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Texture Mapping and Synthesis on 3D Surfaces
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Fig. 1. Our method enables automatic texturing of triangular meshes with low distortion and minimal
visual artifacts. The supported texture types range from stochastic over irregular to quasi-regular materials.
Model by [Thingiverse 2012] and textures from [Textures.com 2020].

We present a method for example-based texturing of triangular 3D meshes. Our algorithm maps a small

2D texture sample onto objects of arbitrary size in a seamless fashion, with no visible repetitions and low

overall distortion. It requires minimal user interaction and can be applied to complex, multi-layered input

materials that are not required to be tileable. Our framework integrates a patch-based approach with per-pixel

compositing. To minimize visual artifacts, we run a three-level optimization that starts with a rigid alignment

of texture patches (macro scale), then continues with non-rigid adjustments (meso scale) and finally performs

pixel-level texture blending (micro scale). We demonstrate that the relevance of the three levels depends on

the texture content and type (stochastic, structured, or anisotropic textures).
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1 INTRODUCTION

High-quality texturing of graphical assets is essential to achieve visual realism in computer graphics.
Sophisticated lighting and physically-based shading are the de-facto industry standard today.
Realistic texturing of objects, however, still requires a considerable amount of manual work. While
many models exhibit large areas of homogeneous material, no automatic method exists to apply an
input exemplar to a 3D object without compromising visual quality.
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Several problems can emerge during texture mapping. Length and angle distortion occur when
mapping from the 2D texture domain to a 3D surface with non-zero Gaussian curvature. If the map
contains discontinuities, seams between portions of the texture become apparent. Furthermore,
noticeable repetitions drastically reduce the plausibility of the result. Lastly, ghosting artifacts can
become apparent when different regions are blended without prior content alignment.
Existing methods for automatic texturing with an input material suffer from at least one of

the aforementioned problems. Per-pixel synthesis produces seamless results, but struggles in
preserving large-scale structure from the input texture. Current patch-based methods suffer from
blending artifacts or visual discontinuities, while input texture repetitions can still be apparent.
Solid synthesis has similar limitations as per-pixel synthesis regarding faithful reproduction of
the input structure. Global parametrization approaches can produce seamless texture maps, but
require a tileable input texture and produce visible repetitions. Recently, triplanar mapping using
histogram-preserving blending was proposed and produces convincing results for stochastic input
material [Heitz and Neyret 2018]. For structured or semi-structured textures, however, blending
artifacts occur due to content misalignment.
Our automatic texturing method unifies a patch-based approach with per-pixel compositing.

Target objects are decomposed into circular patches by a geodesic region growing approach that
follows geometric features. These patches are enlarged to form overlap regions before mapping
each into the 2D plane with low distortion. Each patch interior samples an unmodified source
region from the input texture to reproduce the exemplar as faithfully as possible.
Overlap regions are then aligned directionally, and warped with respect to texture content

to facilitate blending without artifacts. Patch alignment happens in two stages. In a global pre-
alignment step, orientations of neighboring patches are adapted. Each patch is then non-rigidly
transformed with respect to image features in the local patch neighborhood by robustly fitting a
transformation that minimizes distances between corresponding interest points.

Finally, patches in overlapping regions are blended in a content-sensitive way to prevent ghost-
ing and contrast reduction. The method minimizes all mentioned types of texturing defects by
addressing their causes at all scales: globally, locally between patches, and per pixel. In summary,
we focus on smoothly aligning neighboring patches, geometrically and content-wise, to facilitate
artifact-free blending operations.

Our main contributions are

• a multi-scale by-example texturing method for 3D surfaces that combines parametrization,
patch-based synthesis, and low-artifact blending techniques,

• a content-aware soft registration to align overlapping patches in texture space,
• a multi-pass method to render the result in real-time without requiring texture atlases.

2 RELATED WORK

Much research has been conducted in the field of exemplar-based texture synthesis, ranging from
pixel-based synthesis [Efros and Leung 1999; Lefebvre and Hoppe 2005; Wei and Levoy 2000] to
parametric models [Heeger and Bergen 1995; Portilla and Simoncelli 2000] and, more recently,
data-driven approaches [Gatys et al. 2015; Jetchev et al. 2016; Ulyanov et al. 2016]. Due to the
vast amount of texture mapping and synthesis techniques, we restrict ourselves to methods that
address texturing of 3D meshes or show similarities to our approach. For a more extensive overview,
we recommend surveys on general exemplar-based synthesis [Wei et al. 2009] and solid texture
synthesis [Pietroni et al. 2010].
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2.1 Pixel-Based Synthesis

Per-pixel synthesis techniques incrementally determine output texture values by choosing pix-
els with similar neighborhood from the exemplar. Several approaches texture mesh surfaces by
synthesizing per-vertex colors directly on the input mesh [Han et al. 2006; Tong et al. 2002; Turk
2001; Wei and Levoy 2001; Zhang et al. 2003]. Other methods synthesize in the texture domain and
compensate distortion of the mapping by warping with its Jacobian and aligning with a tangential
field [Lefebvre and Hoppe 2006]. Gorla et al. combine a disjoint triangle patch generation, similarly
to ours, with a costly pixel-based synthesis on flattened patches [Gorla et al. 2001]. Instead of
aligning neighboring patch orientations, the authors pre-compute rotated copies of the input texture
to account for mesh curvature.
Although pixel-based algorithms yield convincing results and can achieve interactive frame

rates for small textures [Han et al. 2006; Lefebvre and Hoppe 2006], memory requirements and
performance do not scale well with increasing input sizes. Furthermore, unwanted color variations
can occur and absence of prominent features in the input texture can lead to low-variance regions
in the synthesized results.

