
Eurographics Symposium on Geometry Processing 2020
Q. Huang and A. Jacobson
(Guest Editors)

Volume 39 (2020), Number 5

Cost Minimizing Local Anisotropic Quad Mesh Refinement

M. Lyon1, D. Bommes2 and L. Kobbelt1

1RWTH Aachen University, Germany
2University of Bern, Switzerland

(a) input (b) naive (c) ours

Figure 1: Reducing the approximation error by iteratively splitting all edges of the input model (a) whose distance to the original surface
exceeds a threshold. Naively splitting these edges leads to a very dense mesh since local splits propagate globally along complete quad loops
to preserve conformity (b). Our method places a few sparse singularities in order to better control the propagation flow of the splits leading
to a much coarser mesh (c).

Abstract

Quad meshes as a surface representation have many conceptual advantages over triangle meshes. Their edges can naturally

be aligned to principal curvatures of the underlying surface and they have the flexibility to create strongly anisotropic cells

without causing excessively small inner angles. While in recent years a lot of progress has been made towards generating high

quality uniform quad meshes for arbitrary shapes, their adaptive and anisotropic refinement remains difficult since a single edge

split might propagate across the entire surface in order to maintain consistency. In this paper we present a novel refinement

technique which finds the optimal trade-off between number of resulting elements and inserted singularities according to a user

prescribed weighting. Our algorithm takes as input a quad mesh with those edges tagged that are prescribed to be refined. It

then formulates a binary optimization problem that minimizes the number of additional edges which need to be split in order to

maintain consistency. Valence 3 and 5 singularities have to be introduced in the transition region between refined and unrefined

regions of the mesh. The optimization hence computes the optimal trade-off and places singularities strategically in order to

minimize the number of consistency splits — or avoids singularities where this causes only a small number of additional splits.

When applying the refinement scheme iteratively, we extend our binary optimization formulation such that previous splits can

be undone if this prevents degenerate cells with small inner angles that otherwise might occur in anisotropic regions or in the

vicinity of singularities. We demonstrate on a number of challenging examples that the algorithm performs well in practice.

CCS Concepts

• Computing methodologies → Mesh models; Mesh geometry models;

1. Introduction

Quad meshes have several advantages over triangle meshes that
make them more desirable in industrial applications: They can
naturally align to principal curvature directions and sharp fea-
tures which is crucial in capturing shape features or the semantics
of an object [BLP∗12]. Other important applications are higher-
order surface modeling, texturing and finite element simulation
[BLP∗12].

Thus, automatic generation of quad meshes, typically from a
given triangle mesh, has been a well researched topic in the
past decade [KNP07,BZK09,ZHLB10,ZHLB13,BCE∗13,MPZ14,
CBK15, JTPSH15, LHJ∗15, HZN∗18]. Some methods also offer
control over quad sizing and may produce anisotropic meshes
[PPTSH14, JFH∗15, FBT∗18]. While all these methods generate a
quad mesh from scratch, it is sometimes necessary to start from a
given quad mesh and only modify the mesh locally. For example

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

in an iterative design approach the user might be satisfied with one
part of the mesh but not with another. In that case computing a new
quad mesh from scratch in order to improve the unsatisfying region
may lead to a less satisfactory result in what was previously a well
structured region. It is thus necessary to develop algorithms which
allow local mesh optimizations. The focus of this paper is the local
mesh refinement, e.g. in order to increase the approximation qual-
ity in an adaptive simulation environment or provide more degrees
of freedom to model fine detail features.

While there is previous work on local quad mesh modifications,
only few of them target the refinement of quad meshes. Most exist-
ing quad mesh refinement algorithms either rely on splitting com-
plete chords of quads which may affect large regions of the mesh,
or they isotropically refine the mesh as local as possible disregard-
ing the number of inserted singularities.

In this paper we derive a simple binary program formulation
whose solution is a conforming anisotropic refinement of a given
all-quad mesh (preserving the all-quad property) which is optimal
with regard to a user-specified trade-off between number of singu-
larities and number of mesh elements (Section 4). We extend the
formulation in order to guarantee good minimal inner angles even
when the algorithm is applied iteratively (Section 5). After briefly
discussing a variation of our method that performs 3-refinement
(Section 6) we show the results of our algorithm in a variety of
different applications (Section 7).

2. Related Work

Daniels et al. [DSSC08] locally modify quad meshes in the context
of coarsening. They define 3 coarsening operations: quadrilateral
collapse, doublet collapse and poly-chord collapse. The former two
are local, only affecting one and two quads respectively. The latter
may affect large regions of the mesh if the chord forms a complex
knot. Daniels et al. propose to use quadrilateral collapses first in
order to simplify such long chords.

Tarini et al. [TPC∗10] follow a similar approach to coarsen a
quad mesh and define 6 local operations which all affect at most
one element and its neighboring quads. In addition to collapse op-
erations they define an edge rotation and a vertex rotation operation
which locally changes the edge connectivity in order to improve the
vertex valences.

An analysis of how singular vertices of a quad mesh can be
(topologically) moved is done by Peng et al. [PZKW11]. In their
paper they show that generating, moving and canceling of a single
irregular vertex in an enclosed region is impossible. As an alterna-
tive they provide 3 operations to move pairs of singularities which
they prove to be as local as possible, i.e. affecting the lowest num-
ber of quads possible.

Bommes et al. [BLK11] present an algorithm that aims to sim-
plify the base complex of a given quad mesh. 2 simple operations,
edge shift and edge collapse, which are local but used individ-
ually create non-quad elements, are combined to so called grid-
preserving operators by finding a closed loop in a dual graph of the
input. These grid-preserving operators change the topology of the
base complex while maintaining an all quad mesh.

