as we will provide simple variants to our main technique 
that allow for the use of unoriented normals. This permits at a gener
alizable approach that works also on unordered point sets (E.g., from 
photogrammetric processes or after a unification process or for datasets 
from mobile laser scanners as provided in the datasets. 

3.1.1. Importance of the neighbourhood radius 
To evaluate the dependency of runtime and accuracy from the 

normal estimation, we run a series of experiments where we uniformly 
sample points in a 10 × 10 × 0.01 unit volume (meters), which is our 
probabilistic model of a noisy point cloud with local normal orientation 
N =(0,0,±1). 

As shown in Table 1, the size of this radius has a direct impact on the 
quality of the normals as well as the runtime of the normal estimation. 
While small values will result in a superior runtime, the resulting nor
mals will be dominated by noise to the point of being unable to capture 
any useful information as the radius approaches the noise level of the 

Fig. 2. Workflow of our method, optional parts are represented as dashed 
boxes. The neighbourhood graph is described as an adjacency list that holds for 
each region, the regions it is linked to by edges. It is readable directly as an 
input to classical graph libraries such as NetworkX (Python) or Graphs.jl (Julia) 
or iGraph (C). 
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point cloud. Large values, in turn, will not only immensely increase the 
runtime of the normal estimation, but will also cause the normals near 
sharp features in the point cloud to be smoothed out over a larger radius, 
thus decreasing the quality of the normal estimate and effectively 
removing small geometric features. 

3.1.2. Alternative methods 
The main limitation of using PCA for the normal estimation is that we 

approximate the local neighbourhood of every point in the point cloud 
with just a single tangent plane. While this approach delivers high 
quality normals for any point far away from sharp features, any points 
inside a range of the chosen radius around an edge or corner will be 
assigned a biased normal (Fig. 3), because two or more planes of the 
original geometry have to be approximated by a single plane. 

While methods that robustly estimate normals yet successfully 
replicate sharp features in the point cloud are available (e.g. [42]), these 
come with a substantial runtime overhead ( 10× for the implementation 
provided by the authors of [42] as compared to our own PCA-based 
implementation in Julia). 

As later shown in Section 5.3, [42] would thus completely dominate 
the runtime of our method (in which normal estimation makes up most 
of the runtime already) which prompted us to rely on the PCA-based 
approach instead. 

3.2. Plane-based segmentation 

Once each point is equipped with a normal estimate, we apply a 
segmentation approach to obtain consistent planar regions from the 
point cloud. The region-growing method (Subsection 3.2.1) starts by 
repeatedly selecting a random point that is not yet assigned to a region 
from the point cloud, and then determine the region it belongs to. If the 
number of points in the computed region exceeds a heuristic threshold τ 
(Subsection 3.3.2), it is accepted as a significant region. This process 
stops once the probability that all planes in the dataset are found reaches 
a threshold of 99%. 

3.2.1. Growing of an individual region 
Starting from a single seed point, growing a region is driven by two 

index sets R(egion) and F(ront). As R contains the indices of all points we 
currently consider part of the region, F only contains indices of those 
points that were added to R in the last iteration (Fig. 4). Additionally, we 
keep an estimate of the normal n of the plane, as well as its center of mass 
c, as they define a plane P. 

The algorithm (Algorithm 1) starts by adding the seed point to both R 
and F, and initializing n and c with the PCA normal and position of the 
seed point. In every step of the growing procedure, all the points inside a 
k-neighbourhood around any of the points in F are determined. Of the 
not yet assigned points in these neighbourhoods, we add those whose 
normal differs by at most α from n, and whose position has a distance of 
at most 3ϵ from the PCA-plane to the region R. They also replace the 
previous points in F. The maximum width of the extracted region is 
chosen as 3ϵ to reduce unnecessary over-segmentation in accordance to 
the prior work of Schnabel et al. [6]. 

When working on point clouds with unoriented normals, the normal 
threshold is weakened to only reject points where both, the normal of 
the point and its flipped counterpart differ by an angle larger than α from 
n. 

To reduce the impact of the seed point selection on the extracted 
region, the plane estimate is refitted to R at exponentially increasing 
intervals using PCA on the point positions. After each refitting, the 
points that now fail to fulfil the normal and distance criteria for the new 
plane estimate are discarded from the region. 

As mentioned in Section 3.2, the termination of the region growing 
procedure is, similarly to the RANSAC-based approach by Schnabel et al. 
[6], informed by an estimate that all relevant regions have been 
considered. 

Algorithm 1. Algorithm for expanding a region from a single seed 
point. 

Table 1 
Impact of the neighbourhood size ϵ on the runtime t and the average normal 
deviation 1 − n⋅n0 . Tested on a point cloud with one million points uniformly 
sampled from a 10 × 10 × 0.01 volume.  

ϵ t 1 − n⋅n0 

0.005 1.19 s 0.81 
0.01 2.24 s 0.40 
0.02 2.32 s 1.5 ⋅ 10− 2 

0.03 2.65 s 1.7 ⋅ 10− 3 

0.05 3.38 s 1.88 ⋅ 10− 4 

0.1 5.48 s 1.12 ⋅ 10− 5  

Fig. 3. True surface normal (left) and normal artefacts created by PCA-based 
normal estimation (right). Normals within an ϵ radius around a sharp edge 
(red circle) will smoothly blend between the two planes around the edge. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. Expanding a region (R in red, F in blue): While the noisy normals cause 
a large error between the estimated and the actual planar area in the beginning 
(left), the refitting in later steps (right) causes the plane estimate to approach 
the correct solution rapidly. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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Based on the assumption that the primitive Ψ consisting of g points, 
can be reconstructed from any sample set of size k denoting the minimal 
point set required to define a shape candidate within its N points (k 
being a fixed number dependent on the type of the primitive, k = 3 for 
planes), Schnabel et al., give the probability to randomly select this 
primitive as [6]: 

PΨ (g) =
( g

k

)

(
N
k

) ≈
(g

N

)k
(4) 

The probability of finding a region of size g within s trials is thus 
given as: 

PΨ (g, s) = 1 − (1 − PΨ (g) )s (5) 

Due to the regular refitting of the plane estimate that is part of our 
approach, we can robustly construct a region from just a single sample 
point (i.e. k = 1) instead of 3 as proposed by [6]. From the equations 
above, we can see that the number of regions that have to be considered 
for the segmentation grows exponentially in the number k of sample 
points required to identify those regions. 

3.2.2. Edge-point refinement 
The edge-point refinement step compensates the limitations of PCA- 

based normal estimation. Indeed, due to the nature of the PCA used for 
normal estimation, normals of hard edges in the point data will be 
smoothed out. When applying the fast region growing method to a point 
cloud with PCA-derived normals, the points close to hard edges will 
therefore usually not be part of any region (unless α is set to at least half 
the edge angle). 

The edge-point refinement permits to correct this effect by reconsi
dering the assignment of formerly unassigned points in the cloud. For 
every unassigned point, all regions that appear in the neighbourhood of 
the point will be considered. Of all found regions, we assign the point to 
the one region it is found closest to, provided it falls into an 3ϵ-band 
around the region. So, compared to the original region growing 
approach, we effectively relinquish the normal angle criterion while 
keeping the plane distance criterion in effect (Figs. 5, 6, 12, 19, 21, 24). 

This refinement step, while fast and easy to implement, permits to 
obtain a segmentation of good quality even around sharp features, 
without the need to rely on computationally expensive methods to 
obtain artefact-free normals, such as the one presented by Li et al. [42]. 

3.2.3. Neighbourhood relationship extraction 
It may be desirable to not only extract planar regions from a point 

cloud, but also a graph of neighbouring relations. Indeed, this permits to 

obtain a coarse multi-level topology estimate based on the relations 
between region entities. 

Two regions A and B are neighbours if there exist two points p ∈ A 
and q ∈ B such that q is in the ϵ-neighbourhood of p (or vice versa). 