2.2 Patch-Based Synthesis

In contrast to pixel-based approaches, patch-based methods arrange larger clusters of pixels.
Borders of neighboring patches are then concealed, e.g. by optimizing the location of the boundary
seam [Efros and Freeman 2001; Kwatra et al. 2003], applying Poisson-blending [Pérez et al. 2003] or
combining both approaches [Jia et al. 2006]. One advantage of patch- over pixel-based methods is
guaranteed coherence inside the patch and thus preserved input structure.

Lasram and Lefebvre propose parallelized 2D synthesis using circular patches with polar-space
circular cuts over which colors are smoothly propagated to minimize feature deviations [Lasram
and Lefebvre 2012]. In [Praun et al. 2000], a unique texture patch is repeatedly pasted on the
surface and warped according to a direction field, ignoring noticeable repetitions on the target
mesh. Schmidt et al. build upon that work to provide a basic texturing and enable an interactive
user-guided decal placement, focusing on manual deformation rather than automatic alignment
[Schmidt et al. 2006].

2.3 Solid Synthesis

Solid texture synthesis is the 3D equivalent of 2D pixel-based synthesis. Colors are synthesized on a
voxel grid by simultaneous 2D operations along the three coordinate planes, while taking the voxel’s
3D neighborhood into account [Kopf et al. 2007]. The method was later improved by Dong et al. to
pre-compute consistent 2D-triplets from the three exemplars, which facilitates near-interactive
frame rates in a GPU implementation [Dong et al. 2008]. To synthesize example-based 3D-printable
structures, Dumas et al. project rotated input exemplars onto a voxelized surface mesh before
hierarchically optimizing structural coherence in a 3D neighborhood [Dumas et al. 2015]. Solid
synthesis is convenient for texturing, as it enables using 3D vertex positions as texture coordinates
but suffers from the same limitations as pixel-based synthesis.

2.4 Global Parametrization

For disk topology meshes, global parametrization algorithms like Least-Squares Conformal Maps

(LSCM) [Lévy et al. 2002] or Scalable Locally Injective Mappings (SLIM) [Rabinovich et al. 2017]
yield contiguous texture coordinates, which enables direct mapping of an input exemplar. However,
texture seams occur if the parametrization requires cuts, which is the case for every closed mesh.
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(a) input with features (b) patch generation (c) macro scale (d) meso scale (e) micro scale

Fig. 2. Method overview: (a) Triangular input mesh with feature edges (blue). (b) Patches with overlap regions
and parametrizations (red: core region boundary, green: overlap region boundary). (c) Macro scale: global
alignment (red: łfault linesž). (d) Meso scale: content-aware per-patch warping (red, green: interest points).
(e) Micro scale: final blending. Model based on [Thingiverse 2011b] and textures from [Textures.com 2020].

In the case of quadrangular remeshing, translational offsets across seams are required to be
integer [Campen et al. 2015], so that tileable textures can be mapped seamlessly and in a globally
consistent fashion. While this works well for textures consisting only of regular patterns, any
irregularity will result in disruptive repetitions. Our method draws on quadrangulation algorithms
[Bommes et al. 2013] to determine a globally smooth patch alignment that is invariant to discrete
rotations about a symmetry angle.

2.5 Procedural Textures

Pioneering work on procedural 3D textures was presented by Perlin [Perlin 1985] to assign color
values directly to 3D positions. Unfortunately, procedural algorithms have to be designed specifically
for particular classes of textures and do not provide the possibility for local adaptations of the
result. Creating realistic 3D equivalents remains a challenge for many types of input exemplars,
although plausible results were obtained for stochastic [Galerne et al. 2012; Lagae et al. 2010] and
near-regular textures [Gilet et al. 2014].

3 METHOD

Our method follows a texture splatting metaphor. The target mesh is divided into overlapping
patches, where each patch maps to a different portion of the input texture. Many textures have
prominent directions that need to be aligned globally and come in many forms, from stochastic
over semi-structured to fully regular. We thus first optimize, on the macro scale, the directional
alignment between all neighboring patches. Structures and patterns in the overlap regions can,
however, still match poorly. This would lead to poor quality of the pixel-level synthesis on the
micro scale. To create good starting conditions for the micro step, we introduce a content-aware
optimization on a meso scale. It performs per-patch non-rigid warping to maximize the content
similarity between neighboring patches.

By copying continuous chunks of the input texture, randomizing texture coordinate offsets, and
creating optimal conditions for pixel-level compositing, we maximize overall texture coherence
and quality. Structure in the input exemplar is preserved at patch size and below, while texture
repetition and the forming of structures above patch size is prevented.

Figure 2 presents an overview of our method and Figure 3 shows how the user parameters of our
method can be interpreted in the texture space. The steps are presented in detail in the subsequent
sections of this chapter.
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3.1 Patch Generation

Core Region

Overlap Region

?

