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Abstract

State of the art quadrangulation methods are able to reliably and robustly convert triangle meshes into quad meshes. Most of
these methods rely on a dense direction field that is used to align a parametrization from which a quad mesh can be extracted.
In this context, the aforementioned direction field is of particular importance, as it plays a key role in determining the structure
of the generated quad mesh. If there are no user-provided directions available, the direction field is usually interpolated from
a subset of principal curvature directions. To this end, a number of heuristics that aim to identify significant surface regions
have been proposed. Unfortunately, the resulting fields often fail to capture the structure found in meshes created by human
experts. This is due to the fact that experienced designers can leverage their domain knowledge in order to optimize a mesh
for a specific application. In the context of physics simulation, for example, a designer might prefer an alignment and local
refinement that facilitates a more accurate numerical simulation. Similarly, a character artist may prefer an alignment that
makes the resulting mesh easier to animate. Crucially, this higher level domain knowledge cannot be easily extracted from local
curvature information alone. Motivated by this issue, we propose a data-driven approach to the computation of direction fields
that allows us to mimic the structure found in existing meshes, which could originate from human experts or other sources. More
specifically, we make use of a neural network that aggregates global and local shape information in order to compute a direction
field that can be used to guide a parametrization-based quad meshing method. Our approach is a first step towards addressing
this challenging problem with a fully automatic learning-based method. We show that compared to classical techniques our
data-driven approach combined with a robust model-driven method, is able to produce results that more closely exhibit the
ground truth structure of a synthetic dataset (i.e. a manually designed quad mesh template fitted to a variety of human body
types in a set of different poses).

CCS Concepts
• Computing methodologies → Shape analysis; Neural networks; Mesh models;

1. Introduction

Mesh quadrangulation, i.e. the process of converting a given trian-
gle mesh into a quadrilateral mesh, is a fundamental problem in
computer graphics and geometry processing with applications in
character animation and physics simulation. Unfortunately, quad-
rangulating a given triangle mesh by hand is both labor-intensive
and cumbersome, as it requires a user to manually place individual
quads on the surface of the input mesh. Because of this, a number of
authors have proposed fully automatic quadrangulation techniques
[BZK09; BCE*13; CBK15; JTPS15].

These fully automatic techniques work well on input shapes for
which a meaningful alignment of quads can be computed from lo-
cal curvature information. They do, however, encounter problems
when faced with shapes that do not offer strong curvature guidance.
The problem is exacerbated by the fact that, depending on the ap-
plication, a designer might prefer an alignment that is not directly
related to principal curvature directions. In the context of character
modeling and animation, for example, artists usually place addi-

tional edge loops around surface regions that are likely to deform,
such as the eyes or mouth of a human character. Furthermore, ir-
regular vertices are often placed in approximately planar regions
in order to hide visual artifacts. For numerical simulation on quad
meshes, designers align and specify different sizes of quads based
on their expert knowledge on how simulation solvers behave. It is
unclear how exactly the local curvature information relates to the
expert knowledge in these various domains.

To address this issue, a number of authors have proposed meth-
ods that incorporate user-guidance into the remeshing process. The
method presented in [TPSS13], for example, enables users to define
patch layouts using a sketch-based interface. Similarly, the tech-
niques described in [JTPS15; ESCK16] allow users to override the
edge flow of an automatically generated quad mesh using brush-
strokes. A common drawback of these methods is that querying a
user repeatedly for guidance can be somewhat time-consuming.

We present a data-driven approach that does not require any
user-guidance. Our method learns the structure present in exist-
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ing meshes, which allows for the generation of quad meshes that
exhibit many features typically reserved to manually created ones.
To this end, we combine a field-guided quadrangulation technique
with a neural network that infers direction fields from unstruc-
tured triangle meshes. We prefer these continuous outputs instead
of directly inferring a quad mesh from a neural network, since this
would require the network to make a series of discrete decisions
(each of which can have catastrophic effects on the final output).
A state-of-the-art quadrangulation method can then robustly com-
pute a quad mesh from the triangle mesh and the network inferred
direction field.

Contribution We investigate which type of direction field best
captures the structure found in manually created quad meshes.
Based on our findings, we propose a neural network that infers
frame fields from unstructured triangle meshes. Furthermore, we
present a number of loss functions that can be used to train our
network. We demonstrate the applicability of our approach on the
challenging task of remeshing human characters models and com-
pare our results with those obtained using three existing curvature-
based methods. Our experiments show that our method performs
favorably. Using an ablation study, we validate our design choices
for the neural network and the losses.