3.3. Parameter estimation 

Similarly to the shape detection scheme by Schnabel et al. [6] our 
method relies on three parameters that have to be tuned under consid
eration of the dataset and the desired quality constraints. These pa
rameters are the neighbourhood radius ϵ, the minimum number of 
points needed to form a valid planar region τ, and α, the angle decision 
criterion for adding points to a region. Choosing these parameters 
optimally however, does not only prove difficult for novice users but can 
also cause the need for extended experimentation when more advanced 
users encounter a new dataset or datasets from an unfamiliar scanner. 
Thus, we provide heuristics for these parameters that can serve as a 
guideline to the user while requiring little additional computation time. 

3.3.1. (Estimating) ϵ 
For the parameter ϵ, which will be used for the normal estimation 

and as the distance threshold for the region growing, a radius that is well 
above the magnitude of the noise in the dataset is required. 

We recall that we are using a PCA to compute the normals of the data 
points. Part of this PCA is an Eigenanalysis of the neighbourhood of the 
point, after which the Eigenvector that corresponds to the smallest 
Eigenvalue becomes the (unoriented) normal of the point. The results of 
the Eigenanalysis, however, encode additional information about the 
considered neighbourhood. We can use the ratio between the second 
largest λ2 and the smallest Eigenvalue λ1 as a measure for the planarity of 
the neighbourhood and thus the reliability of the normal estimate. 

To estimate ϵ, we find the smallest neighbourhood radius such that 
λ2
λ1
≥ 3 for every point and set ϵ as the median of these values, as we 

assume that roughly 50% of the points in the point cloud are located on a 
planar region (as seen in Fig. 7, the actual choice of the percentage is 
usually noncritical, as for most datasets the median will be part of a large 
plateau of similar radii). This is supported by uniform density of the 
point clouds, which is achieved by grid filtering on the high-density raw 
data. 

The influence of ϵ is illustrated on a synthetic dataset in Fig. 8. On the 
bottom left, unsupervised results (ϵ = 2.479, τ = 53, α = 29◦), on the 
bottom right, setting the radius three times higher (ϵ = 7.437). We can 
see that it mainly impacts the grouping of small region to their adjacent 
larger counterpart, resulting in fewer segments but potentially losing a 
finer decomposition into low variance planar regions. 

3.3.2. (Estimating) τ 
The parameter τ, which is used as a threshold for the minimum 

number of points needed to support the hypothesis of a planar region, 

Fig. 5. Illustration of the edge-point refinement step on a synthetic table 
dataset. On the left, the points (exaggerated) in red are subject of the refine
ment (0.7% of the dataset), to obtain the final segments (0% of non-attributed 
points remaining). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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contains more of a user preference than the value for ϵ (e.g. users might 
want regions above a specific surface area primarily). Rather than 
completely fixing a value from an analysis of the dataset as we have done 
for ϵ, we can thus only give some guidance to the user with regards to 
choosing τ. 

As the basis for this analysis, we recall that ϵ is chosen to be well 
above the magnitude of the noise in the dataset. Thus, the minimal area 
of a region should be in the order of magnitude of a disk with radius ϵ, as 
this prevents regions assembled purely from noise data from being 
accepted. 

Since the area of a region is not clearly defined (and even defining it 
as, for example, the area of the alpha shape of the planar projection of 
the points, is expensive to compute), we use a threshold number of 
points τ as stand-in. For this, we again analyse the neighbourhoods of the 
points in our dataset, this time counting the number of points inside an 
ϵ-sphere around each point. We then select τ0 as the median of these 
point counts. 

Should the user have a preference on the minimal surface area A of a 
region, we can incorporate this by setting τ = A

πϵ2⋅τ0. Otherwise, we set τ 
= τ0. Fig. 9 permits to visually assess the influence of τ in the constitution 
of regions compared to Fig. 8, bottom left. We notice how a higher value 
for τ favor larger planar regions. 

3.3.3. (Estimating) α 
In order to estimate α, which represents the maximum angle devia

tion between the normal of a point and the normal of a region for the 
point to be incorporated into that region, we imagine a sphere of radius 

2ϵ (as shown in Fig. 10). 
The intuition behind choosing a sphere radius of 2ϵ can be explained 

as follows: Feature points (e.g. a corner) influence their neighbours 
within a ϵ-radius (cf. PCA-based normal estimation). Thus, points within 
an ϵ-radius to a sharp feature have potentially unreliable normal 
estimates. 

A point whose ϵ-neighbourhood is not affected by unreliable normal 
estimates consequently has to lie at least 2ϵ away from a feature. 
Another interpretation of this 2ϵ safety margin around sharp features is 
that region with a curvature radius below 2ϵ are potentially washed-out 
features, but regions with a curvature radius above 2ϵ are likely to 
represent an extractable segment. Hence, we choose α such that it 
properly handles the case of a curvature radius of 2ϵ, i.e. making sure 
that segments of size ≥τ can be grown on a sphere of radius 2ϵ. This is 
also illustrated in Fig. 11. 

For this in turn it is necessary to choose α in such a way that a region 
of size τ can be created on the sphere surface with radius 2ϵ such that all 
its points fit into a cone with opening angle α and the tip coincident with 
the center of the sphere. This region will thus form a sphere cap with an 
area of A = πϵ2τ

τ0 
(as per definition of Eq. 2). 

Comparing this with the area of a sphere cap A = 2πrh we set r = 2ϵ 
and solve for h, yielding h = ϵτ

4τ0
. Since cos(α) = 2ϵ− h

2ϵ , we can derive α as 

α = arccos
(

1 − τ
8τ0

)
. 

In the case that τ was chosen as τ = τ0, the choice of α is thus inde
pendent from the actual dataset yielding α = 29◦. 

Fig. 6. A segmented indoor point cloud (left) and its neighbouring segments relationships translated into a graph (right). The red nodes have a high centrality and 
likely refer to central elements (ground, ceiling, walls, table). 

Fig. 7. Required neighbourhood radius to satisfy λ2
λ1
≥ 3 for the tested datasets. Each dataset is represented by a different colour. The cut-off choice for ϵ (vertical line) 

is rather lenient, as the median is usually located in a plateau-like interval. 
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4. Experimental setup 

This section aims to detail the specificities linked to the datasets, the 
metrics, and the parameters used. In turn, it permits establishing a clear 
protocol for using the datasets as a benchmark basis using novel 

segmentation architectures. 

4.1. Point cloud datasets 

Four datasets from different sensors and platforms are chosen to 
gather enough variability found in real-world indoor scenarios: The 
Leica BLK 360 Terrestrial Laser Scanner (TLS); The Zeb REVO Hand-held 
Laser Scanner (HHLS); The Matterport depth sensor; The Naavis mobile 
mapping system (MMS). Table 2 summarises the main characteristics of 

Fig. 8. Influence of parameter ϵ illustrated on a synthetic dataset composed of 
1 million points of an X-WING from ShapeNet (Top). On the bottom left, un
supervised results (ϵ = 2.479, τ = 53, α = 29◦), on the bottom right, setting the 
radius three times higher (ϵ = 7.437). 

Fig. 9. Influence of parameters τ and α illustrated on a synthetic dataset 
composed of 1 million points of an X-WING from ShapeNet. On the left, setting 
tau three times higher (τ = 159 ), on the right, setting the angle two times 
higher (α = 58◦). 

Fig. 10. Cross section of the sphere model used to derive α.  

Fig. 11. Two spheres with radius ϵ must be at least 2ϵ apart, to avoid overlap. 
This way it is possible to avoid washed-out normal that occur close to cor
ners/edges. 

Fig. 12. The different areas of the PCID1.  

Fig. 13. The different areas of the PCID2. It is a high noise profile point cloud 
that describes a classical residential house in its full range, including a large 
number of furniture. 
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each resulting point cloud after registration. They present significant 
variations in point numbers, density, noise, completeness, attributes and 
covered areas. The noise profile is estimated by fitting a least-square 
plane to random floor’s planar samples of 2 m2, averaging and looking 
at the root mean square error. It varies between 2 mm and 9 mm and is 
correlated to the point density (the higher the density, the better the fit). 
Studied point clouds for validation are real-world scenes and hold be
tween 44 and 500 million points. 