Meso Snap 
Radius

Fig. 3. User parameters: size of core and
overlap regions, interest point snap radius.

Decomposition of the surface into overlapping, evenly
distributed and near-isotropic regions is performed in
several steps (cf. Figure 4).

3.1.1 Preprocessing. Aside from the texture sample, the
user provides a triangular mesh and optionally a set of
feature edges as input. If no feature edges are provided,
they are selected automatically if the corresponding dihe-
dral angle is above a given threshold. Patches are assigned
per-face and large triangles might reduce patch unifor-
mity. Thus, we split all edges that are longer than half
the overlap radius.

Patches are prevented from growing over feature edges, which serves two purposes. First, they
prevent patches from growing over corners, as those regions cannot be unwrapped with low
distortion. Second, they provide candidates for the łfault linesž that the macro step can introduce.

3.1.2 Layout Generation. Surface partitioning starts with a low-discrepancy sampling of patch
centers, followed by an approximate centroidal Voronoi tessellation (CVT) [Du et al. 1999]. The
resulting patches are distributed with near-uniform distance and their size is bounded by the
desired maximum patch radius rp . All distance computations are performed approximately by a
fast marching technique [Novotni et al. 2002].

Patch centers are initialized as follows:

(1) Pick a random unassigned triangle as seed.
(2) Grow a surface patch up to a maximum distance rp .
(3) If unassigned triangles exist, go back to (1).

During step (2), already assigned triangles can be assigned to a new patch if the distance to the
new seed is shorter, effectively computing a discrete Voronoi diagram.

We then perform a few Lloyd relaxation steps to approximate a CVT, noticeably improving patch
uniformity. Concretely, for each patch we select the patch triangle with largest distance to the
patch boundary as new seed and then re-grow all patches.
For non-tileable input textures, the patch radius rp is bounded by the desired texture size in

world space and is further constrained by the goal to reduce prominent repetitions. On the other
hand, patches need to be sufficiently large to capture structural elements within the input texture
(e.g. cells, bricks, patterns).

It is crucial to define overlap regions to enable content-aware alignment of patches and perform
the final per-pixel compositing. The region has to cover the typical size of texture features but
should otherwise be kept as small as possible. For every patch p, we re-grow the initial core region
with an appropriately enlarged patch radius.

3.1.3 Texture Coordinate Computation. Each patch needs to be mapped into the 2D plane, while
distortion that arises from non-zero Gaussian curvature should be distributed as evenly as possible.
Using the Least-Squares Conformal Maps algorithm (LSCM) [Lévy et al. 2002], most patches can
be mapped without visible distortion. Solutions can be found very efficiently by directly solving a
system of linear equations.
However, patches with high-curvature regions often result in noticeable length distortion. In

those cases, minimizing an isometric deformation energy that encourages length preservation is
preferable. A prominent example is the symmetric Dirichlet energy. While it is more expensive to
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(a) 20 patches (b) Full coverage (c) relaxation step (d) parametrization (e) distortion

Fig. 4. Patch layout generation: (a, b) geodesic growing from Poisson-sampled seeds (blue: feature edges).
(c) Lloyd relaxation steps for uniformity. (d) Overlap region growing (green) and per-patch parametrization.
(e) Resulting length distortion (white: 0%, red: 5%). Model based on [Thingiverse 2011b].

minimize than the quadratic LSCM energy, specialized numerical methods such as Scalable Locally
Injective Mappings (SLIM) [Rabinovich et al. 2017] exist.

In order to exploit the performance of LSCM and the stretch-minimizing properties of SLIM, we
combine both methods to compute our mapping:

(1) Apply LSCM to all core regions.
(2) For patches that still exhibit considerable distortion we apply SLIM on the LSCM result.

(a) weight interpolant (b) final weights

Fig. 5. Blending weight interpolation
(green: overlap border, red: core border).
Model based on [Thingiverse 2011b].

This procedure is repeated for the overlap regions
while keeping the core region vertices fixed. As a result,
distortion tends to concentrate in overlap regions where
it is concealed by the final blending operation.
Finally, we compute blending weights for all vertices

in the overlap region. Every vertex that touches at least
one core region face is assigned a weight of 1 and every
vertex that belongs to the patch boundary has weight 0.
For vertices in-between we compute a harmonic scalar
field (cf. Figure 5(a)) such that weights vary smoothly
between 1 and 0 with increasing distance to the core
region (cf. Figure 5(b)).

3.2 Macro Scale

In the case of textures with considerable directional structure, an alignment of patch orientations
is essential. We optimize neighboring per-patch rotations and successively exclude problematic
patches. To synthesize textures with prominent structure, we find it more natural to relax the
directional alignment at a few łfault linesž (e.g. at geometric features) than to distribute the
alignment error over the whole surface. In other words, we prefer many well-aligned patches with
a few bad outliers to a least squares solution.