While all of the methods above perform local modifications to a
given quad mesh, none of them deals with mesh refinement which
is topic of this paper. Most closely related to our method is the the
work presented by Schneiders [Sch96] who proposes to refine a
mesh by assigning refinement levels to each vertex. Based on these
refinement levels each quad is replaced by on of two templates
where one template is a regular subdivision into four quads while
the other allows a sizing transition. However, unlike our method the
mesh is always refined as locally as possible without considering a
possible reduction in generated singularities by additional regular
refinement. Also Schneiders’ refinement does not allow anisotropic
refinement of quads which is possible with ours.

Anderson et al. [ABO09] present an algorithm for quad mesh
adaptation based on quad chord and ring collapses as well as the
refinement operations of Schneiders.

The αMST algorithm of Verma and Suresh [VS16] locally
adapts a quad mesh by removing and completely remeshing the re-
gion of interest with as few singularities as possible. The resulting
quadrangulation may be finer or coarser than the input.

With QuadMixer, Nuvoli et al. [NHE∗19] locally modify quad
meshes by replacing regions of one quad mesh with a region of
another one. The structure of the input mesh patches remains un-
changed with the exception of a transition region between the two
parts.

Cherchi et al. [CAS∗19] use a binary program formulation sim-
ilar to ours in order to improve the element quality of a hexahedral
mesh by inserting a padding layer. In contrast to our method their
formulation cannot handle singular edges in the interior which lim-
its the applicability to regular input models. Since the insertion of
the buffer layer creates interior singularities their algorithm cannot
be applied more than once to any given input

Tchon et al. [TDC04] present a simple scheme to anisotropically
refine a quad mesh by iteratively shrinking layers of quads and in-
serting buffer layers around them, effectively splitting each edge
into three. Compared to splitting edges into two, as in our case,
this allows less control over the desired sizing. In addition, their
algorithm does not consider the amount of inserted singularities.

3. Definitions

Let Q = (V,E ,H,F) be a mesh with vertices V , edges E , halfedges
H and faces F . Q is a quad mesh if all faces are incident to exactly
four halfedges.

In this paper we are interested in finding an optimal conforming
refinement of a quad mesh. We define a refinement as a function
over all edges ε : E → {0,1} where ε(e) = 1 means that edge e is
going to be split by inserting a vertex in the middle. A refinement
is conforming if the number of edges which are split is even for
every face as this allows replacing each face with a set of quads in
a conforming manner.

4. Problem Formulation

Generating quad meshes typically amounts to finding a trade-off
between accurately representing a target surface and keeping the
number of mesh elements low.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

Suppose a user defines a set S of edges which should be split,
e.g. in order to decrease the Hausdorff distance to the original sur-
face. A conforming refinement can always be found by splitting ev-
ery quad strip in half that contains at least one edge in S. However,
these quad strips often run over large parts of the mesh leading to
global mesh modifications. In the worst case, a single required split
may lead to every quad being split into four. By placing singular
vertices at appropriate positions the refinement can be kept local.
However, since typically the number of singularities should also be
low one has to find a compromise between number of elements and
number of singularities added by the refinement.

In the following, we describe a method based on solving a binary
program which finds the optimal refinement ε with regard to a user
specified cost for singularities. For a detailed introduction to binary
optimization, or more general integer optimization, we refer the
interested reader to [NW88].

4.1. Refining a Single Quad

(a) (b) (c) (d)

Figure 2: Simple refinements of a single quad (a) after splitting two
opposing edges (b), two adjacent edges (c) and all four edges (d).

A single quad face has 4 edges, thus there are 24 possible constel-
lations of edge splits that can be performed. However, since quad
meshes always have an even number of boundary edges and an
edge split increases the number of boundary edges by one the num-
ber of edge splits has to be even in order to enable remeshing the
split face into a new quad mesh. Thus, the only valid split com-
binations are no splits, splitting two opposing edges (1 to 2 split),
splitting two consecutive edges (1 to 3 split) and splitting all four
edges (1 to 4 split). For these splits the face can be replaced by
quads as shown in Figure 2. Note that in the case of splitting two
adjacent edges an irregular vertex of valence 3 is inserted in the
center of the face and for one of the original vertices the valence
was increased by one, often resulting in a valence 5 vertex. Due
to the shape of the inserted edges we call these y-configurations.
These y-configurations can be used to transition between regions
with different resolutions [Kob96].

4.2. Refining a Quad Mesh

When refining a quad mesh the considerations of the previous sec-
tion hold for every individual quad of the mesh. Deciding which
edges of each quad to split directly affects the choice of edges be-
ing split in the neighboring quads making the search for a conform-
ing refinement a global problem. In addition to being conforming,
the refinement should also be optimal with regard to the number of
quads and singularities generated. While singularities are typically
not desired they often allow for a refinement with a lot fewer edge
splits and thus fewer generated quads.

We formulate the task of finding such an optimal set of edges that

allow for a conforming refinement as a simple binary problem. For
every edge ei a binary variable si indicates whether the edge is split
or not, which defines our refinement as ε(ei) = si. One objective of
our binary problem is to minimize the number of splits:

Es = ∑
ei∈E

si (1)

To ensure, however, that at least all edges in the set of mandatory
edges S are split we constrain the corresponding binary variable
to 1:

si = 1 ∀ei ∈ S (2)

As discussed in the previous section the number of split edges per
face has to be even in order to allow a conforming refinement of the
quad. Using two auxiliary binary variables ai and bi for every face
fi this property is encoded in the following constraints:

s0 + s1 + s2 + s3 = 2ai +4bi ∀ fi ∈ F (3)

where s0, s1, s2 and s3 correspond to the four edges e0, e1, e2, and
e3, of the face (cf. inset below).

