
Supplementary Material:
Inter-Surface Maps via Constant-Curvature Metrics

PATRICK SCHMIDT, RWTH Aachen University
MARCEL CAMPEN, Osnabrück University
JANIS BORN, RWTH Aachen University
LEIF KOBBELT, RWTH Aachen University

1 TANGENT VECTOR TRANSPORT
We here provide the details of the transport operator used (in
Sec. 6.7) to (1) trace vertex updates on a target surface, (2) maintain
a smoothed derivative history, and (3) implement a connection-
Laplacian operator as pre-conditioner.

1.1 Transport Operator
Each face of a triangle mesh defines a local barycentric coordinate
system for points and tangent vectors in R2. Given two adjacent
faces 𝑡𝑖 , 𝑡 𝑗 , we define the transport operator 𝜏𝑖 𝑗 ∈ R2×2 which takes
a vector from the barycentric coordinate system of 𝑡𝑖 , transports
it across the common edge, and represents it in the barycentric
coordinate system of 𝑡 𝑗 .
This transport is via the Levi-Civita connection, i.e. can be com-

puted as follows: Jointly flatten the two triangles 𝑡𝑖 and 𝑡 𝑗 isometri-
cally into R2. With vertex coordinates in R2 given by a𝑖 , b𝑖 , c𝑖 , and
a𝑗 , b𝑗 , c𝑗 , we have

𝜏𝑖 𝑗 =
[
a𝑗 − c𝑗 , b𝑗 − c𝑗

]
[a𝑖 − c𝑖 , b𝑖 − c𝑖]−1 .

Given a dual path on a mesh represented by a sequence of faces
𝑡1, . . . , 𝑡𝑛 , we compute the transport 𝜏1,...,𝑛 along that path by com-
position 𝜏1,...,𝑛 = 𝜏𝑛−1,𝑛 · · · 𝜏23 · 𝜏12.

1.2 Vertex Update Tracing
For each vertex 𝑣𝑖 of 𝒜, we are given an update direction d𝑖 =

(d𝛼𝑖 , d𝛽𝑖)T in barycentric coordinates of some face 𝑡 of ℬ. To trace
this update direction over the surface of ℬ, we again use the Levi-
Civita connection to transport the tracing direction across different
tangent spaces of ℬ. In practice, we trace in local barycentric coordi-
nates and apply a transformation 𝜏 𝑗𝑘 to the current tracing direction
(d𝛼𝑖 , d𝛽𝑖)T every time we cross an edge from a face 𝑡 𝑗 to 𝑡𝑘 in ℬ.
This tracing yields for every vertex 𝑣𝑖 of 𝒜 a path on ℬ. Comput-

ing the transport operator 𝜏... along the corresponding dual edge
path tells us how to transport a vector along this path. For each
vertex 𝑣𝑖 , denote this operator by 𝜏𝑖 .

We construct a R2 |𝒱𝒜 |×2 |𝒱𝒜 | block diagonal matrix from the
transport operators 𝜏𝑖 of all vertices:

T =
©­­«
𝜏1

. . .

𝜏 |𝒱𝒜 |

ª®®¬ .
Consider v ∈ R2 |𝒱𝒜 | representing a tangent vector per vertex of
𝒜 on ℬ before tracing. Transporting each tangent vector along its

respective path yields a new set of tangent vectors v′ represented in
potentially different coordinate systems. T captures these changes
of coordinates and we can compute v′ = Tv.

1.3 Derivative Smoothing
Wemaintain smoothed versions g̃ and H̃ of the gradient and Hessian.
At the beginning of each iteration, we compute the current gradient
and Hessian and blend them into the smoothed versions. We then
compute a Newton step based on the the smoothed gradient and
Hessian. If the negative smoothed gradient is no descent direction
or the smoothed Newton step yields no descent direction, we reset
the smoothed derivatives and re-solve using g and H.
When applying the computed update step, vertices of mesh 𝒜

are moved to new positions on ℬ. Since they potentially move to
new faces, their barycentric representation changes, rendering g̃
and H̃ incompatible with the current state. To restore compatibility,
we update g̃ and H̃ with the same transport operator (including a
change of coordinate systems). We compute transported versions
g̃′ and H̃′ by applying T as defined above:

g̃′ = Tg̃

H̃′ = T−TH̃T−1

The update rule for H̃ is derived as follows: Consider an original
vector field v and its transported result v′ = Tv. We need the trans-
ported Hessian to have the same effect on the transported vector as
the original Hessian on the original vector, i.e.

vTH̃v = v′TH̃′v′

which is fulfilled by choosing the update as described above.
After this transport, H̃′ and g̃′ are prepared to be blended with

the gradient and Hessian at the new position, computed in the
beginning of the next iteration. Note that the sparsity pattern of H̃
never changes.