2. Related Work

Geometric Deep Learning Neural Networks that work on dif-
ferent 3D shape representations as input are well established.
Input representations and corresponding network architectures
range from learning on 2D maps of 3D shapes [SMKL15;
SBR16; MGA*17], over (sparse) voxel representations [MS15;
GEvdM18; WSLT18], and point set methods [ZKR*17; QSMG17;
QYSG17; AML18; TQD*19], to techniques that treat 3D shapes
as graphs [WSS18; WSL*19; HHF*19] or learn on curved sur-
faces directly [MBBV15; MBM*17; FLWM18]. We cannot give a
complete overview here and refer to [BBL*17; XLZ*20] for more
detailed surveys. In this work we encode global and local shape
information with architectures based on PointNet [QSMG17] and
SpiralNet [LDCK18] respectively.

Quad Meshing Methods The computer aided generation of quad
meshes has been an extensively researched topic in the past years.
Methods range from fully automatic pipelines to interactive ones
that require a user to specify most of the quad mesh geometry and
connectivity by hand. A great overview of existing methods can be
found in [BLP*13].

Of particular interest are field guided quad meshing algorithms
[KNP07; BZK09; BCE*13; CBK15; JTPS15; HZN*18; FBT*18;
LCBK19] which yield high quality results by dividing the process
into two steps. In the first step a guiding field is generated which
specifies the position and degrees of irregular vertices as well as
the desired orientation and sizing of the resulting quad elements.
The second step computes a parametrization that aligns its gradi-
ents with the specified directions of the guiding field and whose
integer iso-lines define the edges of the resulting quad mesh. The
quality of the results depends largely on the guiding field for which
many methods have been proposed [BZK09; KCPS13; CIE*16;

PPTS14; JFH*15; DVPS15]. All these methods have in common
that the desired alignment is derived from the surface geometry –
mainly its curvature. This works well on shapes where alignment to
principal curvature is sufficient. For cases where a user may desire
different alignment, user input can be considered during field gen-
eration. This works particularly well with the methods proposed in
[ESCK16; JTPS15] that provide quick results enabling interactive
workflows. These methods allow the user to manually place singu-
lar vertices, and to specify general edge alignment or even explicit
edge loops connecting the singularities. Due to the robustness and
reliability of these methods as well as the high quality of the results
that can be achieved by them, we make use of such a field guided
quad meshing method [CBK15] in this work.

Other interactive quad meshing methods require the user to par-
tition the surface into patches which are then filled with suitable
quad grids [NSY09; TPSS13; PBJW14; TPS14]. CAMPEN et al.
propose in [CK14] a quad meshing algorithm which requires the
user to specify the dual loops of the desired mesh. These interac-
tive methods have in common that, while they do provide detailed
and explicit control of the resulting mesh, they also require exten-
sive user input which increases the overall time required to generate
quad meshes.

Data-driven Remeshing The data-driven quadrangulation
method by MARCIAS et al. in [MTP*15] is related to this work in
the sense that they also aim to extract domain knowledge encoded
in existing quad meshes for the alignment and placements of
quads on input shapes. However, they only extract and compare
individual patches of quads. Furthermore, their method requires
the user to specify the boundaries of these patches manually, which
can then be filled with quads automatically. In contrast our method
takes the complete shape into account and requires no user interac-
tion. More recently, a number of deep learning based approaches
have been presented that guide remeshing processes. In order to
learn mesh-based simulation PFAFF et al. learn a sizing field for
a given input triangle mesh for adaptive refinement in [PFSB20].
In our work we do not just learn a sizing field but a frame field
which incorperates both sizing and directional information for
the purpose of quadmeshing. LIU et al. learn the position of new
vertices created by a subdivision step in [LKC*20]. Their method
only has to consider local shape information for the subdivision
scheme. In contrast, our network has to consider both local and
global shape information since a correct and coherent alignment
and sizing of quads also depends on the global properties (e.g.
symmetry).

The task of learning a frame field has been investigated by GI-
RARD et al. in [GSST20]. In their work, GIRARD et al. train a neu-
ral network that infers a frame field from satellite images in order
to regularize the segmentation of buildings in the images and ex-
traction of 2D polygons that describe their contours. In this work
we consider frame fields on 3D shapes, while their method predicts
frame fields on a 2D regular grid.