Since y-configurations introduce undesired singularities we want
to detect and penalize them. A y-configuration is used when two

s0

s1

s2

s3

hi

adjacent edges of a face are split while the
other two are not. Thus, we add for every non-
boundary halfedge hi ∈ H a binary indicator
variable ti which we constrain to be 1 if and
only if the two edges corresponding to hi and
the next halfedge in the same face are split and
the others are not. This can be expressed with
the following constraint:

ti ≥ 0.5 · (s0 + s1 − s2 − s3) ∀hi ∈H (4)

where s0 to s3 correspond to the four edges of the face in counter
clockwise order starting at hi. Note that this adds four con-
straints per face, one for each of the four rotationally symmetric
y-configurations.

While constraint (3) ensures a conforming refinement, con-
straint (4) allows us to detect singularities generated by inserting
y-configurations which are penalized by a user specified cost value
ci ∈ [0,∞):

Ey = ∑
hi∈H

ti · ci (5)

Putting the energies and constraints described above together
yields our first binary program:

minimize E = Es +Ey

subject to (2), (3), (4)
(6)

The solution of this program is a valid refinement. Thus, each
quad can be replaced by one of the templates depicted in Figure 2.

4.3. Costs for Singularities

There are multiple possibilities for choosing the singularity penal-
ties ci. In the most simple case of a constant penalty ci = c the
solver will avoid inserting singularities unless inserting one allows

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

(a) input model (b) c = 1, #a = 398, #y = 170

(c) c = 10, #a = 824, #y = 63 (d) c = 100, #a = 2136, #y = 6

Figure 3: Examples for different global singularity penalties ci =
c. #a is the number of splits added to the 1082 mandatory splits
(magenta) in order to get a conforming refinement. #y is the number
of inserted y-configurations.

for a solution with c fewer splits. By increasing c the solution de-
generates to the naive solution of splitting all quad strips which
contain at least one mandatory split edge. Examples for different
values of c are given in Figure 3.

There are many other possible ways to design these costs de-
pending on the intended application: A designer could mark regions
in which singularities are penalized more or even not allowed at all
such that they are only placed in regions of low importance. An
example for this is given in Figures 8 and 9. Furthermore, geomet-
ric properties of the mesh such as the curvature could be used to
promote singularities in flat regions rather than in curved regions
which is beneficial for spline fitting applications. Finally, since we
use one indicator variable ti per halfedge, differently rotated y-
configurations in the same face can be penalized differently based
on which vertex the diagonal is connected to. This allows, for ex-
ample, choosing a penalty depending on the angle at or the valence
of that vertex.

5. Stability

Often it is not enough to split edges in half once and the algorithm
has to be applied iteratively. However, successive refinement can
lead to quads with small inner angles when y-configurations are
split repeatedly (Figure 4a) as well as when y-configurations are
inserted in narrow quads (Figure 4b). For many applications small
angles are undesirable and thus require a refinement to be stable. A
refinement is stable if the minimum angle does not depend on the
refinement level [Sch96]. In the following, we address how stabil-
ity is achieved by adapting our simple problem formulation from
above.

5.1. Refinement of Y-Configurations

As shown in Figure 4a further refinement of y-configurations
may lead to low quality quads. We therefore do not allow refine-
ment of a y-configuration directly. Instead, if refinement is de-
sired, the y-configuration is first replaced by a regular grid of four

(a) (b)

Figure 4: Example of low quality faces created by iteratively re-
fining y-configurations (a) and inserting a y-configuration into an
anisotropic quad (b).

Figure 5: All valid splits for a y-configuration where at least the two
longer edges are split. In each block of three the left mesh shows
with small ticks which edges are split. The mesh in the middle is the
result of applying the simple replacement rules from Section 4 to
every individual quad. Note that many edges are not aligned with
the main directions. The right mesh is an alternative template for
replacing the y-configuration where again all edges except for the
diagonal edges of the new y-configurations are perfectly aligned.

e1

e2

e3

e4e5

e0
e6

e7

e8

quads. For this to be possible the two long
edges (e0 and e1 in the inset) have to be
split. In practice, replacing the y-configuration
with four quads and further refining these is
done in one step by directly replacing the y-
configuration with one of the 16 templates
shown in Figure 5.

Note that Figure 5 lists all conforming refinements of the faces
of a y-configuration where the two long edges are split. Thus, in
order to restrict the solution of the binary problem to those 16 con-
figurations we only need the following two constraints: Either none
or both of the two long edges are split:

s0 = s1 ∀y ∈ Y (7)

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

where Y is the set of y-configurations and s0 and s1 refer to the
edges e0 and e1 of the inset above. The second requirement is that
if any of the smaller edges is split, then the long edges have to be
split as well:

8

∑
i=2

si ≤ 7s0 ∀y ∈ Y (8)

These constraints can simply be added to the constraints of Prob-
lem 6 after the first iteration. However, the current energy will pe-
nalize refinements of y-configurations unnecessarily: For example,
the first split configuration in Figure 5 will increase the cost because
two of the t j variables indicating the insertion of singularities will
be set to 1 even though the y-configuration is eventually replaced
by regular quads, actually reducing the number of singularities. In
order to correctly model the costs we need to identify which of the
16 possible configurations is used to replace the y-configuration.