These dataset from various context are processed to obtain time-wise 
metrics and visual qualitative assessment as illustrated in Section 5. In 
the following subpart, we will describe the main characteristic respec
tively of the Matterport depth sensor (PCID1), the HHLS (PCID2), the 
MMS (PCID3) and the TLS (PCID4). 

4.1.1. Depth sensor Matterport: PCID1 
The first dataset used is the S3DIS dataset [43] from the Matterport 

sensor [44]. It is composed of six storeys areas from different buildings 
that are each subdivided in a specific number of sub-spaces (i.e. rooms) 
for a total of 270 sub-spaces. These areas show diverse properties and 
include 156 offices, 11 conference rooms, 2 auditoriums, 3 lobbies, 3 
lounges, 61 hallways, 2 copy rooms, 3 pantries, 1 open space, 19 storage 
rooms, and 9 restrooms. 

One of the areas includes multiple floors, whereas only one is con
tained in the remaining areas. S3DIS can be described as very repre
sentative of indoor building spaces in the United States. The dataset is 
very noisy, presents imprecise geometries (i.e. geometries that strongly 
deviate from the real object shapes), clutter and heavy occlusion. We 
observed several mislabelled points in the ground truth labels and 
several duplicate points (points where their distance is less than ~9 μm 
from one another), which add an extra bias. However, it was chosen as it 

is an important dataset that provides a high variability of scene orga
nization, and it is currently used for benchmarking new deep learning 
algorithms. It is an interesting opportunity to evaluate our approach’s 
robustness and study the impact of the segmentation and its sturdiness 
against hefty point cloud artefacts. We remind the readers that the goal 
is to obtain relevant segments as Connected Elements for high-level 
usage. 

For the automatic classification, we consider 13 classes in the S3DIS 
dataset, each being decomposed in a fixed number of instances per area 
used to check for segmentation relevance, as provided in Table 3. 

4.1.2. HHLS ZEB REVO gen 1: PCID2 
The second dataset is courtesy of GeoSlam, and was acquired by the 

hand-held laser scanner ZEB REVO (first generation). The subject of the 
acquisition is a residential house described only through a texture-free 
point cloud (X, Y, Z only), as illustrated in Fig. 13. This dataset is 
characterized by a high level of noise, tight spaces, outdoor elements, 
and household furniture. 

The ground truth labelling was made by using semi-automatic 
techniques described in [45]. F. Poux and A. Kharroubi independently 
classified it, then merged to limit subjectivity bias. This procedure 
showed a maximum deviation of 5% in the point classification inter
pretation. The same technique was used for PCID3 and 4. 

Thus, the ground truth data is independent of the proposed seg
mentation and classification procedures. However, the marking still 
retains imperfections to permit a qualitative analysis of both the seg
mentation and supervised classifiers to handle mislabelling cases. 

4.1.3. Mms NAAVIS gen 1: PCID3 
The PCID3_NAAVIS dataset was acquired by the mobile mapping 

system Naavis 1 (first generation). It contains X, Y, Z and R, G, B attri
bute values per points and is decomposed into two areas. The first one 
represents an industrial hall with complicated non-planar structures 

Fig. 14. PCID3_1 describe an atypical architecture of an industrial hall with 
non-linear features. 

Fig. 15. PCID3_2 describe an empty office under a construction storey building.  

Fig. 16. PCID4 is constituted by a very dense point cloud of the lecture chair at 
the RWTH Aachen Visual Computing Institute. 

Fig. 17. PCID4: The planarity dominance of the dataset and uneven sampling 
due to the sampling BLK unit lead to localized over-segmentation for some walls 
and doors. 
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(Fig. 14). The scale and the geometries and spatial context between 
objects are radically different from the other datasets. 

The second one is a “clean” indoor level freshly renovated like the 
Matterport sensor organization (Fig. 15). This dataset has the particu
larity of presenting large planar surfaces with a low level of occlusion, as 
the rooms are mainly empty (pre-renovation scenario). 

4.1.4. TLS LEICA BLK360: PCID4 
The PCID4_RWTH dataset was acquired by the terrestrial laser 

scanner Leica BLK 360. It represents an indoor typical lecture chair in 
Germany (Fig. 16). Its specificity lies in a very high point density and 
low noise level and includes a registration error to specifically study the 
ability of the approach to handle such cases. The ground truth labelling 
was made using the same procedure as described above. 

4.2. Parameter settings 

The determination of the parameters was done following the auto
matic heuristic procedure described in Section 3. However, to qualita
tively assess its reliability, we compared it to hand-tuned values. In most 
cases, we found the results produced by applying the parameter esti
mation methods described in Section 3 to be preferable to manually 
selected and fine-tuned parameter values. We found that we ourselves 
would often overestimate the ideal values for ϵ and τ to avoid a costly 
recomputation of normal estimate and segmentation, while lower values 
for these parameters would afford a better extraction of detailed infor
mation from the point cloud. 

4.3. Metrics 

In our experiment, we provide segmentation metrics (Subsection 
4.3.1) to quantify the accuracy and robustness of the unsupervised ex
periments, and classification metrics (Subsection 4.3.2), to quantify the 
supervised learning experiments based on the segmentation results. 

Fig. 18. PCID1_Area_1 Zoom in on two different points of interest. We can note a good planar delineation and natural objects frontier adequations. Additionally, 
over-segmentation happens almost automatically on any objects composed of multiple planar regions (chairs, lights, fixtures, bookshelves …). 

Fig. 19. PCID2_INDOOR We note a good qualitative resistance to high-noise profile point clouds. This permits to find stairs sub-elements, doors, frames, fixtures, and 
shelves with a high visual robustness. Additionally, we note the good large planar region detection such as walls, ceilings, and floors. 

Fig. 20. Top image: Segmentation results. Bottom image: Ground truth. The 
semantic3d dataset showcase that the errors are often found on the very tiny 
segments that present a particular local point organization. 
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4.3.1. Segmentation metrics 
To quantify the quality of our segmentation approach, we first 

determine an “ideal” segmentation from the ground truth data by 
identifying connected components of points with the same classification. 
This segmentation is ideal because it contains the minimum number of 
segments while still allowing a per-segment classification with perfect 
accuracy. 

In practice, however, because our method identifies planar regions 
instead of more complex objects that will be assigned to a single class in 
the ground truth (such as a chair or a bookcase), a significant amount of 
over-segmentation is expected. While strong over-segmentation will 
impact the performance of the subsequent classification step, it will 
usually not reduce the quality of the classification. We measure the over- 
segmentation of a ground truth segment as the number of planar regions 
for which the current ground truth segment has the largest overlap 
(measured in points). 

A more critical aspect of the segmentation is under-segmentation, i. 
e., combining multiple ground truth segments into a single extracted 
segment, as this actively limits the accuracy any per-segment classifi
cation can achieve. Similarly, to over-segmentation, the under- 
segmentation of a planar region is measured as the number of ground 
truth segments for which the current planar region has the largest 
overlap. 

