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Fig. 1. High-level overview of our approach to mesh Booleans. Our method, łEMBERž, performs a single pass of adaptive recursive kd-tree type spatial

subdivision while exploiting various early-out pruning criteria. In the leaf nodes, all faces are split into disjoint polygons by pairwise intersection using local

BSP trees. These polygons are classified according to their winding numbers via segment traces. Our key contribution towards maximum efficiency is that

these winding numbers can be computed locally for each leaf node since we propagate reference points with known winding numbers through the recursive

subdivision. All computations are exact due to the use of a plane-based mesh representation with fixed-width homogeneous integer coordinates. This example

consists of 1.2 million input triangles and our multi-threaded implementation takes only 34ms on an 8-core consumer CPU. For comparison, QuickCSG

(inexact, [Douze et al. 2017]) takes 1010ms and Mesh Arrangements (exact, [Zhou et al. 2016]) takes 141 s.

Boolean operators are an essential tool in a wide range of geometry process-

ing and CAD/CAM tasks. We present a novel method, EMBER, to compute

Boolean operations on polygon meshes which is exact, reliable, and highly

performant at the same time. Exactness is guaranteed by using a plane-based

representation for the input meshes along with recently introduced homoge-

neous integer coordinates. Reliability and robustness emerge from a formu-

lation of the algorithm via generalized winding numbers and mesh arrange-

ments. High performance is achieved by avoiding the (pre-)construction of

a global acceleration structure. Instead, our algorithm performs an adaptive

recursive subdivision of the scene’s bounding box while generating and

tracking all required data on the fly. By leveraging a number of early-out

termination criteria, we can avoid the generation and inspection of regions

that do not contribute to the output. With a careful implementation and a

work-stealing multi-threading architecture, we are able to compute Boolean

operations between meshes with millions of triangles at interactive rates.

We run an extensive evaluation on the Thingi10K dataset to demonstrate

that our method outperforms state-of-the-art algorithms, even inexact ones

like QuickCSG, by orders of magnitude.
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1 INTRODUCTION

In solid modeling, a natural basic operation is to compute the union,

intersection, or difference of objects. These are called Boolean op-

erators and are required in all flavors of geometry processing and

CAD/CAM tasks. As a modeling technique, they form the basis of

constructive solid geometry (CSG). Countless applications rely on

solid Booleans in one form or another. Milling simulations subtract

tool meshes from an initial workpiece, while collision tests implic-

itly check if intersections of objects are non-empty. In simulations

and games, destructible environments often rely on CSG concepts.

Virtually all 3D modeling and CAD tools include functionality to

build or modify objects using Boolean operators.

In this paper, we focus on arguably the most popular represen-

tation of geometry: triangle and polygonal meshes. Even if a mesh

processing algorithm does not use Booleans directly, they often

have strict input requirements, such as meshes being 2-manifold

and watertight. Many pipelines require sophisticated pre- and post-

processing to satisfy or restore such requirements. Such mesh repair
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algorithms have strong similarities to Boolean operators. In fact, a

way to fix e.g. self-intersections is to apply a self-union.

Boolean operators on meshes have received much attention and

feature a rich history. Achieving solutions both robust and efficient

has proven notoriously difficult. Computing intersections, a com-

ponent of almost any approach to mesh Booleans, is numerically

challenging when working in floating-point arithmetic. Small or

thin triangles, coplanar or nearly coplanar faces, rays that hit too

close to edges or vertices all pose a significant challenge. Round-off

errors in these situations easily lead to misclassifications, inconsis-

tent topology, and ultimately incorrect results. In terms of Hausdorff

distances, these errors are usually not bounded.

These issues can have a disproportionate impact in automated or

unsupervised settings. This happens mainly due to the sheer vol-

ume of performed operations and the difficulty or outright inability

to recover from such errors. Secondarily, automatically generated

CSG operations tend to exhibit patterns, such as regularly spaced

translations, that increasingly increase the risk of degenerate con-

figurations. These problems exponentiate if the output is used as

input again (an iterated CSG setting). To maintain strong guarantees,

numerically exact mesh Booleans are required. The actual methodol-

ogy varies, but virtually all of these methods use an exact numerical

foundation, like arbitrary-precision numbers or exact floating-point

predicates. The trade-off is typically a runtime performance impact

of multiple orders of magnitude.

Real-world applications often demand exactness and robustness

in order to guarantee reliability. At the same time, however, high

performance is required, too, which is a conflicting goal. Consider,

e.g. the simulation of a CNC milling process where hundreds of

thousands of Boolean subtractions have to be computed. Without

(faster than) realtime performance, this simulation (required for

collision prediction) would significantly slow down the design and

fabrication process. While even the most efficient state-of-the-art

inexact methods do not achieve this performance, our method does

and even guarantees exactness of the result.

1.1 Contribution

We introduce EMBER, a method for exact mesh Booleans designed

to satisfy these strong requirements of exactness, robustness, and

efficiency. From a bird’s-eye view, the procedure is conceptually

simple (cf. Fig. 1). We recursively subdivide a given set of polygons

by splitting across axis-aligned planes. Once the number of polygons

is small enough, we compute pairwise intersection segments and

integrate those into local, per-polygon BSPs. The resulting set of

polygons is classified by tracing winding numbers along a chain of

line segments to a local reference position.

Classification itself is based on generalized winding number vec-

tors (WNV) [Jacobson et al. 2013], which we extend to enable our

local segment tracing. This allows us to track a local reference posi-

tion with a known WNV during subdivision. As a result, all leaves

of the subdivision can be computed locally and require no global

acceleration structure, which greatly boosts our performance. It also

allows us to reason about what WNVs can occur during a particular

subdivision, leading to efficient early termination criteria.

The mathematical foundation relies on plane-based geometry and

the recently introduced homogeneous integer coordinates [Nehring-

Wirxel et al. 2021]. Originally developed for 3D BSPs, this paradigm

can be implemented extremely efficiently on modern CPUs. We

extend their formulation to account for polygons, segments, and

intersections of these.

In summary, our method for computing Booleans on polygonal

meshes is exact, robust, and extremely performant. More concretely,

we contribute:

(1) A subdivision-based approach to mesh Booleans that stays

completely local and requires no precomputation.

(2) Polygon classification based on winding number vectors com-

puted by segment traces.

(3) Resolution of pairwise intersections via polygon-local BSPs.

(4) A fast and exact formulation of plane-based geometry for

polygonal meshes and segment tracing using integer homo-

geneous coordinates.

We achieve maximum performance by furthermore exploiting op-

portunities for early termination and an optimized, multithreaded

implementation. Our evaluation on the Thingi10K data set shows

that our method is faster than the state-of-the-art by orders of mag-

nitude. To encourage use of our method in further research and

applications, an implementation can be acquired on the project page

at graphics.rwth-aachen.de/ember-exact-mesh-booleans.

2 RELATED WORK

Mesh Booleans usually fall into vertex- or plane-based approaches

and can be exact or inexact. Exact approaches often use arbitrary-

precision arithmetic such as GMP [Granlund and the GMP develop-

ment team 2020] or floating-point predicates such as [Attene 2020;

Shewchuk 1997]. [Nehring-Wirxel et al. 2021] recently introduced

another alternative based on fixed-width integer homogeneous co-

ordinates allowing high-performance exact predicates and construc-

tion. Inexact approaches rely on classical floating-point arithmetic

and usually suffer from stability issues with weak guarantees for

topological and geometrical correctness. However, they are typically

significantly faster to compute.

2.1 Vertex-Based

The common approach for vertex-based methods is to first compute

all intersections of the input meshes and then determine which

resulting polygons should be part of the output [Barki et al. 2015;

Cherchi et al. 2020; Douze et al. 2017; Zhou et al. 2016].

There is a range of approaches that sacrifice algorithmic stability

for performance: Most notably, QuickCSG [Douze et al. 2017] uses

winding number vectors in combination with an implicit accelera-

tion structure that is built on the fly, in combination with a smart

pruning strategy, to evaluate Booleans at high speed. Unfortunately

they cannot guarantee correct outputs when dealing with coplanar

configurations. Vertex perturbation can be applied to decrease the

number of failure cases, but cannot fully eliminate them.