For each y-configuration yi ∈ Y we add 16 auxiliary variables
z

j
i , where z

j
i = 1 indicates that the jth configuration from Figure 5

is used to replace the corresponding y-configuration yi. For each of
these variables we add two constraints, one lower and one upper
bound, which enforce that the variable is set to 1 if and only if
the split variables si are set accordingly. Here we only give one
example for the first configuration as a representative, a complete
list of the 16 constraints and a derivation is given in the appendix:

0 ≤ s0+s1−s2−s3−s4−s5+s6−s7−s8−9z
1
i +6 ≤ 8 ∀y ∈Y

(9)

Using these constraints the energy is adjusted by multiplying the
indicator variables z

j
i with a cost d

j
i which may be negative to re-

ward the removal of the singularities:

Ea = ∑
yi∈Y

16

∑
j=1

z
j
i ·d

j
i (10)

Notice that only one z
j
i can be one for every i due to the above

constraints. For constant costs ci we provide a list of corresponding
costs d

j
i in the appendix.

5.2. No Y-Configurations in Narrow Faces

As already mentioned above, inserting a y-configuration into a very
thin quad may introduce small angles, cf. Figure 4b. Since these
small angles may cause numeric instabilities or other problems in
many applications we want to avoid them. Therefore, in this section
we first define the set of faces in which y-configurations may be
inserted and then add a constraint preventing y-configurations for
all other faces.

Each original quad defines a simple bilinear parametrization of
its inside by mapping each corner to one of the four points (0,0),
(1,0), (1,1) and (0,1). Each new vertex added by splitting an edge
is inserted at the center of that edge. Vertices added inside a face,
i.e. when a quad is replaced by four quads or a y-configuration, are
inserted in the barycenter of the four vertices of the face.

Each new edge is a straight line within this parametrization do-
main. We define l(e) to be the length of edge e in that domain. We

Figure 6: Comparison of refining the contour of a wing profile (left)
using our simple (middle) and our stable formulation (right).

can then define the set of faces which are parametric squares as
those with edges with identical lengths:

F� =
{

f ∈ F | ∀ei,e j ∈ f : l(ei) = l(e j)
}

(11)

To guarantee good angles we only allow the insertion of y-
configurations in those faces:

ti = 0 ∀ fi ∈ F\F� (12)

Adding the constraints and energy terms discussed in this section
to the previous binary program yields our stable formulation:

minimize Es +Ey +Ea

subject to (2), (3), (4), (8), (9), (12)
(13)

Note that even with the additional constraints the problem is still
guaranteed to be feasible since splitting all edges is always a so-
lution. Of course, typically solutions with a lot fewer splits can be
found.

Figure 6 shows an example of contour approximation of a wing
profile where boundary edges next to valence 3 vertices are split
if the angle between them is smaller than a threshold. The repeated
splitting of y-configurations leads to small angles (middle). Our sta-
ble formulation replaces y-configurations by a regular refinement
before further refinement leading to better angles but a slightly
less local refinement as an additional layer of transition elements
is used.

6. 3-Refinement

(a) (b) (c) (d) (e) (f)

Figure 7: Refining edges of a single quad into three parts can be
achieved with similar patterns as discussed in Sections 4 and 5
when the number of split edges is even (a)-(d). In addition it en-
ables a configuration where only one side (e) or three sides (f) are
split.

So far we have discussed dyadic splitting operations that split a
single edge into two edges. These types of splits are sometimes

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

referred to as 2-refinement [Sch96]. In contrast, 3-refinement op-
erations split edges into three edges. While 2-refinement is prefer-
able due to the finer control over the increased mesh density, 3-
refinements has the advantage of allowing not only templates re-
placing quads with an even number of split edges (cf. Figure 2)
but also templates replacing quads with one or three split edges as
shown in Figure 7.

This simplifies the search for a conforming set of split edges as
now every set of edges is consistent and splitting only the manda-
tory split edges yields the result with the smallest number of splits.
However, this result may include many undesirable singularities
which could be reduced by splitting additional edges. An optimal
trade-off between number of split edges and added singularities can
again be found by solving a binary problem.

Our basic binary problem formulation (Problem (6)) is sur-
prisingly easy to adapt for 3-refinement by simply dropping con-
straint (3):

minimize E = Es +Ey

subject to (2), (4)
(14)

Without that constraint the solver is not required to find an even
number of split edges per face. Note however that with con-
straints (4) still in place, quads with a single split or three splits are
penalized twice as much as a y-configuration which is the desired
behavior since two valence 3 vertices are inserted and the valence
of two of the original vertices is increased by one.

We leave stability considerations for future work. We conjecture
that a formulation analogous to the one discussed in Section 5 can
be used.

7. Results

We apply our method to a variety of different inputs. If not stated
otherwise we use our stable formulation (Equation (13)) with a
constant singularity penalty ci. All quad meshes used in this paper
are created from triangle meshes using the algorithm of Campen
et al. [CBK15]. Of course, our algorithm does not depend on that
specific algorithm and quad meshes from any other source could be
used as well. So far we avoided a discussion about the placement of
the newly inserted vertices as there are a plethora of options from
simply placing the vertex in the center of the split face or edge
to carefully optimizing the position based on application specific
quality criteria. For simplicity we split edges and faces in the center
and project the vertices in normal direction (3D examples) or use
the parametrization provided by the algorithm of Campen et al. (2D
examples) to map the vertices into the original surface. The binary
problems are solved using the Gurobi solver [GO16] using default
parameters (in particular with an optimality gap of 0). Statistics are
summarized in Table 1.