3. Learning Direction Fields

Given an unstructured triangle mesh T, our goal is to generate a
quad mesh Q that not only represents the same shape as T, but
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Figure 1: Quad meshes generated using different types of direction fields. From left to right: unit cross field, unit frame field, cross field,
frame field, ground truth.

also exhibits the structure found in meshes created by domain ex-
perts. Directly outputting such a quad mesh is a non-trivial task
that would require the network to generate a valid mesh topology
which is difficult due to global consistency requirements. As a con-
sequence, we propose using a neural network to compute a direc-
tion field that can be fed to an existing field-guided parametrization-
based quadrangulation technique (cf. Section 2). For these direction
fields no global consistency requirements exist. While the compu-
tation of e.g. an integrable direction field would be desirable as it
would enable the meshing algorithm to compute a perfectly aligned
quad mesh, this is not strictly necessary and the algorithm will sim-
ply produce a quad mesh that is aligned to the field as much as
possible. Thus, this approach allows us to control the structure of
the resulting mesh Q using a direction field that can be more easily
inferred by a network operating on the input mesh T.

3.1. Representation

The question arises as to which type of direction field should be
used to specify the desired size and orientation of the to be gener-
ated quads. Most commonly, this is done using a (possibly scaled)
cross field [BZK09; KCPS13] or frame field [PPTS14; JFH*15;
DVPS15]. To determine which of these fields is most suitable for
our task at hand, we quadrangulate a given triangle mesh T us-
ing different ground truth fields and compare the resulting quad
meshes. More specifically, we use the Skinned Multi-Person Lin-
ear Model (SMPL) [LMR*15] as a representative input shape and
consider both unit and non-unit cross fields and frame fields. To
obtain a mesh Q that contains only quads, we apply one iteration
of Catmull-Clark subdivision [CC78] to the quad-dominant SMPL
mesh. The corresponding triangle mesh T is generated by splitting
each quad of Q into two triangles. To compute two ground truth
directions u,v for a given face f of T , we first project the barycen-
ter p of f onto the surface of Q. Let p′ be the projection of p onto
Q and f ′ be the face of Q that contains p′. We use p′ to compute
the shortest distances d1,d2,d3,d4 of p′ to the edges e1,e2,e3,e4
depicted in Figure 2 (left). The distances d1,d2,d3,d4 are used to
interpolate between the edges of f ′, i.e. the ground truth frame field
directions u and v are obtained as follows:

u =
d3

d1 +d3
e1 +

d1
d1 +d3

e3, v =
d4

d2 +d4
e2 +

d2
d2 +d4

e4

Figure 2: The vertices and edges used to compute a ground truth
frame field (left) and the resulting frame field vectors for different
sample points p′ (right).

To obtain a cross field, we orthogonalize the vectors u and v for
every face of T. To obtain a unit field, we normalize both u and v.

Quadrangulation results are shown in Figure 1. As expected,
the unit direction fields (A, B) lead to meshes with significantly
more uniform edge lengths than their non-unit counterparts (C, D).
This is of course due to the fact that a unit direction field can-
not represent varying magnitudes and therefore forces all generated
quads to be approximately the same size. Regarding the results ob-
tained using the two non-unit fields (C, D), we observe that both of
these fields lead to meshes that closely resemble the ground truth
mesh (E). However, the inability of cross fields (C) to represent
anisotropic quad sizes introduces some distortion, which is partic-
ularly evident in the quads located on the nose and forehead. As a
consequence, we conclude that frame fields (D) are best suited to
capture the structure found in quad meshes created by professional
artists.

3.2. Network Architecture

Motivated by the results presented in the previous section, our pro-
posed network should infer frame fields from unstructured trian-
gle meshes. Previous work on field-guided quadrangulation tech-
niques has highlighted the importance of aligning direction fields
with principal curvature directions and other local surface features
such as sharp edges. We therefore believe that our proposed net-
work should have access to the local geometry of the input mesh
T. That being said, some of the most noticeable characteristics of

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



A. Dielen, I. Lim, M. Lyon, L. Kobbelt / Learning Direction Fields for Quad Mesh Generation

Local Network
(SpiralNet)

concatenate
Global Network

(PointNet)