The problem is formulated globally and serves as a starting point for the meso optimization step.
To this end, we adapt the mixed-integer programming formulation introduced by [Bommes et al.
2009]. Angular differences are minimized across all core region boundary edges, up to integer
multiples of the optional symmetry angle θs . We optimize for per-patch orientations θi , θ j that

share a set of boundary edges Ebi j . Angles are computed relative to a local coordinate frame that

is determined by flattening the adjacent triangles along their common edge. Since patches share
multiple edges, we compute an average angle difference κi j between the local coordinate frames.
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(a) initial (b) randomized (c) mask-aware

Fig. 6. Texture space distribution of patches: (a) Centered initial parametrizations. (b) Random distribution to
reduce repetitions. (c) Mask-aware rejection sampling to avoid unwanted regions.

(a) conventional tiling (b) randomized (c) masked footsteps

Fig. 7. Comparison between texture tiling and our patch distribution. (a) Tiling exhibits repetitions. (b) Random
distribution de-correlates patches. (c) Footsteps in the sand are masked. Texture from [Textures.com 2020].

For the final optimization energy, we weight the angular differences between each pair of patches
by the length li j of their shared boundary.

Emacro =

∑

i j

li j (θi − θ j + κi j + pi jθs )
2 (1)

where pi j is the integer-valued period jump between the patches. The energy is then minimized
using a greedy-rounding strategy and constraint elimination [Bommes et al. 2010] in cases where
the user fixes the orientation of some patches.

Boundary edges that were marked as łfault linesž are not considered in the above functional. If
the user specified a maximum angular deviation instead, all edges that exceed the threshold are
removed from the respective set Ebi j and the process is iterated until a solution is found.

3.3 Meso Scale

After patch generation and macro optimization, the surface is covered by roughly aligned, overlap-
ping patches. In the final micro step, the overlap regions will be blended locally to create a seamless
texture. If the texture contains prominent interest points or structures that are not aligned, the
blending often performs poorly, resulting for example in ghosting artifacts. While the parametriza-
tion step minimizes texture distortion, the meso step may reintroduce a small amount of distortion
by bending and warping patch texture coordinates. This improves content similarity between

Proc. ACM Comput. Graph. Interact. Tech., Vol. 3, No. 1, Article 1. Publication date: May 2020.



1:8 Kersten Schuster, Philip Trettner, Patric Schmitz, and Leif Kobbelt

overlap regions and provides a better starting point for the final blending operations. Note that
before the meso alignment takes place, it is possible to rotate the texture coordinates of all patches
by a constant angle without introducing any further distortion, enabling the user to change the
global orientation.

(a) stone texture sample (b) brick texture sample

Fig. 8. Interest point detection (blue: Harris corners).
(a) Near-regular structure. (b) Regular structure.
Textures from [Textures.com 2020].

As 2D texture content should be matched,
parallels to image registration are apparent.
However, we aim for aligning similar struc-
tures rather than finding perfect matches which
would lead to visible repetitions in the case of
tiled textures and an unsolvable problem if tex-
tures are not tileable. To avoid confusion with
geometric feature edges, we call the texture
structures that we want to align interest points.
Such interest points can either be provided by
the user or derived automatically, for example
by computingHarris corners [Harris et al. 1988]
(cf. Figure 8). While this works well for near-
regular and regular structures, stochastic and
irregular ones usually do not benefit from it.

As depicted in Figure 6(a), patches overlap strongly in the texture domain after initial parametriza-
tion. Prior to the meso optimization step, we randomize patch location and rotation to reduce
overlap and break up repetitions and structures bigger than a single patch. Rotation must be com-
patible with the macro optimization, i.e. if a directional alignment was performed, patch rotation
can only be adjusted by multiples of the symmetry angle. Translation is less constrained. If the
texture is not tileable, patches are not allowed to leave the [0, 1]2 texture space region. Furthermore,
some textures might contain impurities or unwanted features that a designer might want to łmask
outž. We found that a simple rejection sampling approach suffices: randomize patch transformation
(potentially constrained by the macro optimization) until no masked region constraints are violated.
The results are shown in Figure 6 and 7.

The meso optimization works iteratively. For each patch p we keep all neighboring patches pi
fixed and try to find a small transformation of texture coordinates that improves the structural
alignment in the overlap regions. Patches are processed in a random order and theoretically until
convergence, though we stop after a few iterations in practice when changes become too small.
Formally, we have a discrete set I ⊂ [0, 1]2 of interest points in the texture domain of patch

p, stored in a k-d tree for faster lookup. In the overlap region, each interest point qa of each
neighboring patch pi is mapped to the texture domain of p and all interest points qb inside a radius
ri are collected (see Figure 2(d), red dots are interest points of p, green dots of the pi ). Each pair
(qa,qb ) represents a potential correspondence. Our goal is to find a non-rigid transformation T
that maximizes the number of correspondences for which | |T (qa) − qb | | < ϵ .
This is similar to the ICP algorithm [Besl and McKay 1992] or classical RANSAC [Fischler and

Bolles 1981] with some important differences and difficulties:

• we determine T as a cubic transformation for non-linear warping
• there is no łground truthž, a perfect match is not achievable
• we assume that the number of correspondences belonging to the łbestž transformation is low

The cubic transformation has 20 degrees of freedom and thus requires at least 10 correspondences to
be fully defined. In the RANSAC framework, the probability to pick 10 correspondences belonging
to the łcorrectž transformation is so low that a prohibitive number of iterations is required.
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Instead we opt for a different approach:

(1) choose three potential correspondences
(2) solve a regularized linear system for an initial T ′

(3) collect all inliers belonging to transformation T ′

(4) compute T as the least-square fit of all inliers

A cubic transformation T (u,v) consists of a cubic polynomial

T (u,v) = c0 + c1u + c2v + c3u
2
+ c4uv + c5v

2

+ c6u
3
+ c7u

2v + c8uv
2
+ c9v

3
(2)

with 2D coefficients c0 to c9. Let x ∈ R20 contain all coefficients and | |Ax−b | | be the linear regression
system for fitting correspondence pairs (qa,qb ). The identity transformation n corresponds to
ci = (0, 0), except c1 = (1, 0) and c2 = (0, 1). The regularized system that we optimize in step (2) is

| |Ax − b | | + | |W · (x − n)| | → min (3)

whereW is a diagonal matrix with weights that penalize quadratic and cubic coefficients more
than linear and constant ones, to bias the system towards stiff transformations. The exact penalty
weights do not matter much and we found 0 for translation, 1 for scale, 0.01 for quadratic, and 0.1
for cubic to be a good compromise.

3.4 Micro Scale

So far we have optimized the alignment of patches in a global and local fashion. Due to mesh
curvature and potentially challenging texture structure, optimized compositing of overlap regions
is required. This task can be approached in 2D since all patches have been flattened. Three methods
are typically used to address seams in planar patch-based texture synthesis:

• blending (e.g. [Pérez et al. 2003])
• seam optimization (e.g. [Kwatra et al. 2003])
• pixel-based re-synthesis (e.g. [Nealen and Alexa 2003])

All those approaches have their own advantages and disadvantages. While seam optimization and
pixel-based re-synthesis are comparatively costly, ordinary linear blending reduces the contrast of
the result and can produce ghosting artifacts. This becomes even worse if the number of blended
values increases [Heitz and Neyret 2018]. With all our pre-registration and alignment optimizations,
we created favorable conditions for blending-based approaches, which we prefer in our method
(though the other approaches can be used as well). In particular, we show results using the following
two approaches:

3.4.1 Histogram-Preserving Blending. Recently, Heitz and Neyret presented a histogram-preserving
blending method that overcomes the downsides of linear blending by mixing exemplars in a
gaussianized color space before re-adjusting the reduced variance and converting back to RGB
space [Heitz and Neyret 2018]. Deliot and Heitz further improved this method, especially for
reduced pre-processing time [Deliot and Heitz 2019], and Burley proposed additional adaptations
to reduce clipping, coloration and ghosting artifacts [Burley 2019].

3.4.2 Min- and Max-Blending. Texture sets for physically based rendering (PBR) typically consist
of at least albedo, roughness, normal, and height maps. The purpose of blending is now to transition
between two materials. Given height information, a natural way to transition is to define a height
function that is modulated by blending weight and then choose the material with the highest (or
lowest) height, which we call max-blending and min-blending respectively. This is particularly
useful for textures where salient structures protrude.
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(a) aligned patches (b) no blending (c) linear blending (d) hist.-preserving (e) max-blending (f) min-blending

Fig. 9. Comparison of blending modes: (a) Macro view of an object after alignment. (b-f) Detail view of the
region marked in red. Model based on [Thingiverse 2011b] and texture from [Textures.com 2020].

Formally, we define the effective height he asw · h (max-blending) orw · (1 − h) (min-blending),
where w is linearly interpolated per-vertex weight and h the sampled height map. Material pa-
rameters are then taken from the sample with highest effective height. To prevent hard edges, a
small łgracež ∆h is defined and all samples with he ∈ [he ,max − ∆h,he ,max] are composited with
histogram-preserving linear blending.

A comparison of the blending strategies is shown in Figure 9. While omitting blending completely
creates visual seams (b), linear blending introduces salient ghosting artifacts (c). These can be
reduced with histogram-preserving blending (d). If a height map is available, patches with higher (e)
or lower (f) structures can be preferred.

3.5 Storage and Rendering

There are two main ways to use the output of our method: direct rendering and atlas baking.
In direct rendering, we render each patch (including overlap) using its texture coordinates and

perform the blending in screen space using a multi-pass method:

(1) Perform a depth pre-pass using the original geometry.
(2) Render all patches using maximum blending to write out the effective height (cf. Section 3.4.2).
(3) Render all patches using additive blending and discard fragments with he < he ,max − ∆h,

compute new weight w = (he − max(0,he ,max − ∆h))/∆h, and accumulate a mini g-buffer
(albedo, world space normal, etc.) weighted byw , as well asw itself.

(4) Resolve the g-buffer by dividing the accumulated values by the accumulated weight.

Linear blending can be recovered by skipping step 2, setting he to the interpolated patch
weights, and ∆h to 1. When using histogram-preserving blending, we also write out w2 as it
is needed for the variance preservation and apply the de-gaussianization via look-up texture.

Fig. 10. Example texture atlas.
Texture from [Textures.com 2020].