In Figure 8 a region around the three airfoils has been specified
in which the insertion of singularities has a high cost while in the
outer regions the cost is low. Splitting all edges on the contour and
those orthogonal to the contour then leads to a high resolution mesh
without added singularities close to the airfoils.

A similar approach was used in Figure 9 where some edges (ma-

Figure 8: High singularity cost in the marked region. Two iterations
of splitting contour edges and edges orthogonal to contour area ap-
plied.

Mesh Method |F| #y time

Rockerarm (1) ours 10108 48 5 s
Rockerarm (1) naive 31472 0 < 1 s
Rockerarm c=1 (3) ours 4344 170 21 s
Rockerarm c=10 (3) ours 4819 63 21 s
Rockerarm c=100 (3) ours 6799 6 < 1 s
Airfoil (8) ours 15225 317 36 s
Hand (9b) ours 16058 26 2 s
Hand (9c) ours 17138 28 4 s
Hand (9d) ours 17994 26 3 s
Fertility (11) ours 2241 85 6 s
Fertility (11) naive 4517 0 < 1 s
Roof (12) ours 976 80 < 1 s
Fandsik (10) ours 9014 129 7 s
Fandisk (10) naive 33082 0 < 1 s
Pantasma (13) [Sch96] 2353 210 < 1 s
Pantasma (13) [TDC04] 2013 156 < 1 s
Pantasma (13) ours 1317 39 3 s
3wayB (13) [Sch96] 5394 627 < 1 s
3wayB (13) [TDC04] 3896 356 < 1 s
3wayB (13) ours 3251 46 6 s
Bot Shoulder (14) [TDC04] 6162 356 < 1 s
Bot Shoulder (14) ours (3) 6848 46 2 s
Octopus (14) [TDC04] 14084 510 < 1 s
Octopus (14) ours (3) 15262 162 24 s
Cylinder (15) ours 356 18 587 s
Cylinder (15) ours (3) 379 20 < 1 s

Table 1: Statistics for our results showing the number of resulting
elements |F| and inserted y-configurations #y, and the time of the
algorithm. With ours (3) we refer to the formulation that uses 3-
refinement (Section 6).

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

(a) (b) c = 1

(c) c = 150 (d) c = 15000

Figure 9: Splitting the edges highlighted in magenta for different
singularity costs c in the marked region.

genta) on the finger tips are mandatory splits with varying singular-
ity penalties in the highlighted region and low penalty on the rest
of the body. Using a low penalty of c = 1 in the highlighted region
leads to y-configurations directly next to the refined region in or-
der to do a sizing transition as locally as possible. Choosing a very
high penalty moves all singularities away from the hand to the wrist
area. However, due to the structure of the quad mesh many quads in
the palm of the hand have to be split in both directions. By setting
a compromise penalty of 150 our method strategically places only
two y-configurations within the highlighted region, significantly re-
ducing the number of split edges.

In Figure 10 we show the results of iteratively splitting all edges
orthogonal to the feature edges marked in magenta. Naive splitting
increases the number of elements from 4.4k to 33k compared to 9k
with our method.

In the previous examples the mandatory splits were all in one
region and the goal of the optimization was to find a conforming
refinement which only locally changes the mesh. In the following
we discuss a different use case: reducing the Hausdorff distance
between quad mesh and original surface. In that case the set of
mandatory split edges is often distributed over the quad mesh and
the optimization goal is to find a good trade-off between a low num-
ber of splits and a low number of singularities.

Since all vertices of the quad mesh already lie within the original
surface we approximate the Hausdorff distance by measuring the
distance between edge centers and their projection into the original
surface along the average normal of the incident faces. We define
the set of mandatory split edges as all edges for which that distance
is larger than a given threshold.

In Figure 1, we compare the naive splitting of all quad loops
which contain at least one mandatory split edge with our method
using a constant singularity penalty of 50. Both methods fulfilled
the Hausdorff distance threshold after three iterations. For the last

Figure 10: Splitting edges of the fandisk which are orthogonal to
the feature edges marked in magenta (top left). Note that using our
non-stable formulation (Equation (6)) vertices with valences up to
7 and faces with very small inner angles are generated by iteratively
splitting faces of y-configurations (bottom left). With our stable for-
mulation (Equation (13)) all quads are well shaped due to using
templates from Figure 5 to replace y-configurations (bottom right).
The naive solution is shown in blue (top right).

iteration the input model has 6.7k edges of which 506 need to be
split. While the naive solution splits an additional 15015 edges, our
formulation inserts 48 y-configurations requiring only 2595 addi-
tional edges to be split to form a conforming refinement.

Figure 11 shows another example of minimizing the Hausdorff
distance on the fertility model. Due to the coarse base complex of
the input the naive solution does not produce as fine a solution as
on the rockerarm example. However, the naive formulation still in-
creases the number of elements from 537 to 4.5k while our solution
produces only half as many elements.

For Figure 12 we perform edge splits based on a physics based
simulation of a flat roof supported on all four sides under the grav-
itational force of its own weight. The mesh is computed using the
method of Lyon et al. [LCBK19] such that the edges are aligned
with the two principal stress directions. For each edge the orthogo-
nal stress is integrated to estimate how much load the four orthogo-
nal edges have to bear. Edges for which this value exceeds a thresh-
old are set as mandatory splits. In addition, splits are prevented (by
constraining the corresponding variable to 0) for all edges incident
to non-quad faces. The resulting refinement adds additional edges
such that large forces are better distributed over more edges lead-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

Figure 11: Splitting all edges of Fertility (top) whose Hausdorff
distance exceeds a threshold using naive splits (bottom) and our
method (right).