However, a low amount of under-segmentation does not directly 
imply a good segmentation quality, as a planar region might still overlap 
multiple ground truth segments leading to misclassifications, while not 
making up a large enough fraction of each segment to be counted as 

under-segmentation. As a more direct measure of the classification 
quality that we can achieve with a given segmentation, we first assign 
every planar region to the ground truth segment with the largest over
lap. We then define the “sharpness” of the segmentation as the per
centage of points where the ground truth segment and the assigned 
segment of their planar region are identical. The sharpness of the seg
mentation is thus an upper bound for the accuracy that a subsequent 
region-based classification can achieve. Given the set of ground truth 
labels L = {0, …,8} (8 for Semantic3D) and the set of clustered segments 
S = {0, …,N − 1} for N segments found by our method. Let li/si be the 
label / segment ID for point i. Let vi be the voted label for point i. Each 
segment votes for a label by majority such as in Eq. 6: 

vote(s) = argmax{li | si = s}, s ∈ S, ∀i (6) 

We use arg max to denote the most frequent element of that set. We 
set vi = vote(s), for all si = s. We define sharpness as follows: 

sharpness(c) =
#{i | vi = ci,ci = c}

#{i | ci = c}
(7)  

4.3.2. Semantic segmentation metrics 
Existing literature has suggested several quantitative metrics for 

assessing the semantic segmentation and classification outcomes. We 
define the metrics regarding the following terms that were extracted 
from a confusion matrix C of size n × n (with n the number of labels, and 
each term denoted cij): 

Fig. 21. Qualitative results on the most problematic area of the PCID1 Matterport sensor. From left to right: Ground Truth Point Cloud; Predicted classes; Differences 
to Ground Truth in rose. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 22. Zoom in onto problematic cases such as the blackboards hanging on the wall, with a very small normal deviation. Left shows the ground truth, Right the 
predictions. Colours would help in these scenarios. 
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● True Positive (TP): Observation is positive and is predicted to be 
positive.  

● False Negative (FN): Observation is positive but is predicted 
negative.  

● True Negative (TN): Observation is negative and is predicted to be 
negative.  

● False Positive (FP): Observation is negative but is predicted positive. 

Subsequently, the Intersection-Over-Union (IoU), Precision, Recall 
and F1− score metrics are used. Precision is the ability of the classifier not 
to label as positive a sample that is negative, the recall is intuitively the 
ability of the classifier to find all of the positive samples. The F1-score 
can be interpreted as a weighted harmonic mean of the precision and 
recall, thus giving a good measure of how well the classifier performs. 
Indeed, global accuracy metrics are not appropriate evaluation mea
sures when class frequencies are unbalanced, which is the case in most 
scenarios, both in real indoor and outdoor scenes, since the dominant 
classes bias them. 

In general, the Intersection-Over-Union (IoU) metric tends to 

penalize the single instances of bad classification more than the F1- 
score, even when they can both agree that this one instance is bad. 
Thus, the IoU metric tends to have a “squaring” effect on the errors 
relative to the F1-score. Henceforth, the F1-score in our experiments 
gives an indication on the average performance of our proposed classi
fier, while the IoU score measures the worst-case performance. 

4.4. Estimated parameter values 

The parameters used in our experiments were derived according to 
Section 3.3. In Table 4, both the values of the parameters ϵ and τ, as well 
as the amount of time used for their estimation, is shown. Note that in 
most cases both parameters can be estimated in less than a second and 
the estimation would beat a cycle of manually choosing a parameter 
value, running the segmentation and adjusting the parameters based on 
the result by several orders of magnitude in every case. 

5. Results 

The experimental protocol described in Section 4 is followed to 
obtain quantitative and qualitative results over point cloud segmenta
tion (Subsection 5.1) and semantic segmentation (Subsection 5.2). 

5.1. Segmentation results 

A shortened summary of the over- and under-segmentation metrics, 
as well as the sharpness, is presented in Table 5. It becomes clear that our 
method introduces a significant amount of over-segmentation, which is 
expected as our method only recognizes planar regions while segments 
in the ground truth dataset can be of any shape (Fig. 18 or in Appendix 
A). 

On the other hand, however, we find that under-segmentation is not 
a significant issue with our method, as we do not observe any under- 
segmentation for over 99% of ground truth segments. And even in 
cases where under-segmentation occurs, this is largely due to features 
such as boards mounted tightly to walls that are close to impossible to 
recognize using point cloud geometry alone and would require the in
clusion of colour information into the clustering. 

Solely for the PCID4 dataset, we also studied the combination of 
uneven sampling and the fact that almost all points lie on large, planar 
surfaces (rather than the 50% assumed in Section 3) on any potential 
increase in over-segmentation of the point cloud. We found that it does 
not affect the semantic segmentation quality by testing this dataset with 
an estimate for ϵ based on an assumed inlier percentage of 85% from 
domain knowledge injection (Illustration in Fig. 17). 

As an additional view, we provide an in-depth view of the parmater’s 
computation in Table 6. 

Although our method produces reasonably good results on Seman
tic3D, a significant increase in computation time is noted. Due to each 
cloud consisting of a single scan-position the point density decreases 
with distance from the origin. Starting from ~3 mm between scan-lines 
near the centre, this distance increases to 18 cm on far-away buildings. 
Operations leveraging neighbourhood information, e.g. normal estima
tion, require to increase their search radius in accordance with the 
lowest point-density in the cloud. Searching in a large neighbourhood in 
a high-density region is bound to increase computation time, as the 
number of points inside the neighbourhood increases. This is predomi
nantly noticed for normal estimation, a small radius will cause arbitrary 
normals in low-density areas. However, this limitation is in practice 
lifted as the datasets that present such extreme density variation are 
found in structured file formats (E.g. e57), and these datasets usually 
hold normal information that permit to bypass the normal estimation. 
The classes present in the Semantic3d dataset are summarized in 
Table 7. 

We present in Table 8 the sharpness results of the segmentation on 
Semantic3D and illustrated over Fig. 20. 

Fig. 23. PCID3 qualitative results illustrated. First, we see the over-segmented 
point cloud obtained following our methodology, its translation into tabular 
data, that is fed to the generalized classifier, to obtain the classified point cloud, 
highlighted for its deviation from the ground truth in rose. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Our method produces good results on dominant labels in the data 
sets. We note a limitation of our approach linked to the assumption of 
approximate uniform point density. While it tends to improve compu
tation times for several steps, it cannot be generally assumed for arbi
trary data sets. We opted against grid filtering the data in Semantic3D to 
allow for better comparison. Further improvements will take non- 
uniform density into account, in order to avoid costly neighbourhood 
queries in high-density regions. 

Finally, we provide a comparison to three state of the art Deep 
Learning architectures in Table 9: KPConv being the current best 
performer [9], Superpoint graphs [8], and PointNet++ [7]. 

5.2. Semantic segmentation results 

The semantic segmentation step was developed to study the suit
ability of the segmentation’s results and its uplifting effects for high- 
level instance segmentation frameworks. The classifier’s input is a list 
of segments, each described by 11 simple features (size as the point 
number, centroid coordinates, main normal directions, normal variance, 
length, width and height of the segment). The segment’s list is then fed 
to several classifiers: Support Vector Machines, Multi-Layer Perceptron, 
Naïve Bayes, Neural Networks, and Random Forests. Due to the rela
tively low number of observations per area and features per segments, 
we orient our choice toward the best performing supervised approaches 
as studied in [46]. Indeed, the authors delineate in [46] the dominance 
of such classifer for tabular datasets, with this low number of features 
(<50) and low number of records (<1 million). Thus, we present only 
the results of the Random Forest for their good representativity with 
low-overfitting capabilities. Indeed, this permits us to get a quantitative 
sense of the gain one can achieve with a relatively simple workflow and 
with proven supervised approaches. 

First, each area is studied for establishing a model using a 60/40 
clear split between training and test data. Then the predictions at the 
segment level are directly transferred to the point level. This permit first 
to get a sense of performance on a narrow context (linked to a dataset at 
hand). Then, we create a generalized model by training only on 50% of 
all segments from all datasets (287 638 segments) combined with a 5- 
fold cross-validation to study the generalization potential to other 
datasets while constraining to a small training dataset. The emphasis in 
experiments is toward a simple architecture. Therefore, hyper- 
parameters are fixed for all datasets to “standard” values to emphasize 
segmentation’s results rather than any classifier performances (1000 
decision trees where each tree expand until every leaf is pure, each in
ternal node must have at least two samples before it can be split and 

Fig. 24. Qualitative results over PCID1 (top) and 
PCID2 (bottom). On the left are the Ground Truths; on 
the right are the Generalized Predictions. We can see 
that errors are usually spatially contiguous (due to the 
segmentation), and point toward small segments part 
of moveable furniture’s. In some occurrence, we also 
find a mislabelling for planar shapes that resemble 
thus of the “clutter” class, which present a high 
variability. Also, in PCID1, we see the misclassifica
tion of the board hanging on the wall, responsible in 
the drop of scores.   