The second approach is a more traditional atlas baking which
is especially simple for our method (cf. Figure 10). The patch core
regions form a partitioning of the surface. Each region already has
texture coordinates via parametrization, is roughly spherical and
of similar size by construction. We arrange the patches in a reg-
ular grid with power-of-two cell size. While a more sophisticated
packing could reduce the required space on the highest resolution,
textures are usually used with mipmapping and a tighter packing
would result in cross-patch blurring on higher mipmap levels. Alternatively, baked patches can be
stored in individual layers of a 2D texture array where each patch texture has its own mipmaps.

When baking the texture atlas we use the same blending as in the direct rendering. Note that we
have to apply normal mapping to get world space normals, blend them, and convert them back into
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a tangent space defined by the texture atlas coordinates because directly blending normal maps
from different tangent spaces is not correct.

Direct rendering creates more geometric data because overlap regions have to be duplicated for
each patch. It is slower to render because blending has to be performed via a custom multi-pass
method in each frame. However it requires no additional preprocessing and no additional texture
space, which makes it well suited for interactive visualization and for high-resolution textures.
In contrast, a texture atlas leverages the traditional texture pipeline with no additional runtime
overhead which is useful for low-power devices or for exporting a textured mesh. On the other
hand, the required texture size can be well above usual memory limits.

4 RESULTS AND DISCUSSION

Results of our method are illustrated in Figure 1 for stochastic, near-stochastic, irregular, and
near-regular materials. A larger selection of texturing results can be found in Figure 11 and in the
supplemental material. In the following, we motivate each of our optimization steps and discuss
it with regard to existing methods. Furthermore, we present exemplary timings and discuss the
limitations of our approach.

4.1 Discussion

(a) random orientation (b) directional alignment

Fig. 12. Macro optimization result. Model from [Thin-
giverse 2011a] and texture from [Textures.com 2020].

The importance of a global directional align-
ment, our macro step, is demonstrated in Fig-
ure 12 on a near-regular texture with a domi-
nant direction.
In addition, many textures have local fea-

tures that create ghosting artifacts in the over-
lap regions if they are not aligned. This affects
mostly near-regular and irregular textures, of-
ten with cellular structures. As shown in Fig-
ure 13, this can often be resolved by our non-
rigid registration in the meso step.

While the macro and meso steps improve the
alignment for structured textures, the micro
step is always important. Even with a good
alignment, the irregular and stochastic parts of
a texture differ between overlapping patches.
Thus, omitting the blending operation results
in visible cuts, which can be observed in Figure 14. For stochastic textures, histogram-preserving
blending works fine (cf. Figure 11 A, B). It could also be performed by the triplanar mapping method
proposed by Heitz and Neyret [Heitz and Neyret 2018], provided that the input texture is tileable.
Their method is very flexible, as it does not require any preprocessing of the input mesh. However,
it produces misalignment artifacts for non-stochastic inputs as well as length distortions, because
blending is performed in all surface regions that are not aligned with any of the three blending
planes. Figure 15 shows a simple mesh with an irregular texture for comparison. Even though
irregular inputs cannot be aligned using the macro and meso optimizations, our method yields
more consistent results, since blending occurs only in overlap regions.

This illustrates a general advantage of patch-based over per-pixel methods: patch content, apart
from overlap regions, is always coherent and does not require further local adjustment. Pixel-
based synthesis methods (2D and 3D) often struggle with low-contrast regions and the absence of
prominent features in the exemplar. Furthermore, the performance depends on the size of the input
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Texture Set Textured Result Patch Layout Result Detail Layout Detail

A

B

C

D

E

F

Fig. 11. Results from our synthesis algorithm. The texture sets consist of albedo, roughness, normal, and
optional height map if it is used to guide the blending. Texture coordinates are indicated as red and green.
Table 1 contains corresponding statistics and timing measurements. High resolution results and videos can
be found in the supplemental material. Armadillo and bunny models from [Stanford 2020], ghost model from
[Thingiverse 2011a], entangled model from [Thingiverse 2015], textures from [Textures.com 2020].
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(a) randomly translated patches (b) patches after meso optimization

Fig. 13. Meso optimization results: content-aware pairwise alignment reduces visibile blending artifacts.
Model from [Stanford 2020] and texture from [Textures.com 2020].

(a) no blending (b) max-blending

Fig. 14. Micro optimization results: without pixel-level blending, patch borders are visible in the texturing.
Texture from [Textures.com 2020].

exemplars and a texture atlas is necessary to store the synthesized result. Our algorithm, however,
is independent from the actual texture size, because it only computes per-vertex blending weights
and texture coordinates to access the input texture directly.

Although pixel-based methods exhibit the aforementioned limitations, we believe that they could
be incorporated into the compositing of overlap areas in our micro optimization. In that case, the
use of an atlas would be inevitable. To reduce the memory requirements of the texture atlas, only
the overlap regions have to be blended and baked into a texture before re-synthesizing them (using
e.g. [Lefebvre and Hoppe 2006]). The core regions would still be textured by directly sampling from
the input texture.