Figure 12: Refinement of edges based on physically simulated
forces acting on a roof. Top right shows the integrated stress per
edge colorcoded from low (green) to high (red). After the splits the
stress is distributed over more edges reducing the maximal value.

ing to a mesh where the maximal integrated stress is reduced to a
quarter of that of the input.

7.1. Comparison

In this section we compare our results with two other approaches
for local quad mesh refinement, namely the one of Schnei-
ders [Sch96] and the one of Tchon et al. [TDC04]. Since both meth-
ods are not applicable to applications that require control over sin-
gularity placement (cf. Figures 8 and 9) we only consider the task
of improving Hausdorff distance.

Schneiders’ refinement [Sch96] requires as input a refinement
level per vertex. We thus set the refinement level to 1 for all vertices
incident to a mandatory split edge e ∈ S. The results in Figure 13
show how the isotropic refinement leads to an overrefinement of
edges pointing along the smaller principal curvature direction while
also inserting many singularities.

The anisotropic refinement of Tchon et al. [TDC04] is able to
split faces in only one of the directions resulting in fewer elements
than Schneiders. However, since Tchon et al. use 3-refinement it
still produces more elements than our 2-refinement. In addition,

Figure 13: Comparison of different refinement methods. From left
to right: input, Schneiders [Sch96], Tchon et al. [TDC04], ours. See
Table 1 for number of elements and singularities.

Figure 14: Comparison of splitting the magenta edges (left) using
Tchon et al. [TDC04] (middle) and our 3-refinement (right).

the strictly local nature of the method does not allow splitting addi-
tional edges in order to prevent the insertion of singularities result-
ing in meshes with both more elements and more singularites than
our method, cf. Table 1.

In Figure 14 we compare the refinment of Tchon et al. [TDC04]
with our 3-refinement formulation. While the refinement of Tchon
et al. will always only split the edges that are marked to be split
(magenta) introducing many singularities, our formulation allows
a trade-off controlled by the singularity panelty which splits addi-
tional edges but adds fewer singularities.

7.2. Limitations

The main drawback of our method is the unpredictable run time
needed by the numerical solver to find the optimal solution and ver-
ify its optimality. This limitation comes from the fact that solving a
binary problem is in general NP-hard.

With the Cylinder in Figure 15 (left) we found a problem that
is particularly difficult for Gurobi to optimize. The set of manda-
tory split edges S consists of the 19 edges of the boundary on the
left side. A constant ci = 1 is chosen to prefer local refinement.
18 of the edges can be conformingly split by inserting pairs of y-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

Figure 15: Splitting the left boundary of the cylinder requires split-
ting one edge of the right boundary due to an odd number of edges
on each boundary. With 3-refinement this is not necessary.

configurations, for the remaining edge one of the edges on the right
boundary has to be split. While Gurobi found the optimal solution
in one second it took almost 10 minutes to proof optimality. To
alleviate this problem Gurobi could be run only until a certain opti-
mality gap is reached. Alternatively, our 3-refinement formulation
could be used which is able to locally refine the mesh even if the
boundary contains an odd number of elements, cf. Figure 15 (right).

8. Conclusions and Future Work

We presented a binary program formulation whose solution is a
conforming quad mesh refinement which is optimal with respect to
user preferences regarding singularities and mesh complexity. Our
formulation provides detailed control over both number and loca-
tion of singularities by employing user defined singularity costs.

We extended our method by providing a set of replacement tem-
plates for y-configuration, thus guaranteeing that every quad corner
is split at most once, improving the minimal inner angles in the re-
sulting mesh.

Finally, a variation of our formulation solves a simpler problem
at the cost of performing 3-refinment instead of 2-refinement.

To our knowledge this is the first algorithm allowing the trade-
off between mesh complexity and number of singularities as well
as performing local anisotropic refinement of quad meshes.

In the future we would like to investigate further extensions to
our problem formulation. Some ideas are constraining the maximal
vertex valence introduced by the method, or constraining the num-
ber of edges that need to be split, e.g. in order to obtain an exact
number of edges on a boundary in order to stitch it with another
one.

Another interesting line of future investigation would be the de-
velopment of a specialized solver that is able to solve the presented
problems in a shorter and more predictable runtime, maybe at the
cost of not finding the optimal solution, for applications where a
good solution that is computed fast is more desirable than a prov-
ably optimal solution.

Acknowledgements

We would like to thank Jan Möbius for creating and maintain-
ing the geometry processing framework OpenFlipper [MK12] and
Juan Musto for providing the simulation results for Figure 12.
Input models are provided by [MPZ14] and [ZJ16]. This work
was supported by the Gottfried-Wilhelm-Leibniz Programme of

the Deutsche Forschungsgemeinschaft DFG and the European Re-
search Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (AlgoHex, grant agreement
No 853343).