To avoid algorithmic stability issues, usually caused by incon-

sistencies due to numerical rounding when using floating point

numbers, [Zhou et al. 2016] use arbitrary precision arithmetics at
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the cost of performance to compute all triangle-triangle intersec-

tions. Triangles are determined as part of the output depending on

thewinding number of their corresponding volumetric cell. [Cherchi

et al. 2020] replace the exact arithmetic with floating point predi-

cates [Attene 2020; Shewchuk 1997], which results in a faster mesh

arrangement computation. Similarly, [de Magalhães et al. 2020] use

exact arithmetics and performance comparable to [Douze et al. 2017]

but cannot handle self-intersections.

2.2 Plane-Based

Apart from the purely vertex-based approaches there is also a long

history in plane-based Boolean approaches. [Naylor et al. 1990]

introduced the usage of binary space partitions (BSPs) to the field

of mesh Booleans. The input solids are represented by implicit BSP

trees and a merge function combines two input solids into a single

BSP that represents the output solid. However, their approach uses

a mesh-cutting subroutine which suffers from stability issues due

to inconsistencies caused by floating point rounding. To circum-

vent this problem, [Bernstein and Fussell 2009] extended BSP-based

Booleans with filtered floating point predicates [Shewchuk 1997]. To

avoid intermediate results requiring an ever-increasing vertex posi-

tion resolution they also introduce a purely plane-based polygon

definition. New vertices are only ever represented by the inter-

section of three input planes. Unfortunately, their solution scales

poorly for large inputs which is inherited from the original BSP-

merging algorithm introduced by [Naylor et al. 1990]. [Campen and

Kobbelt 2010] avoid the scaling issues by employing a global octree

that is subdivided until only a few triangles are contained in each

leaf-node. They then use the BSP-based method from [Bernstein

and Fussell 2009] locally in leaf-nodes that contain triangles from

both inputs. Recently, [Nehring-Wirxel et al. 2021] presented a BSP-

based method that replaces floating point with fixed-width integer

based predicates. They employ exact mesh-cutting to extract convex

BSP cells. Three-dimensional vertex positions at the intersection of

three input BSP planes are stored as four-dimensional homogeneous

coordinates with integer coefficients.

While not BSP-based, [Hachenberger et al. 2007] compute mesh

Booleans via a combination of exact arithmetics and plane-based

Nef-polyhedra [Nef 1978], a plane-based polyhedron representation.

Though quite reliable, their method suffers from performance and

memory consumption issues.

Our method connects to various previous approaches. We use the

integer homogeneous coordinates of [Nehring-Wirxel et al. 2021]

and extend their formulation to support segment-polygon inter-

sections. Classification is based on generalized winding numbers

[Jacobson et al. 2013; Zhou et al. 2016], though we track them during

segment tracing instead of growing volumetric cells. The overall

subdivision is similar to [Douze et al. 2017], who also avoid the

construction of a global acceleration structure.

3 MATHEMATICAL FOUNDATION

Our method uses the fixed size integer construction of [Nehring-

Wirxel et al. 2021]. Their method builds upon the plane-based ap-

proach and predicates of [Bernstein and Fussell 2009], but instead

of using floating point predicates, they formulate their core arith-

metics with integer coefficients. If the input values are bounded, all

intermediate results are bounded as well, which leads to a very effi-

cient implementation using fixed size integers. In their formulation,

intersections of planes have an exact construction that results in 4D

integer positions in homogeneous coordinates.

More concretely, we accept input polygons that have 26-bit inte-

gers per 3D coordinate or that our method previously produced. Tri-

angles and polygons are represented by a supporting plane and one

plane per edge. Planes are stored with integer coefficients (𝑎, 𝑏, 𝑐, 𝑑)

and represent all points that satisfy

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. (1)

The (unnormalized) plane normal𝑛 is (𝑎, 𝑏, 𝑐). The integer bit widths

are chosen such that we can construct plane-based triangles for any

input mesh and no intermediate result later on exceeds 256 bit.

When the input and output precision of each operation is known

a priori, extremely efficient code for addition and multiplication

can be used. With this, useful predicates and constructions can be

implemented. For example, two planes 𝑝 and 𝑞 are parallel if

𝑛𝑝 × 𝑛𝑞 = ®0. (2)

Maybe the most important insight of [Nehring-Wirxel et al. 2021]

is that the intersection 𝑥 = intersect(𝑝, 𝑞, 𝑟 ) of three planes 𝑝, 𝑞, 𝑟

has an exact construction if the result is represented as a position

in homogeneous coordinates:

𝑥 =
©­«
������
𝑑𝑝 𝑏𝑝 𝑐𝑝
𝑑𝑞 𝑏𝑞 𝑐𝑞
𝑑𝑟 𝑏𝑟 𝑐𝑟

������ ,
������
𝑎𝑝 𝑑𝑝 𝑐𝑝
𝑎𝑞 𝑑𝑞 𝑐𝑞
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������
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𝑎𝑞 𝑏𝑞 𝑐𝑞
𝑎𝑟 𝑏𝑟 𝑐𝑟

������
ª®¬
𝑇

(3)

The intersection is not unique if the last coordinate, 𝑥4, is zero. Given

an additional plane 𝑠 , we can classify 𝑥 (relative to 𝑠) by computing

classify(𝑥, 𝑠) = sign ⟨𝑥, 𝑠⟩ · sign 𝑥4

=



1, if 𝑥 is on the positive side of 𝑠

−1, if 𝑥 is on the negative side of 𝑠

0, if 𝑠 contains 𝑥

(4)

For 3D integer positions 𝑝 (e.g. input vertices or octree corners),

this simplifies to ⟨𝑛𝑠 , 𝑝⟩ + 𝑑𝑠 . Using these operations, especially

intersect and classify, efficient polygon clipping can be imple-

mented (cf. Section 4.2.1).

3.1 Additional Operations

For working directly with polygons, we build additional operations

on top of those presented by [Nehring-Wirxel et al. 2021]. The plane-

based paradigm yields a set of simple and elegant constructions

(cf. Fig. 2). The elementary entity is a plane. Two non-parallel planes

𝑝, 𝑞 define a line. Geometrically, this line is the intersection of 𝑝 and

𝑞. Forming the line, however, does not require any computation. We

simply identify the pair (𝑝, 𝑞) with the line. Similarly, three planes

generally intersect in a single point. Other geometric primitives are

also easily defined. A ray is represented by three planes (𝑙0, 𝑙1, 𝑟 ),

where (𝑙0, 𝑙1) forms the line that the ray lies on and 𝑟 łcuts awayž the

half of the line not belonging to the ray. Consequently, a segment

has four planes (𝑙0, 𝑙1, 𝑟0, 𝑟1), where (𝑙0, 𝑙1) is the łsupporting linež
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(a) point (b) line (c) ray (d) segment (e) polygon (f) intersection

Fig. 2. In plane-based geometry, we can define various geometric primitives as tuples of planes with varying interpretations. Points are the intersection of

three planes, lines require two planes. A ray is a line with a starting plane. A segment is a line with two bounding planes. Convex polygons lie on a supporting

plane and are bounded by a sequence of edge planes. Intersections of various geometric primitives can be formulated in terms of plane constructions and

classifications. For example, the segment-polygon intersection is a point formed by the segment’s line and the polygon’s supporting plane. It is valid if it lies

on the inner side of the segment’s bounding planes and the polygon’s edge planes.

and 𝑟0 and 𝑟1 delimit the segment on this line. Convex polygons

consist of a supporting plane 𝑠 and a set of edge planes 𝑒1, . . . , 𝑒𝑛 .

A point 𝑥 belongs to a polygon exactly if classify(𝑠, 𝑥) = 0 and

classify(𝑒𝑖 , 𝑥) ≤ 0 for all edge planes. 𝑥 is an interior point iff

all inequalities are strict. A bounding box can be seen as the space

delimited by six particular planes, though we usually choose a less

redundant representation for storage.

Intersecting lines, rays, and segments with polygons is surpris-

ingly simple. The intersection point 𝑥 , should it exist, is given by

intersect(𝑙0, 𝑙1, 𝑠), the intersection of the supporting line with the

polygon’s supporting plane. If classify(𝑒𝑖 , 𝑥) > 0 for any edge

plane, 𝑥 is outside the polygon. If 𝑥 classifies positively for 𝑟 (in case

of a ray), 𝑟0, or 𝑟1 (in case of a segment), the intersection is similarly

invalid. Corner cases can also easily be detected and handled: 𝑥

does not exist if (𝑙0, 𝑙1) is parallel to 𝑠 . However, there might be an

intersection segment if (𝑙0, 𝑙1) lies within 𝑠 . This segment can be

computed by clipping the query line, ray, or segment against all

edge planes 𝑒𝑖 .