Fig. 25. Segmentation system result on the rocker arm model. The natural 
borders of finite elements of the model closely fit the natural ones present in the 
original implementation. 

Table 2 
Characteristics of the different datasets provided. Each is classified to provide 
ground truth data for evaluating segmentation and classification performances.  

Model Matterport Zeb REVO Naavis 1 Leica BLK 

Identifier PCID1 PCID2 PCID3 PCID4 
Areas nb. 6 2 2 1 
Type Depth Sensor HHLS MMS TLS 
Points nb (in mil.) 273 45 45 235 
Density (pts/cm2) 3 2 9 40 
Classes number 13 20 9 13 
Size (.las) 8.86 GB 1.37 GB 1.97 GB 7.46 GB 
Attributes used XYZ only. 
Attributes added Instance number + Class 
Noise profile 4 mm 9 mm 3 mm 2 mm 
Occlusions Yes Yes Yes Yes 
Area 6000 m2 450 m2 1500 m2 635 m2  
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every leaf must have at least 1 sample that it classifies). In order to 
clearly study the impact of the segmentation on the results, we 
addressed under-segmentation by attributing to faulty segments the 
dominating classes (i.e. the class where the number of points is the 
highest in one segment), thus potentially predicting on biased segments. 
In Table 10 we gathered our metrics for a representative area of the 
PCID1, illustrated in Fig. 22. We already note that one can achieve a 
high accuracy for planar dominant classes such as ceiling, floor and 
walls, even with a very limited number of observations. If we take a 

closer look, we determine minor geometric variation to be the main 
cause of problematic cases, such as a blackboard hanging on the wall. 
One would need to use other features such as colour information to be 
able to detect such entities). 

To conduct a consistent evaluation, we first test our supervised 
approach on each area of each dataset independently, which holds a 
wide array of rooms with varying size, architectural elements, and 
problematic cases. On top, the data present non-planar ceiling, stairs, 
heavy noise, heavy occlusion, false-labelled data, duplicate points, 
clutter, and non-planar walls. A summary of the results is given in 
Table 11. 

While the data presents several challenges, we obtained resulting F1- 
scores that globally vary between 88.0% and 98.1%. While planar 

Table 3 
Classes repartition of the S3DIS dataset (PCID1).  

Classes ceiling floor wall beam column Window door table chair sofa bookcase board Stairs Clutter 

ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
Area 1 55 1 234 61 57 29 86 69 155 6 90 27 2 755 
Area 2 81 9 283 11 19 8 93 46 545 6 48 17 11 495 
Area 3 37 1 159 13 12 8 37 30 67 9 41 12 0 335 
Area 4 73 1 280 3 38 40 107 79 159 14 98 10 3 671 
Area 5 76 1 344 3 74 52 127 154 258 11 217 42 0 922 
Area 6 63 2 247 68 54 31 93 77 179 9 90 29 1 684 
Total Num 385 15 1547 159 254 168 543 455 1363 55 584 137 17 3862  

Table 4 
Estimated parameter values and time (tϵ) needed for estimation. τ is the number 
of points.  

Cloud ϵ (m) tϵ (s) τ 

PCID1_Area_1 0.036 0.416 36 
PCID1_Area_2 0.035 0.371 35 
PCID1_Area_3 0.034 0.366 34 
PCID1_Area_4 0.035 0.365 35 
PCID1_Area_5 0.035 0.361 37 
PCID1_Area_6 0.036 1.519 37 
PCID2_REVO_INDOOR 0.034 3.362 104 
PCID2_REVO_OUTDOOR 0.048 1.000 62 
PCID3_NAAVIS_1 0.019 0.583 17 
PCID3_NAAVIS_2 0.044 0.105 15 
PCID4_RWTH_CHAIR 0.007 15.586 29  

Table 5 
Shortened overview of the over− /under-segmentation metrics. We note the high consistency of the very low under-segmentation results over the different areas 
through different context. The lowest sharpness score of the Area 5 of PCID_1 is 86.1%, and can be explained by a high misclassification proportion on many occasions, 
at the borders of large segments. Dense point clouds show results above 96% sharpness, due to a better planar fit.  

Dataset Over-segmentation Under-segmentation Sharpness 

Median 75% Max 99% Max  

PCID1_Area_1 11 17 3883 1 9 89.92% 
PCID1_Area_2 12 20 644 1 13 90.34% 
PCID1_Area_3 11 21 417 1 9 91.25% 
PCID1_Area_4 9 19 896 1 15 89.86% 
PCID1_Area_5 10 18 1525 1 21 86.1% 
PCID1_Area_6 11 18 794 1 9 90.61% 
PCID2_REVO_INDOOR 5 13 679 1 4 90.42% 
PCID2_REVO_OUTDOOR 17 44 436 1 3 96.83% 
PCID4_NAAVIS_1 78 186 6770 1 2 98.68% 
PCID9_NAAVIS_2 10 19 243 1 10 91.64% 
PCID10_RWTH_CHAIR 86 300 14,453 1 4 96.39%  

Table 6 
Performance metrics in seconds for the Semantic3D data. Contains the different steps from Kd-tree constitution, to the estimation of parameters, the computation of 
normal and the clustering step. A striking change compared to the performance on PCID is the estimation timing for ε. As opposed to the other data, Semantic3D has no 
filtering applied. Each cloud represents an unfiltered scan-position, with increasing point density closer to the respective origin. For any given sphere, the number of 
points inside is higher, closer to the origin. As a result, neighbourhood-based operations such as ε or normal estimation take longer. Estimation of normals is not taken 
into account for total runtime, as this is not a contribution of our method, and some datasets may already provide them.  

Data Set N KD-Tree (s) Est. ε (s) Est. τ (s) Normals (min) Clustering (s) Total (s) 

UB1 27.977 M 8.40 178.716 0.450 323.4 322.2 509.8 
UB3 28.059 M 8.30 168.375 0.361 319.1 191.2 387.4 
NG1 50.122 M 15.60 219.419 0.425 93.1 312.1 547.5  

Table 7 
Classes present in Semantic3d dataset.  

Class0 Unclassified 
Class1 Man-made terrain 
Class2 Natural terrain 
Class3 High vegetation 
Class4 Low vegetation 
Class5 Buildings 
Class6 Hard Scape 
Class7 Scanning artefacts 
Class8 Cars  
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dominant classes are among the best-recognized classes, the improve
ment margin is found for the board, sofa, column, and windows classes. 

It is interesting to note that while chair variation in orientation, 
shape, size and distribution is really high, the detection rate is still 
performing above 83.9%, and is consistent independently of the dataset. 
Also, the clutter class presents a relatively low score as it contains a large 
variance in the “objects” it contains, thus providing a great candidate to 
improve scores at the classification level by refining elements within. It 
is interesting to note that the segmentation results at this step permit to 
obtain satisfactory results, independently of the indoor scene and sensor 
characteristics. However, we note a very low score for the beam detec
tion of Area 5, which is due to the very low number of beam occurrences 
in this area, thus a biased prediction. 

In Table 13, we provide a general quantitative summary per datasets 
regarding each sensor if we want to obtain a more high-level overview. 
This confirms the suitability of the segments independently used per 
sensor to create a classifier that can achieve F1-scores above 88% with 

relatively low hyperparameter tuning and resources demand. The major 
let-down concerns PCID 6, where the first floor is mislabelled, but the 
F1-score presents a good overhaul. The highest score is obtained by 
PCID4, which is largely explained by the low noise ration of the point 
cloud, and the sharpness of the segmentation results (96.39%). We 
generally observe that the metrics follow closely segmentation sharp
ness results, which is the major influencer on the quality of the down
ward process. 