References

[ABO09] ANDERSON B., BENZLEY S., OWEN S.: Automatic All

Quadrilateral Mesh Adaption through Refinement and Coarsening.
2009. doi:10.1007/978-3-642-04319-2_32. 2

[BCE∗13] BOMMES D., CAMPEN M., EBKE H.-C., ALLIEZ P.,
KOBBELT L.: Integer-grid Maps for Reliable Quad Meshing. ACM

Trans. Graph. 32 (2013). doi:10.1145/2461912.2462014. 1

[BLK11] BOMMES D., LEMPFER T., KOBBELT L.: Global Structure
Optimization of Quadrilateral Meshes. Computer Graphics Forum 30, 2
(2011). doi:10.1111/j.1467-8659.2011.01868.x. 2

[BLP∗12] BOMMES D., LÉVY B., PIETRONI N., PUPPO E., A C. S.,
TARINI M., ZORIN D.: State of the art in quad meshing. In Eurographics

STARS (2012). 1

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer Quad-
rangulation. In ACM SIGGRAPH 2009 Papers (2009), SIGGRAPH ’09,
ACM. doi:10.1145/1576246.1531383. 1

[CAS∗19] CHERCHI G., ALLIEZ P., SCATENI R., LYON M., BOMMES

D.: Selective Padding for Polycube-Based Hexahedral Meshing. Com-

puter Graphics Forum 38, 1 (2019). doi:10.1111/cgf.13593. 2

[CBK15] CAMPEN M., BOMMES D., KOBBELT L.: Quantized Global
Parametrization. ACM Trans. Graph. 34, 6 (2015). doi:10.1145/

2816795.2818140. 1, 6

[DSSC08] DANIELS J., SILVA C. T., SHEPHERD J., COHEN E.: Quadri-
lateral Mesh Simplification. In ACM SIGGRAPH Asia 2008 Papers

(2008), SIGGRAPH Asia ’08, ACM. doi:10.1145/1457515.

1409101. 2

[FBT∗18] FANG X., BAO H., TONG Y., DESBRUN M., HUANG J.:
Quadrangulation through Morse-Parameterization Hybridization. ACM

Trans. Graph. 37, 4 (2018). doi:10.1145/3197517.3201354. 1

[GO16] GUROBI OPTIMIZATION I.: Gurobi optimizer reference manual,
2016. 6

[HZN∗18] HUANG J., ZHOU Y., NIESSNER M., SHEWCHUK J. R.,
GUIBAS L. J.: QuadriFlow: A Scalable and Robust Method for Quad-
rangulation. Computer Graphics Forum (2018). doi:10.1111/cgf.
13498. 1

[JFH∗15] JIANG T., FANG X., HUANG J., BAO H., TONG Y., DESBRUN

M.: Frame Field Generation through Metric Customization. ACM Trans.

Graph. 34, 4 (2015). doi:10.1145/2766927. 1

[JTPSH15] JAKOB W., TARINI M., PANOZZO D., SORKINE-HORNUNG

O.: Instant Field-aligned Meshes. ACM Trans. Graph. 34, 6 (2015).
doi:10.1145/2816795.2818078. 1

[KNP07] KÄLBERER F., NIESER M., POLTHIER K.: QuadCover - Sur-
face Parameterization using Branched Coverings. Computer Graphics

Forum (2007). doi:10.1111/j.1467-8659.2007.01060.x. 1

[Kob96] KOBBELT L.: Interpolatory Subdivision on Open Quadrilateral
Nets with Arbitrary Topology. Computer Graphics Forum 15, 3 (1996).
doi:10.1111/1467-8659.1530409. 3

[LCBK19] LYON M., CAMPEN M., BOMMES D., KOBBELT L.:
Parametrization quantization with free boundaries for trimmed quad
meshing. ACM Transactions on Graphics 38, 4 (2019). 7

[LHJ∗15] LING R., HUANG J., JÜTTLER B., SUN F., BAO H., WANG

W.: Spectral Quadrangulation with Feature Curve Alignment and Ele-
ment Size Control. ACM Trans. Graph. 34, 1 (2015). doi:10.1145/
2653476. 1

[MK12] MÖBIUS J., KOBBELT L.: OpenFlipper: An Open Source Ge-
ometry Processing and Rendering Framework. In Curves and Surfaces,
vol. 6920 of Lecture Notes in Computer Science. 2012. 9

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

M. Lyon, D. Bommes & L. Kobbelt / Cost Minimizing Local Anisotropic Quad Mesh Refinement

[MPZ14] MYLES A., PIETRONI N., ZORIN D.: Robust Field-aligned
Global Parametrization. ACM Trans. Graph. 33, 4 (2014). doi:10.

1145/2601097.2601154. 1, 9

[NHE∗19] NUVOLI S., HERNANDEZ A., ESPERANÇA C., SCATENI R.,
CIGNONI P., PIETRONI N.: QuadMixer: Layout Preserving Blending
of Quadrilateral Meshes. ACM Trans. Graph. 38, 6 (2019). doi:10.
1145/3355089.3356542. 2

[NW88] NEMHAUSER G. L., WOLSEY L. A.: Integer and Combinato-

rial Optimization. Wiley-Interscience, 1988. 3

[PPTSH14] PANOZZO D., PUPPO E., TARINI M., SORKINE-HORNUNG

O.: Frame Fields: Anisotropic and Non-Orthogonal Cross Fields. ACM

Trans. Graph. 33, 4 (2014). doi:10.1145/2601097.2601179. 1

[PZKW11] PENG C.-H., ZHANG E., KOBAYASHI Y., WONKA P.: Con-
nectivity Editing for Quadrilateral Meshes. In Proceedings of the 2011

SIGGRAPH Asia Conference (2011), SA ’11, ACM. doi:10.1145/
2024156.2024175. 2

[Sch96] SCHNEIDERS R.: Refining Quadrilateral and Hexahedral Ele-
ment Meshes. In 5th International Conference on Grid Generation in

Computational Field Simulations (1996), CRC Press. 2, 4, 6, 8

[TDC04] TCHON K.-F., DOMPIERRE J., CAMARERO R.: Automated
refinement of conformal quadrilateral and hexahedral meshes. Inter-

national Journal for Numerical Methods in Engineering 59 (2004).
doi:10.1002/nme.926. 2, 6, 8

[TPC∗10] TARINI M., PIETRONI N., CIGNONI P., PANOZZO D., PUPPO

E.: Practical quad mesh simplification. Computer Graphics Forum 29,
2 (2010). doi:10.1111/j.1467-8659.2009.01610.x. 2

[VS16] VERMA C. S., SURESH K.: αMST: A robust unified algo-
rithm for quadrilateral mesh adaptation. Procedia Engineering 163

(2016). doi:https://doi.org/10.1016/j.proeng.2016.