Reference
Frame

MLP

1
0

2
4

n
x
1

0
2

4
n
x
1

2

n
x
2

x
2

Inputs Neural Network Output Frame Field Quad Mesh

Figure 3: Our network combines information from three sources to infer a frame field for a given input mesh: a global network that operates
on a point cloud representing the entire input shape, a local network that operates on patches centered around individual triangles for which
a frame is to be inferred, and a set of reference frames that describe the position and orientation of the aforementioned triangles. In the
illustration above, n denotes the number of triangles in a batch and every batch originates from a single input mesh, which allows us to run
the global network only once per batch. The network output with shape n×2×2 is interpreted as a pair of 2D vectors for each of the n input
triangles. These vectors are subsequently used to guide the parametrization-based quadrangulation method described in [CBK15].

manually created quad meshes cannot be explained using local sur-
face properties alone. An example of this are the edge loops placed
by character artists around surface regions that are likely to deform.

As a consequence, our proposed network follows a dual strat-
egy that is based on the idea of combining both local and global
shape information. More specifically, we combine the outputs of
a local feature network L and a global feature network G using
a Multi-Layer Perceptron (MLP) P. As can be seen in Figure 3,
we also provide P with a reference frame that describes the posi-
tion and orientation of every input triangle. The primary purpose
of these frames is to provide the network with a set of local coor-
dinate systems in which the output directions should be expressed
(cf. [VCD*16, §5.2]). Specifically, the reference frame for a face f
consists of the barycenter p ∈ R3 (in absolute coordinates) and the
unit vectors x f ,y f ,n f ∈ R3 of f , where x f corresponds to one of
the edges of f , n f is the normal of the supporting plane of f and
y f = n f ×x f . The output of P is a frame field represented using two
vectors u f ,v f ∈ R2 for every input triangle f , where both u f and
v f are interpreted w.r.t. the local tangent frame defined by x f and
y f . Since we assume a dataset of aligned shapes, we forego special
consideration of rotational invariance for our reference frames and
networks.

The global network G is based on the PointNet architecture pre-
sented by QI et al. in [QSMG17]. Following QI et al., we use a se-
quence of five fully-connected network layers with ReLU [NH10]
activation functions. However, unlike QI et al., we do not use either
of the two alignment networks described in [QSMG17], as they do
not appear to have a measurable effect on the performance of our
network due to the alignment of training shapes. The input to G
consists of the 32000 vertices of the input mesh T , where each ver-
tex is represented using its 3D position and normal.

The local network L is based on the SpiralNet architecture that

was originally presented by LIM et al. in [LDCK18]. In their work,
LIM et al. propose to encode the neighborhood of a given vertex v0
using a sequence of vertices [v0,v1, . . . ,vk−1] that extends outwards
from v0 in a spiral manner until a predetermined number of vertices
k have been enumerated. The obtained sequences are then mapped
to a new representation using either an LSTM [HS97] cell or a
fully-connected network layer. We process sequences using fully-
connected layers, since the resulting network can be trained signif-
icantly faster and is only marginally less powerful. More specifi-
cally, the network L consists of four spiral layers. Each layer takes
a sequence of k = 20 vertices as input and produces an intermediate
representation consisting of 16, 256, 512 and 1024 features respec-
tively. The first three layers use the spiral sequences to compute
feature vectors for each mesh vertex. Since our goal is to compute
a feature vector for every triangle of the input mesh (in order to
output a frame per face), the last layer operates on sequences that
are centered around the triangles. To center a sequence around a
given triangle, we set the first three sequence elements to the ver-
tices that make up the triangle in question and then extend this se-
quence using the method described in [LDCK18]. Analogous to the
global network G, we represent each input vertex using its 3D po-
sition and normal, i.e. the first layer of L operates on sequences of
6-dimensional point features.

Furthermore, we subtract the center element of every sequence
from all remaining sequence elements. Thus, given a sequence
[v0,v1, . . . ,vk−1] of length k that is centered around a vertex v0,
we instead use the modified sequence [v0,v1−v0, . . . ,vk−1−v0]. If
the vertices in a sequence are represented using their positions and
normals, as in the case of the vertices in the bottommost spirals, we
apply the centering only to the positions and leave the normal vec-
tors as they are. For sequences that are centered around a triangle
f , we subtract the barycenter p = 1

3 (v0 + v1 + v2), where v0,v1,v2
are the three vertices that make up f , from all sequence elements.
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Figure 4: An example of our remeshing procedure that ensures that the edges of a mesh fed into our network are not aligned with the
corresponding ground truth quad mesh. Also shown is a visualization of the expected reconstruction error caused by our data generation
process. From left to right: the twice subdivided quad mesh Q′, the isotropically remeshed triangle mesh T ′, the decimated triangle mesh T ′′

that is fed into our network, a quad mesh that was reconstructed from T ′′ using a ground truth frame field (GTF), the actual ground truth
mesh (GT).