Then, we created a “generalized” model by training only on 50% of 
the full number of segments, and controlling that the number of seg
ments per area used doesn’t exceed 10% of the area’s segment number. 
On top, we used a 5-fold Cross validation to obtain a good idea about a 
general performance within a wide array of variations presented in 
Section 4. To summarise our segment-based Random Forest perfor
mances, we present in Table 12 the main results per class, and several 
screenshots of various prediction’s example in Fig. 23 and in the Ap
pendix A. 

Table 8 
Sharpness results of the segmentation on Semantic3D, numbers in percent. Our method produces good results on dominant labels in the data sets. Less frequent 
occurring labels suffer from the fact that we favour large regions. The zero for Class 2 indicates that no cluster was correctly assigned this label.  

Dataset Total Class0 Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8   

NG1 99.77 27.71 99.21 N/A 61.01 49.94 99.84 96.44 67.46 88.54   
UB1 99.54 71.27 99.39 58.93 60.06 89.57 79.48 98.16 87.28 93.96   
UB3 99.77 66.65 97.92 79.41 56.53 85.41 99.99 17.31 62.62 89.03   
SG27S5 96.49 68.67 90.88 97.71  99.97 55.1 93.28 51.13  74.62 85.52 
SG27S9 99.93 79.02 99.7 97.03  50.3 74.45 99.98 82.47  78.16 84.27 
SG28S4 97 67.69 99.53 84.72  44.55 97.65 94.97 20.27  62.69 86.17 
SG27S4 98.51 80.9 99.22 83.5  99.96 49.88 74.74 52.04  73.77 93.8 
SG27S1 97.92 49.68 88.92 96.8  32.11 28.68 90.88 32.08  31.88 42.08 
SG27S2 98.93 16.7 91.42 85.17  29.4 47.6 93.81 34.27  99.89 62.86  

Table 9 
Comparison to State-of-the-Art Deep Learning architectures for the Semantic3d dataset.   

OA A_IoU Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 

NG1 98.3% 69.7% 98.9% N/A 61.0% 49.7% 97.0% 96.2% 67.0% 88.1% 
UB1 92.0% 78.2% 98.7% 56.0% 60.1% 89.3% 79.4% 60.7% 86.9% 93.8% 
UB3 89.5% 70.6% 97.7% 74.8% 56.5% 84.9% 82.1% 17.3% 62.5% 88.6% 
SG27S5 92.6% 75.0% 89.7% 92.2% 59.2% 55.1% 93.3% 51.0% 74.0% 85.3% 
SG27S9 97.9% 81.1% 99.7% 95.9% 50.3% 74.1% 85.1% 81.5% 78.1% 84.1% 
SG28S4 93.4% 71.5% 95.6% 82.8% 44.5% 85.5% 94.9% 19.9% 62.7% 85.8% 
SG27S4 90.1% 74.6% 96.9% 82.2% 73.9% 49.4% 74.7% 52.0% 73.8% 93.7% 
SG27S1 90.0% 53.3% 85.6% 83.0% 32.1% 28.5% 90.9% 32.0% 31.9% 42.1% 
SG27S2 83.6% 60.0% 89.7% 84.4% 29.4% 47.3% 93.7% 34.2% 38.2% 62.8% 
ConvPoint 95.0% 77.7% 95.9% 90.0% 79.1% 70.5% 96.3% 43.3% 56.1% 90.7% 
SPGraph 92.9% 76.2% 91.5% 75.6% 78.3% 71.7% 94.4% 56.8% 52.9% 88.4% 
PointNet++ 85.7% 63.1% 81.9% 78.1% 64.3% 51.7% 75.9% 36.4% 43.7% 72.6%  

Table 10 
IoU scores comparison for PCID1 Area 5 based on 60/40 split results from the segmentation.  

PCID1_A5 Ceil. Floor Wall Beam Col. Win. Door Table Chair Sofa Book. Board Stairs Clutter W. Av 

(7 million) 0 1 2 3 4 5 6 7 8 9 10 11 12 13  
Precision (%) 97.2 98.9 82.8 10.5 82.1 92.4 90.8 85.4 74.8 88.0 88.5 88.1 – 79.2 89.2 
Recall (%) 97.9 99.2 97.1 21.4 68.7 55.1 77.6 86.3 89.0 69.8 81.2 2.1 – 65.4 88.9 
F1-score (%) 97.6 99.0 89.4 14.1 74.8 69.0 83.7 85.9 81.3 77.9 84.7 4.1 – 71.7 88.1 
IoU (%) 95.3 98.1 80.8 7.6 59.7 52.7 72.0 75.3 68.5 63.7 73.5 2.1 – 55.9 78.7  

Table 11 
F1-score at the point level of the Random Forest classifier based on fully unsupervised results from the segmentation.  

F1-score Ceil. Floor Wall Beam Col. Win. Door Table Chair Sofa Book. Board Stairs Clutter F1 

60–40-U 0 1 2 3 4 5 6 7 8 9 10 11 12 13 score 
PCID1 97.7 97.2 88.3 79.6 79.7 81.9 77.2 87.6 90.7 77.2 84.1 24.2 56.0 76.6 88.6 
PCID2 92.8 64.4 92.9 65.5 66.9 86.8 80.4 90.2 89.5 91.4 87.1 – 62.4 84.1 88.6 
PCID3 98.8 99.2 96.0 42.8 89.7 48.2 91.7 44.5 – – – – 97.4 82.8 96.7 
PCID4 99.0 99.5 95.5 98.5 88.1 – 88.1 97.9 98.6 98.9 – – – 92.4 96.1  
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First, we notice a drop of 3.4 F1-score points in average to obtain a 
generalized model. This is mainly explained by the heterogeneity in 
which the objects in the scene are found. Indeed, we have more variants 
and thus it impacts extracted features from the segments. Thus, it con
solidates the segmentation’s accuracy, and highlight its fit to semantic 
segmentation frameworks. 

5.3. Implementation and performance details 

The runtimes of the different parts of our algorithm are listed in 
Table 15. From these timings and the sizes of the used datasets we 
conclude that for clouds in the order of magnitude of 100 million points, 
we can expect a clustering performance of around 200K points per 
second (when averaging over the total runtime, not just the clustering 
step). To put this into perspective, the largest dataset tested by Schnabel 
et al. in “Efficient RANSAC for Point-Cloud Shape Detection” contains 
around 1.9 million points with a runtime of 61.5 seconds (for τ = 500), 
which equates to roughly 31K points per second. 

Mind that the time needed for clustering is not quite linear in the 
number of points. For the rocker arm model (40K points, Fig. 25), the 
total runtime of our method is around 0.2 seconds, while Schnabel et al. 
give an average runtime of 6.5 seconds for their method. 

Finally, we implemented and added a performance comparison to 
the octree-based region growing approach from A. Vo et al. ([25] re
ported in Table 14: 

Even with these numbers, we still see potential to improve the per
formance of our method: We implemented our method in Julia and 
focused more on simplicity and legibility than pure performance. 
Furthermore, the clustering itself does not yet make use of multiple 
threads. 

As an additional remark, we used these following libraries:  

● Kd-tree and kNN: NearestNeighbors.jl. However, we developed its 
support for out-of-core structuration as the point cloud we processed 
did not fit in the RAM (at the cost of a slight longer processing time) 

● PCA: we used the standard library LinearAlgebra.jl, that hold func
tions to get eigenvalues and eigenvectors  

● LasIO and/or Laspy: for reading .las files (point cloud datasets) 

6. Discussion 

From the detailed analysis provided in Section 5, we first summarise 

the identified strengths in Subsection 6.1. We then propose the main 
research directions for future work addressing the limitations in Sub
section 6.2. 