3.2 Problematic Operations

The fixed-precision planes and homogeneous coordinates are not

closed under some common operations. Most notably, while we have

chosen the precision bounds such that every polygon with integer

coordinates can be converted to its plane-based representation, the

same does not hold true (in general) if the polygon coordinates are

homogeneous coordinates.

More fundamentally, given two points 𝑥 and 𝑥 ′ in integer homo-

geneous coordinates, their difference must be computed as

©­­­«

𝑥1
𝑥2
𝑥3
𝑥4

ª®®®¬
−
©­­­«

𝑥 ′1
𝑥 ′2
𝑥 ′3
𝑥 ′4

ª®®®¬
=

©­­­«

𝑥1 · 𝑥
′
4 − 𝑥 ′1 · 𝑥4

𝑥2 · 𝑥
′
4 − 𝑥 ′2 · 𝑥4

𝑥3 · 𝑥
′
4 − 𝑥 ′3 · 𝑥4
𝑥4 · 𝑥

′
4

ª®®®¬
if gcd(𝑥4, 𝑥

′
4) = 1. Thus, even if 𝑥 and 𝑥 ′ lie within the precision

bounds, 𝑥 − 𝑥 ′ might not. 𝑥4 · 𝑥
′
4 requires twice as many bits as

𝑥4 and 𝑥 ′4 individually, which contradicts the fixed-width integer

constraints. The immediate consequence is that while points at frac-

tional positions can be constructed via intersection of three planes,

our ability to manipulate and perform regular vector arithmetic on

them is severely limited. Even something as seemingly harmless

as the midpoint of two positions cannot, generally, be computed

within the fixed precision limits.

This further implies that new polygons cannot be defined from

such positions alone. Supporting and edge planes must be acquired

through other means. In particular, triangulation of polygons not

possible in general.

Similarly, we cannot directly define the segment between two

positions. This becomes a minor obstacle in Section 4.4, where clas-

sification necessitates a segment-trace from a reference position to

an interior point of a face. While a direct segment is out of reach, we

show that a path construction with at most three segments between

any two positions is always possible. In particular, we use subsets

of the planes defining each point to construct two intermediate

representable points.

3.3 Accuracy

When working with 3D or 4D integer coordinates, all presented

operations are exact. Inaccuracies can only appear at the interface

of our system, i.e. when importing or exporting a mesh. During

import, we scale and round the input coordinates to fully utilize the

26 bit integer range. For a 1m3 scene, this corresponds to roughly

15 nm accuracy (or, equivalently, almost 8 decimal digits). Mesh for-

mats usually require floating points, which necessitates a rounding

step during export, which can be done with full float or double

precision.

3.4 Winding Numbers and Booleans

Same as mesh arrangements [Zhou et al. 2016], we require that all

input meshes induce a piecewise-constant integer generalized winding

number (PWN) field as defined by [Jacobson et al. 2013]. PWN

meshes are one of the least restrictive class of meshes that still yields

well-defined Boolean operations. Notably, many self-intersecting,

non-manifold, or degenerate configurations are supported and still

yield unambiguous results.

A winding number vector (WNV) w = (𝑤1, . . . ,𝑤𝑛) ∈ Z
𝑛 is an

𝑛-tuple defined for each point in space that does not lie on any

input surface. Traditionally, 𝑛 is the number of input meshes and

each𝑤𝑖 counts how often mesh 𝑖 was łenteredž.𝑤𝑖 can be negative

depending on normal orientation.𝑤𝑖 = 0 corresponds to łoutside of

ACM Trans. Graph., Vol. 41, No. 4, Article 39. Publication date: July 2022.
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Fig. 3. (a) Winding number vectors (WNV) are defined for non-surface

points and count how often each mesh is entered or left. They gracefully

handle holes and nested components. WNVs can be computed by tracing

a path from any point with a known WNV. Each time the path intersects

a mesh, the WNV is incremented or decremented depending on normal

direction.

(b) Boolean operations can be realized by mapping winding numbers to in

or out, i.e. by providing an indicator function on WNV. The result comprises

all surfaces that transition in-out or out-in.

mesh 𝑖ž and𝑤𝑖 ≠ 0 to łinside of mesh 𝑖ž. Other interpretations can

be useful depending on the scenario.

For our method, we introduce the notion of a winding number

transition vector (WNTV) Δw. Any point on an input surface (but

not on an intersection of surfaces), has a unique WNV in front

wF and behind wB based on normal direction. Now, Δw is simply

defined as wB −wF, i.e. the WNV increments when transitioning

through this surface front-to-back (cf. Fig. 3 (a)).

Just as [Zhou et al. 2016], we define Boolean operations as an

indicator function on WNVs. For example,

𝑓union (w) =

{
in, if any𝑤𝑖 ≠ 0

out, otherwise
(5)

corresponds to the union of 𝑛 meshes. The indicator function is eval-

uated on wF and wB. Points where the indicator function changes

belong to the output surface. In the actual method, we cut up all in-

put polygons into smaller polygons that have a unique, well-defined

wF and wB. Polygons that transition (out, in) are emitted as-is,

while (in, out) are emitted with inverted order to preserve proper

normal orientation. (out, out) lies fully outside the result, while

(in, in) is fully inside (cf. Fig. 3 (b)) and both can thus be skipped.

WNVs represent global information: How often is a given position

inside each input mesh? In contrast, WNTVs are local, łderivativež

information: How does the WNV change when crossing a certain

surface? While WNVs make it easy to evaluate Boolean operations,

WNTVs provide a natural way to compute wF and wB from the

inputs.

Each input polygon 𝑡 has an associated WNTV Δwt ∈ Z𝑛 . The

usual choice is Δwt
= (0, . . . , 0, 1, 0, . . . , 0)𝑇 where the 1 is at the

𝑗-th component if 𝑡 belongs to the 𝑗-th input mesh. Intuitively, every

time we pass a surface from mesh 𝑗 outside-in, we increment the

𝑗-th component of our WNV. Passing inside-out decrements the

component. Formally, given non-surface points 𝑥 and 𝑦 as well as

the starting WNV wx at 𝑥 , we collect all polygons 𝑇 that intersect

the segment (𝑥,𝑦) and compute

wy
= wx +

∑
𝑡 ∈𝑇

sign ⟨𝑛𝑡 , 𝑥 − 𝑦⟩ · Δwt,

where𝑛𝑡 is the out-facing normal of 𝑡 andΔwt theWNTV associated

with 𝑡 . Note that this formula is only valid if 𝑥 and 𝑦 do not lie on

any surface and all polygons in 𝑇 have a unique intersection point

with (𝑥,𝑦) in their interior. If 𝑦 lies on a surface with normal 𝑛ref,

we can compute Δwy, w
y
F
, and w

y
B
with a slight tweak as long as 𝑦

does not lie on any edge:

• Compute 𝑇 ′
= {𝑡 ∈ 𝑇 | 𝑦 ∈ 𝑡}, i.e. polygons containing 𝑦.

• Compute wy using 𝑇 \𝑇 ′.

• Compute Δwy
=
∑
𝑡 ∈𝑇 ′ sign ⟨𝑛𝑡 , 𝑥 − 𝑦⟩ · Δwt.

• Build WNTV depending on sign ⟨𝑛ref, 𝑥 − 𝑦⟩:

1 ↦→ w
y
F
= wy and w

y
B
= wy + Δwy

−1 ↦→ w
y
F
= wy + Δwy and w

y
B
= wy

The last case analysis accounts for the fact that 𝑦 − 𝑥 can hit the

reference surface łfrom the frontž or łfrom the backž.

Often, these winding numbers are either computed via ray tracing

or via propagation on 3D cells. What we use is similar to ray tracing,

but in a more general segment tracing form due to the constraints

described in Section 3.2. This is the basis of our efficient classifica-

tion scheme of Section 4.4. When using ray tracing, classification

is a global problem and challenging to compute efficiently. With

our segment tracing, we can keep the classification problem local

if a reference point 𝑥 with known WNV is provided. During the

subdivision procedure, we ensure that such a local reference WNV

is always available.

4 EXACT MESH BOOLEANS

The input to our method, which we call EMBER, is a polygon soup 𝑆

with no topology information required. Each polygon 𝑡 is annotated

with a WNTV Δwt. Polygons are expected with homogeneous inte-

ger coordinates subject to the limits of Section 3. The input must

represent a PWN mesh.