3.3. Loss Functions

To ensure that our loss function L penalizes both direction and size
errors in a balanced manner, we split L into a direction loss Ld and
a size loss Ls:

L(u,v, û, v̂) = Ld(u,v, û, v̂)+Ls(u,v, û, v̂) (1)

Our direction loss is based on the von Mises distribution [MJ09]
that approximates a normal distribution wrapped around a unit cir-
cle. In [BHL15], BEYER et al. use the von Mises distribution to
formulate a loss for angle-based outputs θ and targets θ̂ that is in-
variant w.r.t. rotations of 2π radians:

Lvm(θ, θ̂) = 1− eκ(cos(θ−θ̂)−1) (2)

Since a frame can be seen as two independent directions with π

symmetry each, we modify the loss in Equation (2) by doubling the
frequency of the cosine term. This makes the resulting loss invari-
ant w.r.t. rotations of π radians:

L2x
vm(θ, θ̂) = 1− eκ(cos(2(θ−θ̂))−1) (3)

Furthermore, we adapt L2x
vm to vector-based network outputs and

targets using the double angle formula:

L2x
vm(y, ŷ) = 1− eκ(2(y·ŷ)2−2), (4)

where both y and ŷ are assumed to have unit length. We formulate
a per-triangle loss using the sum of two evaluations of L2x

vm:

L2x
vm(u,v, û, v̂) = L2x

vm(u, û)+L2x
vm(v, v̂) (5)

As an alternative, we can also formulate a direction loss that is
based on the representation of frame fields using unit complex num-
bers [KCPS13; DVPS15]. Interpreting a network output y and its
corresponding ground truth target ŷ as unit complex numbers has
the advantage that squaring both y and ŷ removes any ambiguity
w.r.t. their orientation, i.e. y2 = (−y)2 and similarly ŷ2 = (−ŷ)2.
We use this property to formulate a complex cosine loss that mea-
sures the cosine similarity of y2 and ŷ2:

Lcc(y, ŷ) = 1− (y2 · ŷ2), (6)

where both y and ŷ are assumed to be normalized. Analogous to
Equation (5), the complex cosine loss for a given triangle can then
be expressed as follows:

Lcc(u,v, û, v̂) = Lcc(u, û)+Lcc(v, v̂), (7)

For our size lossLs, we compute the absolute difference between
the magnitudes of the network outputs u,v and the target vectors
û, v̂:

Labs(u,v, û, v̂) = |‖u‖−‖û‖|+ |‖v‖−‖v̂‖| (8)

Alternatively, we also consider a relative size loss that expresses
the same quantity w.r.t. the magnitudes of the target vectors û, v̂:

Lrel(u,v, û, v̂) =
∣∣∣∣‖u‖−‖û‖‖û‖

∣∣∣∣+ ∣∣∣∣‖v‖−‖v̂‖‖v̂‖

∣∣∣∣ (9)

During training, we match the network outputs u,v and ground
truth targets û, v̂ using min(L(u,v, û, v̂),L(v,u, û, v̂)). This is nec-
essary because the network cannot know the expected order of its
outputs. Furthermore, we compute the loss for an entire batch of
triangles using the mean of the loss function defined above.

4. Dataset

We train our network on the meshes of the Dynamic FAUST
(DFAUST) [BRPB17] dataset that consists of 10 human subjects
performing a variety of motions. Strictly speaking, the DFAUST
dataset consists of triangle meshes. However, each of these trian-
gle meshes was created by registering the quad-dominant SMPL
[LMR*15] mesh with a given 3D scan and then splitting each quad
into two triangles. As a consequence, we can recover the original
quad meshes by combining the topology of the SMPL mesh with
the vertex coordinates of the DFAUST meshes. Subsequently ap-
plying one iteration of Catmull–Clark subdivision [CC78] to the
recoverd meshes gives us a set of more than 40000 meshes that
contain only quads.