A noticeable limitation of our method is fully regular input material, like tilings or mosaics. While
the macro optimization adjusts pairwise patch orientations and the meso step aligns neighboring
patches, the local warping does not adapt to the surface curvature in a global fashion. In contrast,
global parametrization methods (e.g. [Campen et al. 2015]) distribute curvature-induced distortion
over the whole mesh, which is preferable if repetitions are explicitly desired and the input texture
is tileable.
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Linear Blending Histogram-Preserving Blending Max Blending

T
ri
p
la
n
ar

O
u
rs

Texture Set Patch Layout Layout (Detail)

Fig. 15. Top: comparison of triplanar mapping with our method for an irregular stone texture.
Bottom: texture set (albedo, height, normal and roughness) and patch layout computed by our method.
Textures from [Textures.com 2020].

4.2 Performance

Our experiments were run on a 3.20GHz Intel i7-8700 and used an NVidia GTX 1080 GPU for
rendering. The code is written in C++ and was compiled with clang 7 using -O2. We use libigl
[Jacobson et al. 2018] for SLIM, while our LSCM implementation and the weight computations use
the Eigen::SimplicialLDLT solver from [Guennebaud et al. 2010]. Renderings were created in
2560 × 1440 resolution using the direct rendering approach from Section 3.5. The largest texture
was of size 8192 × 8192 and was used for the parquet bunny in Figure 11 E.

While there are many opportunities for further optimization, the results in Table 1 provide a
rough overview of our method’s performance. Note that the synthesis timings are independent of
the texture resolution and the implications on rendering performance are low due to mipmapping.

4.2.1 Synthesis Time. Patch generation performance is mainly influenced by the number of input
triangles, while most of the time is spent for the Lloyd relaxation. For the given examples, we
performed patch growing with 10 relaxation steps. If there are more synthesis faces than input
faces, large edges are split to ensure a more homogeneous patch layout. However, even a poor
triangulation, which can result in a non-uniform patch layout, often yields convincing results
(cf. the CSG ball in Figure 11 B). Parametrization and weight computation performance is influenced
by the patch size, i.e. a few patches with many triangles are more costly than many patches with a
low triangle count. The macro optimization cost scales with the number of patches and becomes
more expensive for smaller angle deviation tolerances specified by the user. In the meso step,
alignment costs are highest for textures with a vast number of interest points, as well as a large
search radius in which nearby interest points are gathered. For the renderings in the last three
columns of Table 1, five meso iterations were performed.
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Table 1. Timing measurements for the synthesis and rendering algorithms for various meshes. Render Faces
consist of the disjoint synthesis faces and the overlap faces. To facilitate blending, overlap faces are rendered
once for every patch they are covered by. Armadillo and bunny models from [Stanford 2020], ghost model
from [Thingiverse 2011a], entangled model from [Thingiverse 2015], and textures from [Textures.com 2020].

Fig. 11 A Fig. 11 B Fig. 11 C Fig. 11 D Fig. 11 E Fig. 11 F Fig. 13(b)

Statistics

Input Faces 345 944 1128 3392 3306 69 666 137 302 69 666

Synthesis Faces 345 944 1128 3524 3306 69 666 137 302 70 780

Render Faces 776 602 6078 12 760 8966 150 933 294 593 134 380

Genus 0 13 0 3 0 11 0

Patches 201 200 75 140 72 562 652

Synthesis

Patch Growing 5727ms 19ms 20ms 21ms 533ms 925ms 514ms

Parametrization 16 228ms 16ms 85ms 17ms 2827ms 762ms 1740ms

Patch Weights 464ms 2ms 1ms 1ms 60ms 69ms 26ms

Macro Opt. - - - 1174ms 353ms 15 622ms 18 190ms

Meso Opt. - - - - 23 112ms 4485ms 3510ms

Rendering

Depth Pre-Pass 0.325ms 0.023ms 0.017ms 0.026ms 0.059ms 0.092ms 0.048ms

Max-Blending 0.410ms 0.095ms 0.085ms 0.119ms 0.120ms 0.166ms 0.112ms

Accumulate 0.817ms 0.217ms 0.295ms 0.443ms 0.200ms 0.277ms 0.187ms

Resolve 0.355ms 0.099ms 0.162ms 0.332ms 0.081ms 0.096ms 0.152ms

Sum 1.906ms 0.434ms 0.559ms 0.919ms 0.460ms 0.631ms 0.499ms

Atlas Rendering 0.183ms 0.054ms 0.059ms 0.133ms 0.063ms 0.087ms 0.065ms

4.2.2 Rendering Time. As the depth pre-pass renders the input geometry into the depth buffer,
its cost varies only with the number of rendered triangles (render faces in Table 1). Note that the
number of faces is lower if smaller overlaps are computed. Themax-blending and accumulate stages,
which perform per-fragment blending, are the most expensive parts. Finally, the resolve stage is a
post-process that is invoked at most once per screen space pixel. Performance thus depends on how
much of the screen is covered. Besides dividing the accumulated values (e.g. albedo and normals)
by the respective weight and de-gaussianizing the results, lighting computations are performed.
For further optimization, one can limit the blending candidates by assigning a fixed number

of texture coordinates and weights per vertex (e.g. 3). For this, the most influential patches for
every vertex have to be determined prior to rendering. By doing so, the above render stages can be
transformed into an inexpensive single-pass algorithm. The drop shadows in the results are merely
for artistic purposes and are not considered for the rendering time.