Our method produces a set of convex polygons 𝑆 ′. Each result-

ing polygon 𝑡 ′ ∈ 𝑆 ′ has a WNTV in the form of (wt′

F
,wt′

B
). These

polygons satisfy strong guarantees:

(P1) Polygons of 𝑆 ′ are disjoint and represent the same surface as 𝑆

(P2) The uniquely definedWNTV (wt′

F
,wt′

B
) of each resulting poly-

gon 𝑡 ′ is valid for all points inside 𝑡 ′

(P2) requires that we cut up all polygons with non-constant WNTV.

This ensures that Boolean operations can be performed per-polygon

instead of per-point.
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left subproblem right subproblem

Fig. 4. As part of the overall subdivision structure, subproblems are split

at an axis-aligned plane. The plane is located at the center-of-gravity and

oriented towards the axis of largest variance. Most polygons are unchanged

by this split (affected ones are shown in red). To keep the leaf computation

local, we require a local reference point and its WNV. In this example, the

previous reference point is in the left half. For the right subproblem, we

project 𝑥old
ref

onto the right AABB and compute its WNV via segment tracing.

𝑥ref

construction

local BSP

segment traces

classification via

function

WNV indicator

𝐵 −𝐴 based on

Fig. 5. The computation at the leaves of our subdivision is completely local.

We start by computing pairwise intersections and build per-polygon BSPs

(new edges in yellow, only intersecting polygons are opaque). Each leaf

BSP polygon is then classified by tracing a segment path towards the local

reference point 𝑥ref that has a known WNV. The result of the classification

is a pair of WNVs that is then passed through an indicator function to emit

exactly those polygons with an in-out or out-in transition.

Usually, an operator indicator function 𝑓op : WNV → {out, in}

is also provided. For each polygon, (𝑓op (w
t′

F
), 𝑓op (w

t′

B
)) is evaluated.

If the result is (out, in) we keep the polygon, if it is (in, out) we

invert its order. (in, in) and (out, out) are discarded. This can

be done as a post-process, but it is significantly more efficient if

knowledge of 𝑓op is used during creation of 𝑆 ′ to discard entire

regions when we can prove that those regions will only produce

(out, out) or (in, in) polygons (cf. Section 4.5).

4.1 Overview

Given a soup of polygons 𝑡 ∈ 𝑆 annotated with WNTVs Δwt, our

algorithm recursively performs subdivision and leaf computations.

The adaptive subdivision of the scene’s bounding box recurses until

the local problem is small enough to be solved directly via a BSP

and winding number tracing. During this subdivision phase, we

propagate not only the set of polygons lying within the respective

sub-box but also a reference point with known WNV. This way we

can locally determine the WNV for each compartment by segment

tracing using the WNTVs of the intersected polygons. The refer-

ence propagation avoids the need to construct a global acceleration

structure. Since the recursive subdivision provides many criteria for

early-out termination, significant portions of the hierarchy never

have to be generated.

More concretely, the subdivision task (cf. Fig. 4) performs the

following steps:

• split AABB into two sub-AABBs

• for each sub-AABB 𝐵:

– clip each 𝑡 ∈ 𝑆 against 𝐵

– if 𝑥ref ∉ 𝐵, compute new reference point and its WNV via

segment-tracing from 𝑥ref
– recursively call algorithm with clipped 𝑆 , sub-AABB, and

potentially updated 𝑥ref

Leaf tasks (cf. Fig. 5) do the following for every polygon 𝑡 ∈ 𝑆 :

• build local binary space partitioning (BSP)

– intersect 𝑡 with all other polygons in 𝑆

– add each intersection segment to the BSP

• for each leaf polygon 𝑓 in the local BSP:

– trace segments to 𝑥ref to compute (wt
F
,wt

B
)

– emit (𝑡,wt
F
,wt

B
)

The core insight is that by keeping track of 𝑥ref and wref, we can

always compute the classification locally using segment traces that

stay inside the sub-AABB. Ideally, the problem size is halved with

each subdivision, leading to logarithmic recursion depth and only

linear overall memory requirements. The details of each step are

explained in the following sections.

4.2 Subdivision and Clipping

If the current subproblem has too many polygons, exhaustive pair-

wise intersection tests are prohibitively expensive. Thus, we try to

reduce the problem size until these pairwise tests become feasible.

We keep the bounding volume of each subproblem as a simple AABB

with integer coordinates. A subdivision is therefore a split along

one axis at an integer position. While simply choosing the midpoint
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Fig. 6. Clipping a convex polygon against a plane using classify is straight-

forward. Each vertex is classified as −1, 0, or 1. Edges from −1 to 1 are split.

The result can be assembled from all non-positive vertices on the one side

and all non-negative ones on the other side. Clipping requires creating 0, 1,

or 2 new vertices via intersect. An example of each case is shown.

of the longest AABB axis leads to an even and reasonably efficient

subdivision, we discuss a more elaborate strategy in Section 4.5.

4.2.1 Polygon Clipping. Given a splitting plane 𝑠 , the subdivision

procedure creates the łleftž and łrightž subproblem and recursively

calls the whole method on those. Each polygon in each annotated

polygon soup is clipped against the splitting plane and thus either

added to a single subproblem or split into two parts and added to

both. We assign polygons that lie exactly on the splitting plane to

the łleftž subproblem.

Clipping a (convex) polygon with vertices 𝑣1, . . . , 𝑣𝑛 is simple

(cf. Fig. 6). First, we use Equation 4 to compute the classification

𝑐𝑖 ∈ {−1, 0, 1} of each vertex 𝑣𝑖 relative to the splitting plane. If there

are no positive values, the polygon is łleftž. Otherwise, if there are

no negative values, we assign it łrightž. All-zero is assigned łleftž.

We only have to actually split if there are negative and positive

values. For each edge between −1 and 1, a new vertex is constructed

using the supporting plane, edge plane, and splitting plane. After-

wards, there are exactly two vertices with classification 0, even for

cases where the splitting plane exactly hits one or two polygon

vertices. All non-positive vertices form the polygon for łleftž and

all non-negative for łrightž. Since each vertex is the result of inter-

secting original (and thus properly quantized) polygons and AABB

faces (which are axis-aligned), they can always be represented by

our homogeneous integer coordinates.

4.2.2 Updated Reference Point. To retain the ability to classify each

polygon locally, we require a known WNV at some position in each

subproblem. In general, we already have such a position for one half,

but not for the other. Thus, we need to choose a non-surface position

in the other half and compute its WNV by tracing segments from the

given reference position to the new one as described in Section 3.4.

Similar to the classification in Section 4.4, this requires tracing up

to three segments. If an intermediate point lies on a surface or

any traced segment lies inside a polygon or hits an edge, then this

particular path cannot be used for classification. However, as long as

the new reference position is in the second subproblem and the path

does not leave the current AABB, we have the freedom to choose.

As paths are only invalid if they hit degenerate configurations, in

the overwhelming majority of cases the first path is already valid. If

not, valid paths are found within very few iterations.

For performance reasons, we prefer paths with fewer segments

and segments that are axis aligned. Those require less precision

and fewer intersection tests to compute. Thus, our first guess is

always to just project the previous reference point onto the new

subproblem AABB. For the vast majority of practical cases, this

yields a valid path ending on an integer position, reachable by a

single axis-aligned segment trace. An example is shown in Fig. 4.

4.3 Face-Face Intersections via Locally Constructed BSP

Once a subproblem becomes small enough that quadratic complexity

in the number of polygons is acceptable, we can intersect and classify.

This section describes the intersection resolution while the next

covers classification. The exact criterion when a subproblem is small

enough is subject of Section 4.5.

In a leaf task, we are given a set of convex polygons with self-

intersections. Our goal is to compute a set of convex polygons

without self-intersections covering the same surface.

The usual strategy is to compute all pairwise intersection seg-

ments and embed them into their respective polygons. This result

is then re-triangulated, e.g. via Delaunay triangulation as used by

[Zhou et al. 2016]. Special care must be taken for coplanar faces.

We developed a different strategy for several reasons. The most

important one is that, in our formulation using fixed-precision ho-

mogeneous coordinates, re-triangulation is in general not possible

(cf. Section 3.2). Even if this were possible, a Delaunay triangulation

itself is already quite costly. Furthermore, in a CSG setting, such a

triangulation often leads to vertices of extremely high valence.