To ensure that our network does not simply learn to align its
outputs with the edges of the input mesh, we remesh every input
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Figure 5: An illustration of the reconstruction error incurred by our method as a result of our data generation process. From left to right:
the remeshed network input (T ′′), a quad mesh reconstructed for T ′′ using the ground truth frame field (GTF), a quad mesh reconstructed
for T ′′ using our inferred frame field (Ours), the actual ground truth quad mesh (GT). As can be seen, some of the more intricate features
such as the edge loops around the fingernails cannot be reconstructed using our input triangle mesh and ground truth frame field. Despite
this, our network is able to infer similar sizes and directions.

mesh as follows: Given a ground truth quad mesh Q, we first apply
two iterations of Catmull–Clark subdivision [CC78] to Q in order
to generate a higher resolution mesh Q′. Next, we triangulate Q′ to
obtain a triangle mesh T. The mesh T is then remeshed using the
isotropic remeshing method described in [BK04] and a sufficently
small target edge length (0.004 in our experiments). As illustrated
in Figure 4 (left, center left), remeshing T ensures that the result-
ing mesh T ′ no longer contains any edge of Q or Q′. To reduce the
computational costs associated with processing T ′, we decimate T ′

to 64000 triangles using the incremental decimation approach pre-
sented in [KCS98]. The resulting mesh T ′′ is shown in Figure 4
(center) and the corresponding ground truth frame field is computed
using the quad mesh Q and the method described in Section 3.1.
Note, that remeshing Q and then projecting the barycenters of T ′′

back onto Q can reduce the quality of the generated ground truth
frame field. This can be due to a coarser triangle mesh T ′′ (offering
fewer degrees of freedom) or slight projection inaccuracies. How-
ever, as shown in Figures 4 and 5, the quad meshes generated using
these fields still exhibit most of their original structure.

We split the DFAUST dataset into a training, validation and test
set such that the test set does not contain any subject that is also
included in the training and/or validation set. This addresses the is-
sue that many sequences include meshes where the subject assumes
an approximately neutral pose. As a consequence, the inclusion of
the same subject in both the test and training set, would lead to a
significant overlap that is likely to distort our evaluation. Further-
more, the test set should contain both a male and a female sub-
ject in order to be approximately representative of both the original
dataset and the range of expected network inputs. However, with-
holding two subjects for testing purposes reduces the amount of
available training meshes significantly. Because of this, we select
the male and female subjects with the smallest number of meshes,
namely the subjects with the IDs 50009 and 50020, to make up
our test set. For our validation set we opt to withhold a subset of se-
quences of the remaining subjects. The withheld sequences should
include a sufficiently large range of motions, but should not restrict
the variety of poses in the remaining meshes too much. We find the
light_hopping_stiff and one_leg_loose sequences to

fulfill these requirements and therefore select them to form our val-
idation set.

5. Results

To evaluate our proposed approach, we trained the network de-
scribed in Section 3.2 for 130 epochs on the approximately 31000
training examples of the DFAUST dataset. More specifically, we
used the Adam [KB15] optimizer with β1 = 0.9, β2 = 0.999 and
a learning rate of 6.25×10−5. After each epoch, we reduced the
learning rate by a factor of 0.95. Furthermore, we inferred all frame
fields using the network weights that performed best on our vali-
dation set and generated the quad meshes shown throughout this
section using the inferred fields and the quadrangulation technique
described in [CBK15].

As can be seen in Figure 6, our approach produces meshes that
capture many semantic features. The mouth, eyes and ears, for ex-
ample, are all clearly defined and easily recognizable across a wide
variety of input shapes, which is of course due to the fact that the
meshes used to train our network exhibit these characteristics as
well. As a consequence, our approach also generates meaningful
topology for other input regions, such as the upper bodies and backs
of human characters. For this to work, the frame fields inferred us-
ing our network have to induce singular vertices in appropriate lo-
cations on the respective input shapes. We find that this works par-
ticularly well in regions where singularities are located far apart,
but could be improved in regions where many singularities are lo-
cated in close proximity.

We also evaluate our method on the FAUST [BRLB14] dataset
that contains a number of subjects not included in the larger
DFAUST dataset. To this end, we first remesh the FAUST meshes
using the method described in Section 4 and then generate frame
fields and quad meshes using our network trained on the DFAUST
dataset. Results are shown in Figure 7. As can be seen, our network
generalizes quite well to these inputs.

For shapes that are increasingly different from our training set,
we show quad meshes computed based on the inferred frame fields
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Figure 6: Examples of quad meshes generated using frame fields inferred by our network. As can be seen in the images above, the quad
meshes generated using our approach capture many semantic features, such as the eyes, ears, and mouths of the depicted subjects.