6.1. Strengths 

First, the region growing segmentation is fully unsupervised, which 
gives a significant edge over supervised approaches or manual param
eter iteration. The definition of a fully automatic process to determine 
optimal parameters with no prior knowledge injection gives a lot of 
freedom of applicability. Its robustness supports this to varying sce
narios and conditions as proven by the wide array of real-scene test- 
bench. It also highlights its potential to generalize with relative ease to 
scenarios that extend the scope of planar dominant scenes. 

Secondly, the presented method is easy to implement. It does not rely 
on GPUs and mainly leverages the CPU coupled with available RAM. It is 
crucial for many companies that do not possess high-end servers 
equipped with expensive GPUs. It is easily deployable on a small 
infrastructure, without the need to upgrade the server-side. The 
coherent results are expected in less than 20 minutes for a dataset of 200 
million points with a 5 years old laptop (i7-Gen6 CPU and 12 GB of 
RAM). As it stands, without deep optimizations, it permits offline 
automatic segmentation and classification, and the data structure pro
vides parallel-computing support. Third, we provide a segment-based 
Random Forest classifier that delivers state of the art results with min
imal training time and an excellent potential to generalize. 

One can easily incorporate it in a semantic segmentation production- 
ready workflow by labelling a small sample of the data. We tested the 
idea with up to 10% of any dataset as training data giving F1-scores 
above 90%. We also combined our results with point-based classifiers, 
as illustrated in [47]. 

Fourth, there is a low input requirement that only necessitates un
ordered X, Y, Z datasets. The segmentation provides a complete directed 
graph of the relations within segments by a kD-tree matching the 
segment structures presented in Section 3. This information permits 
reasoning services to use the connectivity information between objects 
and subspaces for advanced queries using spatial and semantic 
attributes. 

Finally, unsupervised segmentation and supervised classification are 
easily extensible by limiting over-segmentation. For example, one can 
differentiate clutter based on connectivity and proximities to enhance 
the classification further (e.g., clutter on top of a table may be a 

Table 12 
Generalized Random-Forest Classifier performances (in %). We notice that we have a drop overall of 3.4 points, but the model obtain is then able to generalize to many 
classes and a lot of scenarios with ease and insuring 80% scores, which permits to deploy an automatic labelling service with minimal control afterwards.  

Generalized Ceil. Floor Wall Beam Col. Win. Door Table Chair Sofa Book. Board Stairs Clutter F1 

PCID1 (%) 96.8 80.9 86.4 71.5 71.7 71.6 74.9 65.1 83.8 67.9 76.2 17.3 52.8 71.6 82.8 
PCID2 (%) 92.1 68.2 92.2 34.4 29.2 77.1 77.3 67.2 58.9 75.0 77.0 – 72.4 70.2 85.8 
PCID3 (%) 97.9 99.2 94.3 40.4 87.4 38.0 85.0 22.1 – – – – 78.5 72.3 94.3 
PCID4 (%) 98.1 99.5 93.6 77.4 81.8 – 79.8 95.3 82.0 85.4 – – – 82.2 93.3  

Table 13 
F1-scores at the point level of the Random Forest classifier per area based on fully unsupervised results from the segmentation.  

F1-score Ceil. Floor Wall Beam Col. Win. Door Table Chair Sofa Book. Board Stairs Clutter F1 

60–40-U 0 1 2 3 4 5 6 7 8 9 10 11 12 13 score 
PCID1_A1 98.8 98.4 86.8 90.1 80.5 80.0 73.8 84.6 83.9 51.4 80.5 33.1 90.8 83.1 88.0 
PCID1_A2 97.0 89.2 89.0 85.2 76.8 97.6 67.9 87.6 97.2 86.7 74.2 33.4 92.4 67.2 86.9 
PCID1_A3 98.5 99.3 87.0 94.8 77.3 72.8 79.0 88.5 93.1 88.8 89.7 30.4 – 78.0 89.2 
PCID1_A4 95.3 98.8 89.4 89.7 82.7 82.5 79.5 86.6 89.9 88.4 85.6 16.3 77.2 71.5 88.4 
PCID1_A5 98.6 99.1 90.9 26.0 80.2 81.0 86.4 89.5 90.4 76.5 88.3 12.1 – 79.1 90.8 
PCID1_A6 98.1 98.8 86.5 92.1 80.9 77.6 76.5 88.9 90.1 71.6 86.1 19.9 75.3 80.7 88.3 
PCID2_I 92.8 64.4 92.9 65.5 66.9 86.8 80.4 90.2 89.5 91.4 87.1 – 62.4 84.1 88.6 
PCID3_A1 99.5 99.7 96.2 – 96.0 – 96.2 88.9 – – – – 99.3 79.6 98.1 
PCID3_A2 98.1 98.7 95.8 85.6 83.3 96.4 87.1 – – – – – 95.6 85.9 95.3 
PCID4 99.0 99.5 95.5 98.5 88.1 – 88.1 97.9 98.6 98.9 – – – 92.4 96.1  
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computer; clutter linked to the ceiling and in the middle of the room is a 
light source…). These potentials are addressed as research tracks for 
future works, as presented in the following subsection. 

Down the line, it can be used for many applications, such as 
extracting the surface of ceilings, walls, or floors if one wants to make 
digital quotations. It can provide a basis for extracting semantic spaces 
(sub-spaces) organized regarding their function or to provide a basis for 
floor plans, and visualization purposes. 

6.2. Limitations and research directions 

While successful in various tasks, supervised learning requires a large 
amount of human-labelled data. This learning method tends to produce 
task-specific, specialized systems that are often brittle outside of the 
narrow domain they have been trained on [48]. Reducing the number of 
human-labelled samples or interactions with the world required to learn 
a task and increasing the out-of-domain robustness is crucial for appli
cations within the construction industry. 

While our unsupervised method permits us to create with relative 
ease and robustness semi-automated labelling workflow toward creating 
labelled datasets, it currently cannot compare the ability humans have 
to learn massive amounts of background knowledge about the world 
task-independent manner. It motivates a form of prediction or recon
struction such as self-supervised learning to “fill in the blanks” by pre
dicting masked or corrupted portions of the data [48], which is frequent 
in point cloud datasets. Our first results are promising [49]. Still, its 
extension to better handle uneven density and manage relationships 
with a hierarchical view of the “objects and segments composing a scene 
constitute an exciting research direction. 

As a worthwhile aim for future work, we consider adding recognition 
of higher-level primitives (such as spheres, cylinders, tori, etc.) based on 
the existing planar-based segmentation, such that we obtain a complete 
alternative to RANSAC-based methods while retaining simplicity and 

computational efficiency. On top, considering other attributes such as 
colour or intensity could help our system recover from limitations in 
detecting elements undistinguishable through geometric changes alone. 

7. Conclusions 

In this paper, we have outlined a region-growing based system for 
the segmentation of large point clouds. We have demonstrated the 
simplicity of the method, both in the implementation as well as in the 
application. The system depends on only three relatively intuitive pa
rameters, which were previously proposed by Schnabel et al., and for 
which we presented a fully automatic heuristic determination that can 
derive these parameters in negligible time frames. This approach allows 
inexperienced end users to perform segmentation, without requiring 
domain knowledge. To verify the validity of our segmentation results 
and demonstrate the applicability to the semantic segmentation of 
massive point clouds provided by a wide range of acquisition methods, 
we applied a supervised classifier in an object-based fashion. Our results 
indicate capability to deal with very large datasets and good results in 
sharpness of segmentation. This permits us to obtain a baseline for 
emerging deep learning models that learn efficiently on tabular data. We 
provide a selection of new open-access datasets ranging from just below 
4.5 M points up to almost 230 M points. 

Funding 

This work was funded by the European Regional Development Fund 
within the “Terra Mosana” project under the funding code EMR10. 

Declaration of Competing Interest 

None.  

Table 14 
Results of comparing our approach against the octree-based and point-based segmentation by Vo et al. and Rabanni et al.   