Our plane-based formulation places a strong emphasis on edges

and the planes defining a polygon, favoring cutting operations, and

discouraging operations directly on vertex coordinates. Therefore,

we frame the whole intersection step as a BSP construction: For

each polygon 𝑡 , we build a temporary, local BSP. Non-leaf nodes are

annotated with a splitting plane and leaves with a polygon repre-

senting the leaf geometry. It is important to note that we are not

using the BSP as an acceleration structure containing intersection

segments, but rather as a way to represent geometry: The resulting

BSP is a disjoint partition of the polygon 𝑡 and no BSP leaf has an

intersection in its interior. All intersections lie on leaf boundaries,

with the exception of the overlap case, which is handled later.

The initial configuration is simply a leaf with the geometry of 𝑡 .

For the construction, we only support a single operation: ładdž

a segment (𝑣0, 𝑣1, 𝑠) to the BSP. Here, 𝑣0 and 𝑣1 are the segment

vertices and 𝑠 is a plane that, together with the supporting plane

𝑠𝑡 of the polygon 𝑡 , defines the line that the segment lies on. As

most procedures on recursive data structures, the operation itself is

defined recursively as ładdingž the segment to a BSP node 𝑛:

• if 𝑛 is an inner node split at a plane 𝑞:

– compute 𝑐0 := classify(𝑣0, 𝑞) and 𝑐1 := classify(𝑣1, 𝑞).

– stop if 𝑐0 = 𝑐1 = 0 (segment lies on splitting plane).

– if 𝑐0 ≤ 0 and 𝑐1 ≤ 0, add segment only to the left node.

– if 𝑐0 ≥ 0 and 𝑐1 ≥ 0, add segment only to the right node.

– if 𝑐0 < 0 and 𝑐1 > 0:

∗ compute new vertex 𝑣 ′ := intersect(𝑠, 𝑞, 𝑠𝑡 ).

∗ add segment (𝑣0, 𝑣
′, 𝑠) to the left node.

∗ add segment (𝑣 ′, 𝑣1, 𝑠) to the right node.

– (if 𝑐0 > 0 and 𝑐1 < 0 proceeds analogously)

• if 𝑛 is a leaf node:
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Fig. 7. Construction of the local BSPs is done via adding intersection segments. Each leaf node that contains a non-trivial part of the segment is split. The

image shows a triangle with three intersection segments (red) that are added to the BSP (with existing splitting planes in green). Numbers indicate the result

of classifying the segment vertices against the current BSP node plane. Note that while each intersection segment eventually lies on a green BSP splitting

plane, the converse is not true: In this example, the first intersection segment causes a split that is longer than strictly necessary. This conservative splitting

keeps each cell convex, leading to a simple and fast method.

𝐵1 < 𝐴 < 𝐵2

Fig. 8. Top-down view of three overlapping triangles. Overlapping polygons

are gracefully handled during BSP construction. Given a total order of input

polygons (e.g. indices), BSP leaves are disabled if they are overlapped by

a łlowerž polygon. This guarantees that overlap regions contribute to the

result at most once. In this example, the current triangle 𝐴 is cut up by

two overlapping ones. However, only the light blue parts of 𝐴 are further

classified and might contribute to the result as 𝐵1 < 𝐴 but 𝐴 < 𝐵2.

– use 𝑠 to split leaf polygon (cf. Section 4.2.1).

– create an inner node with 𝑠 and two new leaf nodes with

the split result.

Now consider all other polygons 𝑡 ′ (with supporting plane 𝑠𝑡 ′ ). The

intersection of 𝑡 and 𝑡 ′ can be computed solely from the intersect

and classify operations and is one of the following cases:

(C1) no intersection

(C2) a single point

(C3) a non-degenerate segment (𝑣0, 𝑣1, 𝑠𝑡 ′)

(C4) a non-empty overlap polygon

(C1) and (C2) can be safely ignored. (C3) is simply added to the BSP,

though it might not actually lead to new leaves if the segment lies

on an edge or a previous split. An example is shown in Fig. 7.

The overlap case (C4) is slightlymore complex: First, all edges of 𝑡 ′

are added to the BSP. As 𝑡 ′ performs a symmetrical operation, we end

up with leaves in 𝑡 and 𝑡 ′ that represent the same surface geometry

and thus also have the same WNTV, i.e. the same classification. To

satisfy our disjointness guarantee in overlap regions, we łdisablež

the leaves of all polygons but one. Given a total order on polygons,

e.g. input indices, we simply mark the overlap region in 𝑡 ’s BSP as

łdisabledž, if 𝑡 > 𝑡 ′. Consequently, in any overlap region, only the

polygon with the minimal index emits output polygons (cf. Fig. 8).

At the end of this step, we have a local BSP for polygon 𝑡 , where

all intersection segments are ładdedž. By construction, no leaf poly-

gon has an interior intersection with any other polygon. Each BSP

is, as the name implies, a partition of 𝑡 . Together with the overlap

Fig. 9. Given two points in homogeneous coordinates, we cannot, in general,

form a segment directly between the points while staying within our preci-

sion bounds. However, for classification, we only need a path between them.

Each point is defined by the intersection of three planes and by changing

one plane at a time, it is always possible to construct a path between two

such points with at most three segments.

handling, the set of enabled leaf polygons represents the same ge-

ometry as the input and is free of self-intersections, thus satisfying

our initial guarantees (P1) and (P2).

4.4 Face Classification via Segment Tracing

With the guarantee of (P1) and (P2), the interior of each enabled leaf

polygon 𝑡 has a well-defined WNTV (wt
F
,wt

B
). We are still in the

computation of a subproblem, i.e. are given a soup 𝑆 of polygons

𝑡 with annotated Δwt, an AABB, and a reference point 𝑥ref with

WNV wref. The mathematical foundation was already presented

in Section 3.4. However, that description presumes that a target

position 𝑥 for classification is known and that the segment from

𝑥ref to 𝑥 is definable. In general, we cannot define a segment from

two non-integer positions (cf. Section 3.2). Furthermore, a classifi-

cation can łfailž in the sense that a path is not suitable for WNV

propagation, e.g. because the segment touches the edge of an input

polygon.

We start with a simple heuristic that works in most situations

and is cheap to compute: Using regular floating point numbers, we

compute the center of gravity of 𝑡 and round that to the nearest

integer coordinates 𝑐 . Then, we define an axis-aligned line starting

at 𝑐 , pointing towards the axis closest aligned to 𝑡 ’s normal. This is

the łleast parallelž axis-aligned choice. Now, we intersect that line

with 𝑡 using the exact arithmetic. If there is an intersection with

the interior of 𝑡 , we construct a simple axis-aligned path of up to 3

segments (cf. Fig. 5).
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Fig. 10. When classifying a polygon of a local subproblem, we trace a path

from the reference point (with known WNV) to an arbitrary point in the

interior of the polygon. The 3-segment path construction between two

points might leave the subproblem AABB, thus the path is additionally

clipped to the AABB.

Should this construction fail, either because the line does not

intersect 𝑡 (can happen with very thin polygons) or because the

classification path is invalid, we use a more complex construction

consisting of two sub-steps. First, we compute a point in the interior

of 𝑡 as follows:

(1) Take any polygon vertex defined by supporting plane 𝑠𝑡 and

edge planes 𝑠𝑒0 = (𝑎0, 𝑏0, 𝑐0, 𝑑0) and 𝑠𝑒1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1).

(2) Define 𝑠 ′𝑒0 = (𝑎0, 𝑏0, 𝑐0, 𝑑0 + 𝑖0) and 𝑠 ′𝑒1 = (𝑎1, 𝑏1, 𝑐1, 𝑑1 + 𝑖1)

where 𝑖0, 𝑖1 ∈ N≥1 are (randomized) offsets.

(3) Compute 𝑥 = intersect(𝑠𝑡 , 𝑠
′
𝑒0 , 𝑠

′
𝑒1 ).

(4) Go to (1) if 𝑥 is not in the interior of 𝑡 .

𝑥 always lies on the supporting plane of 𝑡 . The offsets 𝑖0 and 𝑖1
are always positive and thus łmovež 𝑥 into the interior of 𝑡 . The

iterative nature of (4) ensures that 𝑥 is not moved łtoo farž. The

plane coefficients of 𝑠𝑒0 and 𝑠𝑒1 can be scaled up, making the steps

of 𝑖0 and 𝑖1 more granular. In practice, we scale until the largest

coefficient is close to our precision limit and start with 𝑖0 = 𝑖1 = 1.

This is generally sufficient. Only specifically constructed corner

cases require more than one iteration.