Figure 7: Examples of quad meshes generated using our approach for triangle meshes from the FAUST [BRLB14] dataset. Just as in Figure 6,
our network has never seen these subjects during training.

in Figure 8. On the left we show our result on a realistic model
of a child (note that our training set consists of adults only). Here
the resulting quad mesh is of a similar quality to the ones obtained
on our test set. For the more stylized character (center left) with
fairly exaggerated proportions, the quad mesh still resembles one
an artist might produce. For an even more unrealistic humanoid
cartoon character (center right) the quads on the arms, legs, and
upper body are well aligned. However, due to the very different

facial proportions compared to the realistic faces in DFAUST, the
edge flow in that area is less pleasing. On the right a completely dif-
ferent shape is shown in the form of a mechanical component. Here
the inferred frame field is least likely to align with one a user might
design. Nevertheless, in certain regions the network does produce
frames aligned with principal curvature directions. This suggests
that curvature information (among other shape properties) is taken
into account by the network. Of course, the network is not expected
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Figure 8: Examples of quad meshes generated using our approach for triangle meshes with varying difference from the training set. From
left to right: a child, a stylized character, a cartoon character and a mechanical component.

MIQ SIDA AAQ Ours GT

Figure 9: A comparison between the methods presented by BOMMES et al. [BZK09] (MIQ), CAMPEN et al. [CIE*16] (SIDA), MARCIAS

et al. [MPP*13] (AAQ), our approach and the corresponding ground truth mesh.

to outperform classical frame field generation algorithms on such
mechanical parts, since it was trained on human shapes only.

To assess our method in the context of other fully-automatic
quadrangulation techniques, we compare the results generated us-
ing our approach to those obtained using the curvature-based
field synthesis methods presented by BOMMES et al. [BZK09],
CAMPEN et al. [CIE*16] and MARCIAS et al. [MPP*13]. For our
comparison, we use the implementations and default parameters
which were kindly provided by the respective authors. As can be
seen in Figure 9, our method generates singular vertices that are
substantially better placed w.r.t. the global structure present in the
ground truth data. This leads to quadrangulations that are both
cleaner and more symmetrical. The perhaps most striking differ-
ence in overall fidelity can be observed in the faces of the depicted
subjects, where our method manages to generate edge flows that
are significantly more similar to those found in manually designed
meshes.

A quantitative comparison between the approach presented by
CAMPEN et al. [CIE*16] and our method can be found in Fig-
ure 10 (left), where we visualize the distribution of angle errors
incurred by the frame fields generated using both techniques. As
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Figure 10: Left: A comparison between the angle errors incurred
by the method presented by CAMPEN et al. [CIE*16] (SIDA) and
our method. Right: The same comparison for the method presented
by MARCIAS et al. [MPP*13] (AAQ). As can be seen, our method
generates frame fields that are significantly better aligned w.r.t. the
corresponding ground truth fields.

can be seen, our method generates frame fields that are significantly
better aligned with the corresponding ground truth fields. Specifi-
cally, more than 50 % of all frames generated using our method
incur an angle error below 4.35° and more than 90 % of all frames
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Method Angle Relative Size Absolute Size
Complete Network 5.727± 5.295 0.125± 0.085 0.00106± 0.00069
No Global Network 6.251± 5.749 0.120± 0.087 0.00101± 0.00068
No Local Network 8.106± 7.642 0.158± 0.138 0.00125± 0.00080
Global + HKS 7.990± 7.557 0.155± 0.134 0.00123± 0.00080
VM + Relative 5.727± 5.295 0.125± 0.085 0.00106± 0.00069
VM + Absolute 5.763± 5.319 0.127± 0.091 0.00106± 0.00069
CC + Relative 5.943± 5.437 0.123± 0.085 0.00104± 0.00068
CC + Absolute 5.897± 5.458 0.127± 0.091 0.00107± 0.00069

Table 1: Mean errors and corresponding standard deviations on
the DFAUST test set for different network variants (top) and loss
functions (bottom). Angles are given in degrees. VM and CC denote
the von Mises and Complex Cosine loss.

incur an angle error below 10.97°. In comparison, the method pre-
sented by CAMPEN et al. only manages to generate 17.07 % and
56.71 % of all frames within the same error bounds. A comparison
with the method presented by BOMMES et al. led to similar results.