Subtest  60E 30E 15E 10E 

Number of points  5,954,336 2,993,506 1,578,713 1,036,185 712,868 
Density (points/m2)  3019 1360 630 393 264 

Build kd tree (in seconds) 
Rabanni et al. (2006) 28.41 1.11 5.63 3.44 1.78 
Ours 2.05 1.62 0.78 0.45 0.29 

Compute point’s features (in seconds) 
Rabanni et al. (2006) 556.39 304.07 156.26 86.45 51.20 
Ours 9.49 4.32 2.59 1.90 1.48 

Point-based region growing (in seconds) 
Rabanni et al. (2006) 625.83 345.97 177.70 102.12 58.95 
Ours 27.01 14.11 8.16 5.11 4.08 

Total segmentation process (in seconds) 

Rabanni et al. (2006) 1210.63 66.11 339.58 192.01 111.93 
Ours 38.55 20.05 11.52 7.46 5.85 
[25] 37.81 29.96 19.02 10.89 5.75 

Comparisons Rab/Ours 31.41 3.30 29.48 25.74 19.13  
[25] /Ours 1.02 0.67 0.61 0.69 1.02  

Table 15 
Performance metrics, in seconds for the different steps from Kd-tree constitution, to the estimation of parameters, the computation of normal and the clustering step.  

Data Set N Kd-Tree Est. e Est. τ Normals Clustering Total 

PCID1_Area_1 44.196 M 16.4 0.416 0.002 49.6 162.3 179.1 
PCID1_Area_2 47.315 M 10.6 0.371 0.001 77.1 171.4 182.4 
PCID1_Area_3 18.662 M 6.2 0.366 0.001 17.6 64.4 71.0 
PCID1_Area_4 43.47 M 15.5 0.365 0.001 47.8 157.0 172.9 
PCID1_Area_5 78.719 M 25.5 0.361 0.001 106.2 282.8 308.7 
PCID1_Area_6 41.353 M 10.4 1.519 0.284 55.9 152.8 165.0 
PCID2_1_INDOOR 41.508 M 14.2 3.362 0.005 138.8 166.1 183.7 
PCID2_2_OUTDOOR 4.626 M 1.9 1.000 0.003 8.9 21.1 24.0 
PCID3_ 1_HALL 44.577 M 14.6 0.583 0.001 54.2 172.4 187.6 
PCID3_ 2_STOREY 4.446 M 1.4 0.105 0.001 3.7 14.8 16.3 
PCID4 229.582 M 82.9 15.586 0.319 321.3 1091.4 1190.2  
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Appendix A 

Below are some additional snapshots of the results of the segmentation process.

Fig. A.1. PCID2_OUTDOOR Results of the region growing process. We note a high level of over-segmentation, especially for “linear” shapes which presents un
even sampling. 

Fig. A.2. PCID3_1. The over-segmentation clearly delineates the cylindrical shapes such as the columns holding the roofing structure. This is a great illustration of 
research directions toward multi-modal primitive support. 

Fig. A.3. PCID3_2 This dataset shows an artefact at the edges, where the distinction between wall and ceiling is not clear, a region is found.  

Below are the results of the object-based semantic segmentation workflow based on the 11 features extracted from the segments. 
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Fig. A.4. Qualitative results over PCID1, PCID2 and PCID3. On the left are the Ground Truths, on the right are the Generalized Predictions.   
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Fig. A.5. Qualitative results over PCID4. On the left are the Ground Truths, on the right are the Generalized Predictions.  

In order to have a complete view of the performances of our segmentation system, we provide a microbenchmark in Table A.1. The configuration 
on which we perform this is an Intel i7–3770 CPU @ 3.40 GHz and with 12.0 GB RAM.  

Table A.1 
Microbenchmark of parameter estimation for PCID. Total number of runs per parameter: N = 100. Timings in seconds. For each parameter there is an expected 
variation in the values, due to the stochastic nature of parameter estimation. Timings indicate very fast estimation duration even for large datasets, given homogeneous 
point density.  

Dataset/Parameter min max avg median std var 

PCID5_Area_1       
ε (m) 0.035 0.038 0.036 0.036 0.001 5.26E-07 
tε (s) 0.200 0.654 0.221 0.210 0.048 2.30E-03 
τ (pts number) 35 42 37 38 1.637 2.68E+00 
tτ (s) 0.001 0.302 0.004 0.001 0.030 9.00E-04 
PCID5_Area_2       
ε (m) 0.034 0.039 0.036 0.036 0.001 5.67E-07 
tε (s) 0.224 0.319 0.247 0.242 0.018 3.00E-04 
τ (pts number) 34 44 37 37 1.735 3.01E+00 
tτ (s) 0.001 0.002 0.001 0.001 0.000 4.09E-08 
PCID5_Area_3       
ε (m) 0.034 0.038 0.036 0.036 0.001 4.50E-07 
tε (s) 0.055 0.090 0.061 0.059 0.006 3.03E-05 
τ (pts number) 34 42 38 38 1.524 2.32E+00 
tτ (s) 0.001 0.002 0.001 0.001 0.000 2.50E-08 
PCID5_Area_4       
ε (m) 0.034 0.038 0.036 0.036 0.001 4.40E-07 
tε (s) 0.198 0.268 0.222 0.224 0.016 2.00E-04 
τ (pts number) 34 43 38 38 1.450 2.10E+00 
tτ (s) 0.001 0.002 0.001 0.001 0.000 3.56E-08 
PCID5_Area_5       
ε (m) 0.035 0.039 0.036 0.036 0.001 4.59E-07 
tε (s) 0.425 0.622 0.483 0.480 0.044 1.90E-03 
τ (pts number) 34 43 38 38 1.552 2.41E+00 
tτ (s) 0.001 0.002 0.001 0.001 0.000 4.68E-08 
PCID5_Area_6       
ε (m) 0.035 0.038 0.036 0.036 0.001 4.45E-07 
tε (s) 0.177 0.332 0.199 0.197 0.020 4.00E-04 
τ (pts number) 35 43 38 38 1.506 2.27E+00 
tτ (s) 0.001 0.002 0.001 0.001 0.000 2.16E-08 
PCID6_REVO_INDOOR       
ε (m) 0.033 0.036 0.034 0.034 0.001 2.93E-07 
tε (s) 0.129 0.171 0.143 0.141 0.009 7.27E-05 
τ (pts number) 91 119 106 105 6.004 3.60E+01 
tτ (s) 0.004 0.011 0.005 0.005 0.001 5.69E-07 

(continued on next page) 
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Table A.1 (continued ) 

Dataset/Parameter min max avg median std var 

PCID6_REVO_OUTDOOR       
ε (m) 0.045 0.052 0.048 0.048 0.001 1.96E-06 
tε (s) 0.089 0.136 0.107 0.106 0.009 8.86E-05 
τ (pts number) 54 79 64 64 4.822 2.33E+01 
tτ (s) 0.002 0.014 0.003 0.003 0.001 1.51E-06 
PCID8_NAAVIS_1       
ε (m) 0.019 0.021 0.020 0.020 0.000 1.50E-07 
tε (s) 0.436 0.596 0.507 0.510 0.031 1.00E-03 
τ (pts number) 14 19 16 16 0.863 7.45E-01 
tτ (s) 0.001 0.001 0.001 0.001 0.000 1.60E-08 
PCID9_NAAVIS_2       
ε (m) 0.042 0.044 0.044 0.043 0.000 1.84E-07 
tε (s) 0.022 0.032 0.025 0.025 0.002 4.12E-06 
τ (pts number) 14 16 15 15 0.549 3.01E-01 
tτ (s) 0.001 0.001 0.001 0.001 0.000 1.20E-08 
PCID10_RTWH_CHAIR       
ε (m) 0.007 0.007 0.007 0.007 0.000 2.98E-08 
tε (s) 11.544 13.453 12.329 12.308 0.362 1.31E-01 
τ (pts number) 26 35 30 30 1.824 3.33E+00 
tτ (s) 0.002 0.003 0.002 0.002 0.000 5.27E-08  
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