The second step connects 𝑥 to 𝑥ref. Let’s assume 𝑥 and 𝑥ref are

defined as the intersection of three planes (𝑠0, 𝑠1, 𝑠2) and (𝑟0, 𝑟1, 𝑟2),

respectively. Consider the point 𝑥1 defined by (𝑠0, 𝑠1, 𝑟2). 𝑥 and 𝑥1
both lie on the planes 𝑠0 and 𝑠1 and thus on the line (𝑠0, 𝑠1). Thus,

(𝑠0, 𝑠1, 𝑠2, 𝑟2) is a segment starting at𝑥 and ending at𝑥1. Similarly, we

can define 𝑥2 by (𝑠0, 𝑟1, 𝑟2). This gives us a path (𝑥, 𝑥1, 𝑥2, 𝑥ref) from

𝑥 to 𝑥ref where each intermediate segment and point is definable

within our precision bounds.

The second construction works by iteratively replacing a plane

defining 𝑥 with a plane defining 𝑥ref. The actual order does not

matter and leaves us with another freedom to choose differently

should the path be invalid (e.g. because it hits a polygon edge dur-

ing tracing). The path (𝑥, 𝑥1, 𝑥2, 𝑥ref) might leave the subproblem

AABB, in which case we need to clip it against the AABB planes.

An example is shown in Fig. 9 and Fig. 10.
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Fig. 11. Often, additional input guarantees are available. These can be

leveraged when a subproblem consists of only one WNTV type. If each

input is individually self-intersection free, the local BSP construction step

can be skipped. If there are no nested components, a single classification

is valid for all contained surfaces. On the left is an example without these

guarantees and on the right with them. Note that surfaces on the right

always transition
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The essence of these constructions is that we have a simple default

case that succeeds in almost all cases. Due to our exact arithmetic,

we can accurately decide when a construction was insufficient and

change to the more complex one.

The result is a (wf
F
,wf

B
)-pair for each enabled leaf polygon 𝑓 .

Together, these polygons satisfy the stringent guarantees laid out

at the beginning of Section 4. If an operator indicator function is

given, the resulting geometry can be emitted directly.

4.5 Optimizations

The previous sections present all steps that are required to develop

an intuition and understanding of why the method computes the

exact, correct result and its expected time and space complexity.

However, we also claim that our method is exceedingly fast on

real-world data. To achieve this, we present a few algorithmic and

implementation optimizations that neither affect correctness nor

asymptotic complexity but still improve performance by orders of

magnitude under the right circumstances.

4.5.1 Leveraging Additional Input Assumptions. The input to our

method is a soup 𝑆 of polygons 𝑡 with annotated WNTV Δwt. Intu-

itively, all polygons with the same WNTV correspond to a single

input mesh. While different meshes usually intersect each other, we

often know that every individual mesh 𝑆𝑖 is self-intersection free

and contains no nested components. In particular, any mesh that

results from our method satisfies these assumptions. We thus allow

each łWNTV classž to be flagged as containing no self-intersections

NSI and/or containing no nested components NNC. These will be

used in later optimizations. For example, a leaf subproblem con-

taining only a single WNTV type in general still requires local BSP

construction and classification. However, if this WNTV is marked

NSI, the BSP construction can be skipped. If it is furthermore NNC,

only a single polygon needs to be classified as all others will result

in the same (wt
F
,wt

B
). An example is shown in Fig. 11.

4.5.2 Early Subdivision Termination. Even without additional as-

sumptions, the operator indicator function itself provides ample

opportunities for early-outs. For example, consider the computation

of 𝐴 − 𝐵 given two meshes 𝐴 and 𝐵 with WNV (1, 0) and (0, 1),

ACM Trans. Graph., Vol. 41, No. 4, Article 39. Publication date: July 2022.



39:10 • Philip Trettner, Julius Nehring-Wirxel, and Leif Kobbelt

in out out out

(0
1

)
(0
0

)𝐴−𝐵

Fig. 12. Even without additional input assumptions, certain configurations

admit optimization. The highlighted subproblem in this difference operation

has a reference WNV of (0, 0) and only contains faces of the (0, 1) mesh.

For Boolean difference, only WNVs of the form (𝑧, 0) with 𝑧 ≠ 0 would

classify in. Any WNV trace in the subproblem results in (0, 0) + 𝑘 · (0, 1)

and can thus never be in. This particular subproblem will therefore never

contribute to the result.

respectively. Generally, a subproblem consisting only of polygons

from 𝐵 requires full subdivision and classification if 𝐵 is neither

NSI nor NNC. However, if the current reference WNV has the form

(0, 𝑏), the subproblem can be immediately discarded: The indica-

tor function for 𝐴 − 𝐵 is only in if the WNV has the form (𝑎, 0)

with 𝑎 ≠ 0. Classification in the current subproblem starts at the

reference WNV of (0, 𝑏). Only polygons from 𝐵 are present, so any

WNV used for classification has the form (0, 𝑏 + 𝑧) for some 𝑧 ∈ Z.

Thus, without any further subdivision and classification, we already

know that all polygons will classify (out, out) and are therefore

discarded (cf. Fig. 12).

Such rules exist for all Boolean operations. While the actual rules

differ for each operation, they can be mechanically computed, quite

similar to a reachability analysis on a finite automaton. This opti-

mization is especially potent for variadic operations. In a milling sim-

ulation, many instances𝑇𝑖 of a łtoolžmesh are subtracted from an ini-

tial workpiece𝑊 . Now consider the computation of𝑊 −𝑇1− . . .−𝑇𝑛 .

Again, the indicator function is only in if inside𝑊 and outside all

𝑇𝑖 . The computed optimization rules are:

• Discard if outside𝑊 but subproblem does not contain𝑊 .

• Discard if inside a 𝑇𝑖 that is not part of the subproblem.

4.5.3 Splitting Strategy. An important aspect of any space subdi-

vision scheme is where to split and when to stop. Our baseline

strategy is splitting the largest AABB axis in half and stop when

the total number of polygons is below a threshold. Profiling showed

two main performance hotspots (cf. Fig. 16):

(H1) Testing and splitting polygons during early subdivisions

(H2) BSP construction and polygon classification in leaves

(H1) is expensive due to the large amount of polygons that must

be tested. With the previously described early-out strategies, (H2)

naturally concentrates where different input meshes intersect.

A good subdivision strategy must therefore focus on reducing the

overall polygon count in the early levels as efficiently as possible.

For mostly uniform and isotropic tessellations, the baseline strategy

is already quite effective. Another common strategy that we tested

is to split the set of polygons at their center-of-gravity along the axis

of largest variance. This leads to a more efficient subdivision when

tessellations or polygon distributions are less uniform. Practically,

only a subset of polygons should be used to determine the splitting

plane as otherwise the cost of finding the splitting plane exceeds

the actual splitting. Many more complicated strategies suffer the

same pitfall of costing more to compute than they save. The strategy

that we settled with for our implementation is simple but tries to

exploit the early-out behavior. The polygon soup 𝑆 is stored as a set

of soups 𝑆𝑖 with uniform WNTV.

• Compute center-of-gravity 𝑐𝑖 for each sub-soup 𝑆𝑖 .

• Consider the AABB planes 𝑝 of each other 𝑆 𝑗 :

• Add 𝑝 to splitting plane candidates if it separates 𝑐𝑖 from 𝑆 𝑗 .

• Return candidate with the farthest separation distance.

• Fall back to largest-variance-split if no candidate found.

This strategy largely keeps the łmedian splitž spirit but all candidates

guarantee that one subproblem will not contain 𝑆 𝑗 , thus increasing

the chances for early-out policies to act.

Towards the end of the subdivision, subproblems contain fewer

but larger polygons. This inevitably reduces subdivision efficiency,

as any polygon that intersects the splitting plane ends up in both re-

cursion branches. The result are two opposed trends:

10 20 30 40 50

threshold (face count)

0.0%
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More subdivisions lead to smaller

leaf subproblems and thus cheaper

per-leaf runtime. On the other

hand, the total number of poly-

gons of all leaf subproblems in-

creases, thus driving up the run-

time. The optimal tradeoff point is

hard to predict and depends on many factors. The inset shows our

experiments to determine the threshold based on our benchmark

data set. There is a optimum at 25 polygons, though the slowdown

is small enough that the exact value is not too important.