For the animation-aware method presented by MARCIAS et al.,
we used the jumping_jacks sequence of the test subject with
the ID 50009 to compute a direction field for the first frame in
the sequence. The resulting quad mesh and error distributions are
shown in Figure 9 (center) and Figure 10 (right) respectively. As
can be seen, the results produced by our method are closer to the
ground truth.

5.1. Ablation Study

To verify the validity of our network architecture, we perform an
ablation study in which we remove different network components
and retrain the resulting networks. Specifically, we consider the fol-
lowing network variants: a complete network that is identical to the
one presented in Section 3.2, two partial networks that do not con-
tain the local and global feature networks respectively and a net-
work that uses Heat Kernel Signatures (HKS) [SOG09] as a drop-
in replacement for the features computed by our local network. To
evaluate the performance of each of these networks, we use the
mean angle, mean relative size and mean absolute size errors of
the inferred frame fields on the DFAUST test set. As can be seen
in Table 1 (top), the complete network produces the lowest overall
angle error and outperforms the two partial networks by 9.1 % and
41.6 %. The network based on the HKS descriptor produces an-
gles that are approximately 40 % less accurate than those predicted
by our complete network. Interestingly, the network that does not
rely on global shape information achieves a mean size error that is
approximately 4 % lower than the error incurred by the complete
network. This 4 % advantage, however, is more than offset by the
angles inferred by this network, which are approximately 9 % less
accurate. As a consequence, we consider the complete network that
takes both global and local information into account to be overall
superior.

As can be seen in Table 1 (bottom), the von Mises loss performs
slightly better than the Complex Cosine loss. Similarly, the rela-
tive size loss marginally outperforms its absolute counterpart. As a
consequence, the results presented in the previous sections are all
based on a network trained using the von Mises direction loss and

Figure 11: Our network sometimes fails to account for head
rotations, which leads to meshes that capture fewer facial features
(left/center). In addition, the singularities around the navel are
almost never inferred correctly (right).

the relative size loss, even though we consider all of the aforemen-
tioned losses to be viable options.

5.2. Failure Cases

For some of the more extreme poses in the FAUST and DFAUST
datasets, we sometimes observe frame fields that fail to account for
the rotation of the head. As a result, the edges of the generated quad
meshes appear to be aligned with one of the global coordinate axes.
Two particularly bad examples, where large parts of the generated
faces are affected, are shown in Figure 11 (left, center). However,
the same problem can, to a lesser extend, also be seen in the two
tilted heads shown in Figure 6 (top right). Fortunately, this issue
does not occur too often and, if it does occur, is largely contained
to the head of the generated mesh. A possible way to mitigate this
problem may be to make our network invariant to such rotations.

Another issue arises in connection with the topology correspond-
ing to the navel, where our network appears to be unable to infer
the correct number of singularities. An example is shown in Fig-
ure 11 (right). This problem is particularly surprising given the fact
that these singularities are somewhat isolated and should also be
comparatively easy to locate since they are centered around an um-
bilical point (the navel). However, a closer inspection of the meshes
in our training set reveals that the singular vertices in question are
often particularly bad aligned with the underlying geometry (as in
the ground truth mesh in Figure 9), which may explain why our
network is unable to correctly infer these features.

6. Conclusion

We presented a novel approach for the generation of quad meshes
that is based on the idea of combining a neural network with a field-
guided quadrangulation technique. On the one hand, a purely data-
driven approach to the direct generation of quad meshes is difficult
to achieve due to topological consistency constraints that need to be
upheld. On the other hand, automatic model-driven methods strug-
gle to compute quadrangulations that exhibit similar characteristics
to manually created quad meshes without proper guidance. By fol-
lowing a hybrid approach we are able to benefit from both worlds.
Our network is able to infer frame fields that resemble the align-
ment of quads found in our dataset. This rich guidance information
can then in turn be used in robust and mature model-driven methods
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that are able to guarantee the generation of correct and high-quality
quad meshes. Specifically, we demonstrated that our approach is
able to infer many topological features that cannot be easily gener-
ated using other techniques. The reason for this is that it is not clear
how the characteristics of manually-created quad meshes can be
derived based on a mathematical model from local surface proper-
ties. Our method overcomes this problem by automatically learning
a map from local and global surface features to the desired orienta-
tion and sizing fields. While our experiments are focused on meshes
representing human characters, given suitable training data, we ex-
pect that our method can be adapted to other input types. As a con-
sequence, we believe that our work represents a first step towards
the goal of automatically generating meshes that more closely re-
semble their manually-created counterparts.
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