The last row of Table 1 contains the rendering cost for all objects using texture atlases instead of
the direct rendering method. Note that, apart from the geometry-heavy ice armadillo, the cost is
bounded by the fragment operations. The depicted objects cover the screen space by approximately
10 ś 35%. We refer to the rendering results in the supplemental material for examples. Moving
the camera toward the rendered objects until all screen fragments are covered, increases overall
atlas rendering timings to 0.2ms ś 0.6ms. Due to mipmapping, the actual size of the atlas does not
impact the rendering performance significantly.
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Table 2. Timings for a parallelized atlas generation for the bunny mesh (6 CPU cores, 149 patches).
This includes atlases for albedo, normal, roughness and height texture.

Output sizes

Input sizes 10242 20482 40962 81922

10242 0.37 s 0.71 s 2.03 s 6.90 s
81922 0.39 s 0.82 s 2.51 s 7.29 s

(a) linear blending (b) min-blending (c) max-blending (d) max-blending (e) max-blending (detail)

Fig. 16. Failure cases of our method: (a-c) meso-alignment fails to adequately match regular structures for
large Gaussian curvature. None of the histogram-preserving blending strategies conceals the misalignment.
(d-e) Success of the meso optimization depends on the number of matching interest points and mesh topology.
Even if some alignment errors can be remedied, rotation and scaling artifacts are noticeable. Ghost model
from [Thingiverse 2011a], entangled model from [Thingiverse 2015], and textures from [Textures.com 2020].

4.2.3 Atlas Generation Time. Table 2 shows exemplary timings for the texture atlas creation of a
PBR set consisting of albedo, normal, roughness and height textures. The corresponding mesh was
partitioned into 149 patches.

4.2.4 Memory Requirements for Rendering. Assuming 1 byte per channel, atlases for the afore-
mentioned textures consume 8 bytes per texel, which is e.g. 0.5 GB for an 8192 × 8192 atlas set.
Alternatively, for the direct rendering approach, every vertex needs to store one texture coordinate
and one weight value for each patch that covers it. The unprocessed armadillo mesh has 172 974
vertices and the render mesh from Figure 11 consists of 439 654 vertices. Assuming 12 single preci-
sion floats for position, normal, tangent, texture coordinate, and patch weight per vertex, we need
to store roughly 14 MB additional data. As many vertex positions, tangents, and normals are shared
among different patches, a possible optimization would be to store them in a Shader Storage Buffer
Object to reduce redundancy.

4.3 Limitations and Future Work

Our method works on a wide variety of surfaces but degenerates in certain situations. Meshes
with extreme Gaussian curvature or non-developable fine geometric detail result in high, visible
distortion after parametrization. While decreasing the patch size in affected regions does help,
patches that are too small also jeopardize the synthesis quality.

Material textures from fully stochastic to almost regular are handled well by our method though
certain types of textures do not achieve the target quality. Fully regular textures cannot be mapped
properly if the mesh contains non-negligible Gaussian curvature without causing visible distortion.
If they are too regular, the micro step has no leeway to fix patch transitions. Similarly, some textures
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have additional semantic constraints that are inadequately captured by our alignment and matching
procedures, for example cellular textures with distinct cell types that are not allowed to mix. Some
cases are shown in Figure 16. We plan to improve the handling of these challenging textures in the
future by adding additional constraints to the meso optimization, ideally automatically derived
from the texture content.
Currently, the only opportunity for user interaction is after the meso step. The micro step can

be executed during rendering and is fast enough that users can transform individual patches in
real-time. In the future we plan to explore UI metaphors that enable an intuitive and iterative
workflow where designers are cooperating with our complete pipeline.

Another avenue for research is to expand the scope of our method to handle multiple materials as
well as incrementally re-texturing mesh parts that changed, e.g. due to CSG operations or sculpting.

5 CONCLUSION

We devised a multi-stage texture synthesis method that is able to create high quality texture
maps for 3D surfaces. The method starts by growing patches with limited geodesic radius and
performs Lloyd relaxation steps to approximate a centroidal Voronoi tessellation. By employing
parametrization methods to compute patch texture coordinates, complex geometric shapes can be
mapped with low distortion.

We support a broad spectrum of textures, from stochastic to near-regular, by leveraging content-
awareness on multiple scales. Our macro step optimizes global directional alignment to account for
strong directional patterns present in many textures. The meso step aligns interest points in the
textures and performs a slight cubic warping of patches to improve content alignment between
neighboring patches. While this re-introduces some distortion, the improved synthesis quality is
worth the trade-off.

Themacro andmeso steps improve the starting conditions for themicro step. Due to the optimized
content alignment, the histogram-preserving blending strategy produces convincing results in
most cases, so that expensive pixel-based synthesis or seam optimization schemes are not required.
In addition to linear histogram-preserving blending, we argue that for PBR texture sets a min- or
max-blending scheme often results in a more natural transition between structures.
The result of our method can be baked into a texture atlas, which is especially simple because

the patches are already parametrized and have roughly uniform size. However, this tends to require
large textures with partially redundant content for bigger meshes, thus we propose an inexpensive
multi-pass method to perform the blending in screen-space directly during rendering.

With the presented method, a wide class of 2D texture samples can be mapped onto 3D objects
in an automatic and seamless fashion, with no visible repetitions and low overall distortion.
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