4.5.4 Parallel Implementation. Our method was carefully designed

so that each subdivision step is basically a pure function: The re-

sulting polygons of the current subproblem only depend on local

data. Further subdivision, BSP construction, and classification only

require the given polygon soups and the reference point with its

WNV. The overall recursive procedure is thus perfectly suited for

a work-stealing approach: A pool of threads holds a centrally syn-

chronized queue 𝑄 of subproblems. In each subdivision step, the

algorithm only recursively continues with one subproblem. The

other is added to 𝑄 . When idle, threads take and process a new

subproblem from 𝑄 . Once the first few subdivisions took place, 𝑄

contains enough subproblems to saturate the cores of any typical

workstation. This simple strategy already results in an effective

parallelization (cf. Section 5.3).

4.5.5 Important Implementation Details. As the final part of this

section, we mention a few implementation details that offer little in-

sight into the actual method but are nevertheless crucial to achieving

maximal performance.

Most high-performance computations end up being memory-

bound, either by latency or bandwidth. We made sure to minimize

allocations and re-use memory whenever possible. The subdivision

structure and purely local computation aided enormously: Once
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one branch of the recursion returns, all allocated memory in that

branch can be re-used.

Using the full 256 bit arithmetic everywhere is needlessly con-

servative. Various coefficients of axis-aligned planes and lines are

−1, 0, or 1. Many intermediate results can be safely computed with

reduced bit sizes. In contrast to arbitrary-precision integers, all

these constraints are known statically and are implemented using

individual types.

Naturally, we also exploit the common technique of doing con-

servative AABB checks wherever possible. In particular, segment

tracing always performs an AABB test before actually computing

any intersections.

5 EVALUATION

All benchmarks were performed on an Intel i9-9900K processor

at 3.60GHz (5.00GHz with boost). As the state-of-the-art methods

are multithreaded, we use our parallel implementation for compari-

son. The code was written in C++ compiled with clang-12, with

optimizations enabled at -O3.

5.1 Thingi10K Benchmark and Comparison

Representative performance benchmarks of CSG algorithms are

notoriously difficult to perform. To approximate real-world applica-

tions, we use the following setup: We take the Thingi10K [Zhou and

Jacobson 2016] data set as a set of real-world models with a broad

distribution of face counts, triangle anisotropy, and tessellation qual-

ity. A common benchmark choice is to compute a self-intersection

of each model with a slightly rotated version of itself. However, this

seems far removed from real-world CSG operations. As a better

alternative, we propose and use the following operation:

• Draw two random meshes from the data set.

• Apply a randomized transformation on both that results in

largely overlapping bounding boxes.

• Perform and measure a basic Boolean operation.

An example of this is shown in Fig. 15. This methodology is, in

our opinion, closer to real-world CSG usage. Each input pair con-

sists of meshes with different complexity, anisotropy, and tessella-

tion. The transformation ensures a healthy mix of intersecting and

non-intersecting mesh regions. A slightly rotated self-intersection

might stress-test the intersection handling of an CSG algorithm

but efficient handling of non-intersecting parts of a mesh is no less

important in a real-world setting.

While some methods, such as [Zhou et al. 2016] or ours, can

handle any PWN mesh, most others require stronger input assump-

tions. Thus, for the actual comparison, we restrict the data set to

1000 solid, manifold meshes without self-intersections with 1000

to 100 000 faces. The lower bound discards trivial meshes. Without

the upper bound, we ran into time and memory limits on our test

machine for some methods. In the supplemental material, we pro-

vide the complete benchmark data consisting of mesh ID pairs and

transformations.

We compare against QuickCSG [Douze et al. 2017], Cork [Bern-

stein 2013], CGAL [Hachenberger et al. 2007] (Nef, lazy exact),Mesh

Arrangements [Zhou et al. 2016], and Floating-point Mesh Arrange-

ments [Cherchi et al. 2020]. Note that the available implementation

1 ms

10 ms

100 ms

1 s

10 s

100 s

1.6 ms

17.9 ms

72.4 ms

138.8 ms

710.9 ms

3163.9 ms

8570.1 ms

Fig. 13. Timing histograms of various CSGmethods on 1000 pairs of meshes

from Thingi10K with 1000 to 100 000 faces. Non-exact methods are cross-

hatched. The colored horizontal lines show geometric mean performance.

Additional discussion is in Section 5.1. In particular, the reference implemen-

tation for floating-point mesh arrangements only includes self-intersection

resolution. Note the log scale on the vertical axis. Lower is better.

50 100 150 200 250

step in the milling simulation

1 ms

10 ms

100 ms

1 s

10 s

ours
(parallel)

ours
(single core)

OctreeBSP
[Nehring-Wirxel

et al. 2021]

CGAL 4.12

CGAL 5.4

Mesh Arr.

Float
Mesh Arr.Cork

CK10

Fig. 14. Benchmark timings for an iterated CSG scenario where a drill bit

is repeatedly subtracted from a workpiece. Original benchmark and mesh

data provided by [Nehring-Wirxel et al. 2021] (cf. their Figure 13, Figure 14,

and corresponding discussion). The dip at the end (most notable in our

single core version) is due to the drill bit leaving the workpiece. Note the

log scale on the vertical axis. Lower is better.

for [Cherchi et al. 2020] only includes self-intersection resolution,

not the actual classification and thus CSG operation. Resolving self-

intersections was the bottleneck for the original mesh arrangements,

though this might not be the case anymore considering the perfor-

mance difference. Also, for the benchmark of this method only,

the code was compiled with gcc-10 as required by the reference

implementation.
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𝐴 − 𝐵 Mesh A: 29 472 faces

Mesh B: 2568 faces

Result: 48 750 faces

ours: 3.86ms

QuickCSG: 36.46ms

Mesh Arr.: 9578.03ms

Fig. 15. Example from our test data set based on Thingi10K. Here, we only

compare against QuickCSG [Douze et al. 2017] and Mesh Arrangements

[Zhou et al. 2016]. All implementations are multithreaded and the tests

were performed on the same machine. Note that only Mesh Arrangements

and our method produce exact results.

Of all compared methods, only ours, the two mesh arrangements,

and CGAL are exact. QuickCSG and Cork regularly produce topo-

logically and geometrically incorrect results, sometimes catastrophi-

cally so. Especially degenerate or close-to-degenerate configurations

tend to fail.

Traditionally, exact methods are at least one order of magni-

tude slower compared to inexact CSG methods. The benchmark

in Fig. 13 shows that we have reversed the situation: Our method

is roughly one order of magnitude faster than the fastest inexact

CSG method we compared against. The geometric mean is 1.6ms

per mesh Boolean. The corresponding input size is roughly 20 000

faces. Over the whole benchmark, we process about 15 000 000 input

triangles per second.

Fig. 14 shows per-step timings for the milling simulation of

[Nehring-Wirxel et al. 2021] (their Figure 13 and 14). This iterated

CSG scenario is particularly challenging because the inputs have

asymmetric complexity. The workpiece becomes extremely com-

plicated while the drill bit is small and low-poly. The method of

[Nehring-Wirxel et al. 2021] deals with this gracefully by keeping

BSPs with bounded complexity embedded in a persistent octree data

structure. However, Boolean operations on BSPs are significantly

more expensive than our approach, which allows us to outperform

their method even if the subdivision structure has to be recomputed

in each step. For future work, we anticipate that keeping our im-

plicit 𝑘d-tree persistently and not rebuilding it each step will provide

another substantial boost of performance.

5.2 Performance Breakdown

Fig. 16 shows the contribution of various steps of our algorithm

to the total runtime as distributions over the benchmark data set.

At a high level, our method consists of subdivision and leaf steps.

Typically, the leaf computation is twice as expensive as the subdi-

vision, though this can vary significantly depending on the actual

task: Meshes with many non-intersecting parts profit immensely

from subdivision early-outs and require less leaf computation.

The subdivision itself mainly consists of splitting polygons against

the splitting plane. While not expensive per polygon, the extreme

number of times this has to be performed adds up. Computing the

splitting plane can be expensive if strategies iterate over all poly-

gons. However, this can often be limited by considering a bounded

subset. Updating the reference WNV requires a segment trace over

update reference WNV

compute split plane

split polygons

subdivision breakdown

subdivision

leaf

0% 20% 40% 60% 80% 100%

classify
result polygons

local bsp
construction leaf breakdown

Fig. 16. Relative distribution of runtime performance over our benchmark

data set. In most configurations, twice as much time is spent in leaf nodes

as in the subdivision. Subdivision itself is dominated by polygon splitting. In

the leaf nodes, tracing classification segments is almost twice as expensive

as computing and resolving pairwise intersections.