11.053. 2

[ZHLB10] ZHANG M., HUANG J., LIU X., BAO H.: A Wave-Based
Anisotropic Quadrangulation Method. ACM Trans. Graph. 29, 4 (2010).
doi:10.1145/1778765.1778855. 1

[ZHLB13] ZHANG M., HUANG J., LIU X., BAO H.: A Divide-and-
Conquer Approach to Quad Remeshing. IEEE Transactions on Visual-

ization and Computer Graphics 19, 6 (2013). 1

[ZJ16] ZHOU Q., JACOBSON A.: Thingi10K: A Dataset of 10,000 3D-
Printing Models. arXiv preprint arXiv:1605.04797 (2016). 9

Appendix

Indicator Variables z
j
i

First, we show that the boolean expression

z ⇔
n∧

i=1

xi ∧
m∧

j=1

¬y j (15)

is equivalent to the linear constraints

0 ≤
n

∑
i=1

xi −
m

∑
j=1

y j − (n+m)z+m ≤ n+m−1. (16)

Proof:

"⇒": If z = 1 then 0 ≤ ∑
n
i=1 xi −∑

m
j=1 y j −n can only be true if all

xi = 1 and all y j = 0.

"⇐": If z = 0 then ∑
n
i=1 xi −∑

m
j=1 y j ≤ n−1 can only be false if all

xi = 1 and all y j = 0. Thus at least one xi = 0 or one y j = 1.

With this it is easy to express that the variables z
j
i indicating

which template from Figure 5 is used to replace a y-configuration
are 1 if and only if these edges are split and those are not. We simply

need to use the above formula and replace the xi with the si of
those edges that are split and the yi with the ones not being split.
This leads to the following 16 constraints per y-configuration (left
column of Figure 5 first):

0 ≤ s0 + s1 − s2 − s3 − s4 − s5 + s6 − s7 − s8 +6−9 z1
i ≤ 8

0 ≤ s0 + s1 + s2 + s3 − s4 − s5 + s6 + s7 − s8 +3−9 z2
i ≤ 8

0 ≤ s0 + s1 + s2 − s3 + s4 − s5 + s6 + s7 − s8 +3−9 z3
i ≤ 8

0 ≤ s0 + s1 − s2 + s3 + s4 − s5 + s6 − s7 − s8 +4−9 z4
i ≤ 8

0 ≤ s0 + s1 − s2 − s3 − s4 − s5 − s6 + s7 + s8 +5−9 z5
i ≤ 8

0 ≤ s0 + s1 + s2 + s3 − s4 − s5 − s6 − s7 + s8 +4−9 z6
i ≤ 8

0 ≤ s0 + s1 + s2 − s3 + s4 − s5 − s6 − s7 + s8 +4−9 z7
i ≤ 8

0 ≤ s0 + s1 − s2 + s3 + s4 − s5 − s6 + s7 + s8 +3−9 z8
i ≤ 8

0 ≤ s0 + s1 + s2 − s3 − s4 + s5 − s6 − s7 − s8 +5−9 z9
i ≤ 8

0 ≤ s0 + s1 − s2 + s3 − s4 + s5 − s6 + s7 − s8 +4−9 z10
i ≤ 8

0 ≤ s0 + s1 − s2 − s3 + s4 + s5 − s6 + s7 − s8 +4−9 z11
i ≤ 8

0 ≤ s0 + s1 + s2 + s3 + s4 + s5 − s6 − s7 − s8 +3−9 z12
i ≤ 8

0 ≤ s0 + s1 + s2 − s3 − s4 + s5 + s6 + s7 + s8 +2−9 z13
i ≤ 8

0 ≤ s0 + s1 − s2 + s3 − s4 + s5 + s6 − s7 + s8 +3−9 z14
i ≤ 8

0 ≤ s0 + s1 − s2 − s3 + s4 + s5 + s6 − s7 + s8 +3−9 z15
i ≤ 8

0 ≤ s0 + s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 +0−9 z16
i ≤ 8

8.1. Y-Configuration Refinement Costs d
j
i

In Section 5.1 we discussed that the standard energy penalizes the
refinement of y-configuration too much, thus we added an adjust-
ment energy Ea (Equation (10)). Here we give the correct compen-
sation costs d

j
i for all y-configuration refinements for the case of a

constant singularity penalty ci = c.

To compute the correct compensation d
j
i we compare the cost

of creating the yellow configuration in Figure 5, i.e. the cost of
two splits and a y-configuration to create the initial faces plus the
number of splits and inserted y-configuration depicted in the fig-
ure, with the cost of first refining regularily (four splits) and then
inserting the y-configurations for the green configurations. The dif-
ference between these costs needs to be accounted for by d

j
i . Thus,

we get the following costs:

d
1
i =−3c−1 d

9
i =−2c+2

d
2
i = −c−1 d

10
i = 2

d
3
i = −c−1 d

11
i = 2

d
4
i =−3c−1 d

12
i =−2c+2

d
5
i = 2c+2 d

13
i = c−1

d
6
i = 2 d

14
i = −c−1

d
7
i = 2 d

15
i = −c−1

d
8
i = 2c+2 d

16
i = c−1

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