0 ms 2 ms 4 ms 6 ms 8 ms 10 ms

all

naive
median-split

no leaf NNC-NSI
assumptions

no classify
fast-path

no subdivision
early-out

Fig. 17. A small ablation study to show the runtime impact of disabling

various optimizations individually. Timing distribution is shown over our

benchmark data set.

all subproblem polygons. Perhaps surprisingly, this barely shows

up on the profile. These traces tend to be axis-aligned and lie at the

AABB border, which makes them extremely efficient.

The biggest contributor to the leaf computation is the polygon

classification, i.e. tracing segments towards the reference WNV.

Resolving pairwise intersections and building per-face BSPs takes a

strong second place.

Fig. 17 complements this breakdown with an ablation study. Var-

ious configurable optimizations are individually disabled to show

their effect on the total runtime. The two biggest gains are clas-

sify fast-paths (cf. Fig. 5 vs. Fig. 10) and early termination during

subdivision (cf. Fig. 11 and Fig. 12).

5.3 Parallelization

The parallelization using work-stealing as described in Section 4.5.4

scales reasonably well. Fig. 18 (a) shows the speedup factor depend-

ing on the number of threads. For a CPU with 8 physical cores,

scaling beyond 8 threads has diminishing returns and is mostly lim-

ited to hyperthreading. A fully linear scaling is difficult to achieve in

practice as many parts of our method bottleneck on memory band-

width, not computational power. Furthermore, Fig. 18 (b) shows
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Fig. 18. (a) Scaling of our method depending on the number of threads on

a CPU with 8 physical cores. The speedup is substantial but not fully linear

as memory bandwidth becomes saturated and the beginning of our method

has limited scaling. Variation across test data set is shown in light blue.

(b) Representative performance profile of our parallelization using work-

stealing with subdivision tasks (green) and leaf tasks (red). Each subdivision

task results in two more tasks. As there is only one initial task, full paral-

lelization is only achieved after a few subdivisions.

an example profile of the work-stealing approach. We start with a

single subdivision task that spawns two new tasks, which spawn

another two tasks each. Thus, the start of our method has a certain

łburn-inž phase until it reaches full parallelism. Still, a speed-up of

5.5× on an 8-core CPU is an adequate result.

5.4 Examples

We conclude our evaluation with several examples and applications.

Fig. 19 shows Booleans between a few larger models with timings.

As each result polygon is a subset of an input polygon, barycen-

tric weights can be used to transfer additional input attributes to

the output as shown in Fig. 20 with texture coordinates. The WNV

dimension does not have to correspond to the number of input

meshes. In Fig. 21, we use 𝑧 ∈ Z as WNVs with a WNTV of 1. The 𝑧

thus corresponds to how many input surfaces a position is inside of.

0 → 1 transitions are the outermost łlayerž, 1 → 2 the second layer,

and so on. Fig. 22 shows the intersection of an organic model with

a dense grid of cubes. In Fig. 23, we demonstrate the robustness

and correct handling of various special cases. An example where a

linear amount of input faces can lead to quadratically many output

faces is shown in Fig. 24. Similarly, challenging is Fig. 25 where

a configuration of cubes has up to 20 coplanar faces at the same

location. In Fig. 26, we show the different tessellations produced

by various methods for mesh Booleans. Many methods create tri-

angulations with many thin triangles and high-valence vertices.

As an interesting trade-off, our method generally produces more

output faces and low-valence vertices. In particular, the subdivision

structure ensures that intersections only have local influence on the

tessellation.

6 LIMITATIONS AND FUTURE WORK

Technically, our method can only be considered exact if input and

output are in integer homogeneous coordinates subject to the fixed-

width precision limits. Conversions to and from this format typ-

ically incur quantization steps that might re-introduce tiny self-

intersections, though this is basically a problem of every algorithm

interfacing with a floating-point world. However, as the output of

our method can be used as its input again, iterated CSG operations

can be performed without intermediate loss of precision.

We require no input topological information and process a soup

of convex polygons. In particular, the output is not triangulated and

contains T-junctions. As our method is exact, topological informa-

tion can be recovered as a post-process. However, it should also be

possible to track all required information during subdivision and

reconstruct the topology on-the-fly.

While our method is already extremely fast, there are still several

improvements we would like to investigate in the future. The par-

allelization has a certain burn-in phase that could be removed by

starting multiple statically pre-clipped tasks. Additionally, there is

still untapped potential in reducing the number of segment traces

needed in leaf tasks. We already exploit various early-out opportu-

nities. However, for large CSG trees and special use cases such as

milling simulations, even more high-level knowledge could be used

to speed up the operation. At a certain point, the WNV dimension

might become so large that it warrants further optimization.

7 CONCLUSION

We have introduced a novel method, called EMBER, for computing

mesh Booleans in a way that is exact, reliable, and extremely per-

formant. Exactness follows from plane-based geometry using the

integer homogeneous coordinates of [Nehring-Wirxel et al. 2021].

We extend their formulation to account for segments and polygons.

Our classification is based on generalized winding number vectors

(WNVs), which robustly handle any Boolean operation, including

variadic ones and various special cases. Here, we introduce winding

number transition vectors (WNTVs) that enable a localized segment

tracing of WNVs. During subdivision, we always keep and trace a

local reference position with known WNV. In the leaf computation,

we can always trace segments to this local reference to classify

results. Intersections are resolved by constructing face-local BSPs.

The high performance of our method is owed to the fast fixed-width

integer homogeneous coordinates, the localized handling of inter-

section resolution and classification, exploiting various early-out

opportunities, and a well optimized multithreaded implementation.

Our evaluation on the Thingi10K data set shows that our method

is orders of magnitude faster than the state-of-the-art, even inexact

ones. A Boolean operation with 20 000 input faces takes only 1.6ms

on average.

We believe that our method enables previously intractable ap-

plications. At a speed of several million triangles per second and

guarantees of exactness and robustness, mesh Booleans can now be

used universally as a building block without reserve.
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5002 ∩ 345 944, 9ms 350 328 ∩ 1 194 952, 48ms 221 416 − 5002, 5ms 345 944 ∩ 111 642, 15ms 674 038 − 221 416, 18ms

138 380 ∩ 111 642, 16ms 290 080 − 157 726, 10ms 348 128 ∩ 221 416, 12ms 5002 − 290 080, 5ms 153 456 − 122 880, 3ms

Fig. 19. Example outputs of our method with number of faces per transparent input and timings. Models from Thingi10K and the Stanford Scanning Repository.

− =

Fig. 20. Because we can identify the corresponding input polygon for each

output polygon, properties like texture coordinates can easily be transferred

from the input to the output.

Fig. 21. WNV can be used to implement various variadic operations effi-

ciently. In this example, we have a collection of spheres and extract the solid

contained in at least 1, 2, 3, or 4 spheres (left-to-right). As we’re computing

the WNTV of each polygon, we can extract all layers at the same time. This

example of 32 000 input triangles takes 15ms.

787623 by dungbeetle24, 807591 by adafruit, 1081535 by ye3d. Model

and texture of Fig. 20 are from [Sanchez 2021].
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Fig. 23. Small collection of various corner and overlap cases. Includes chal-

lenges like coplanar faces and exact edge hits. The results are shown with

transparency to demonstrate that no surface is emitted twice and the interior

is empty.
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Fig. 24. 10-by-10 beams whose intersection produce 100 cubes. This shows

a worst-case configuration: Linear input complexity produces quadratic out-

put. For 20-by-20 beams, our method takes 4.5ms, while mesh arrangements

takes 18 018ms, floating-point mesh arrangements 1556ms, CGAL 4.12

6465ms, and CGAL 5.4 941ms. The non-exact methods produce severely

corrupted results.

Fig. 25. Intersection of 20 cubes that share the same top and bottom plane,

thus creating regions with up to 20 overlapping polygons at the same posi-

tion. This case is extremely challenging and many optimizations are inef-

fective. Though consisting of only 240 triangles, this example takes 5.9ms

to compute with our method. Mesh arrangements takes 58 280ms and

floating-point mesh arrangements 5620ms.

(a) 𝐴 − 𝐵 (b) CGAL (c) Cork

(d) Mesh Arr. (e) QuickCSG (f) ours

Fig. 26. Closeup of a mesh difference and the tessellations produced by var-

ious methods. CGAL, Cork, and Mesh Arrangements create triangulations,

we emit a soup of convex polygons, andQuickCSG even concave ones.
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