We keep separate smoothed versions of the gradient and Hessian
for both meshes 𝒜 and ℬ. The previous explanations describe how
to transport the derivatives for mesh𝒜 along the surface of ℬ while
the map is represented in direction𝒜 to ℬ. However, each update of
𝜙⊲ in this direction also implies a change of the induced vertex-to-
surface map 𝜙⊳. Thus, we also carry out the symmetric construction,
i.e. transport the derivatives with respect to ℬ along the paths its
vertices travelled on the surface of 𝒜.

2 • Patrick Schmidt, Marcel Campen, Janis Born, and Leif Kobbelt

1.4 Laplacian Pre-Conditioning
Similar to [Schmidt et al. 2019], we make use of a squared Lapla-
cian pre-conditioner, penalizing deviations in update direction for
neighboring vertices.
In our case, the update direction is a tangent vector field d ∈
R |2𝒱𝒜 | defined at themapped vertices of𝒜 onℬ. Each pair of entries
in d describes a tangent vector in a local barycentric coordinate
system. We transport a vector from its own tangent space to the
one of a neighboring vertex along the path defined by the image of
their connecting edge on the target surface. There we switch from
a barycentric coordinate system to local orthonormal coordinate
system and compute the squared norm of the difference between
both vectors. We can combine these operations into a quadratic
form dTPd with

P = LTSTMSL

where

• L is a connection Laplacian using parallel transport to align
the tangent spaces of neighboring vertices. It maps from and
to local barycentric coordinates. Details of the construction
are given below.

• S maps from the local barycentric coordinate system at each
vertex to an isometric 2D parametrization of the triangle. This
map is responsible for converting from barycentric coordi-
nates to tangent vectors that have a comparable length.

• M is a diagonal “mass matrix” used to integrate the squared
lengths of the computed tangent vector. We use area weights
of 𝒜 (constant throughout the optimization).

For each vertex 𝑣𝑖 with a local update direction d𝑖 ∈ R2, the connec-
tion Laplacian is computed as

L(d𝑖) =
∑

𝑗 ∈𝒩 (𝑖)
𝜔𝑖 𝑗

(
𝜏 𝑗𝑖d𝑗 − d𝑖

)
where 𝜏 𝑗𝑖 is the parallel transport operator along the edge path from
vertex 𝑣 𝑗 to vertex 𝑣𝑖 on the target mesh. 𝜔𝑖 𝑗 are cotangent weights
of the source mesh (constant throughout the optimization). Still,
L changes in each iteration, i.e. needs to be re-computed, as the
transport paths between vertices change.
A similar definition of a connection Laplacian is given in [Kyng

et al. 2016]. Applications also appear in [Knöppel et al. 2013, 2015].

2 YAMABE FLOW
To compute an initial constant curvature metric, we make use of
Euclidean and hyperbolic discrete Yamabe flow [Bobenko et al. 2015;
Zhang et al. 2014]. Given an Euclidean / hyperbolic input metric ℓ , it
produces a constant curvature metric ℓ ′ which is discrete conformal
to ℓ . It iteratively updates the discrete conformal factor𝑢𝑖 per vertex,
which defines ℓ ′ via a scaling of the initial metric ℓ . Starting with
u = 0 we perform the following steps:

(1) Compute scaled edge lengths from discrete conformal factor:

ℓ ′𝑖 𝑗 =

{
𝑒
1
2 (𝑢𝑖+𝑢 𝑗) ℓ𝑖 𝑗 E2

2 sinh−1
(
𝑒
1
2 (𝑢𝑖+𝑢 𝑗) sinh(ℓ𝑖 𝑗2)

)
H2

(2) Compute angles from edge lengths via law of cosines:

𝜃𝑖 = cos−1

ℓ𝑗

2+ℓ𝑘 2−ℓ𝑖 2
2ℓ𝑗 ℓ𝑘 E2

cosh ℓ𝑗 cosh ℓ𝑘−cosh ℓ𝑖
sinh ℓ𝑗 sinh ℓ𝑘 H2

(3) Compute angle defects K per vertex:

𝐾𝑖 = 2𝜋 −
∑

𝑖 𝑗𝑘∈𝒩 (𝑖)
𝜃𝑖
𝑗𝑘

(4) Update conformal factor u (Newton step). The gradient g and
Hessian H are given by

g = − K

H =
∑
𝑖 𝑗 ∈ℰ

1
2
𝜔𝑖 𝑗 (d𝑢𝑖 − d𝑢 𝑗)2

+
{
0 E2

1
2 tanh

ℓ𝑖 𝑗
2 (d𝑢𝑖 + d𝑢 𝑗)2 H2

with

𝜔𝑖 𝑗 =


1
2 cot𝜃

𝑘
𝑖 𝑗
+ 1

2 cot𝜃
𝑙
𝑗𝑖

E2

1
2 cot

(
1
2

(
𝜋 − 𝜃𝑖

𝑗𝑘
− 𝜃 𝑗

𝑘𝑖
+ 𝜃𝑘

𝑖 𝑗

))
H2

+ 1
2 cot

(
1
2

(
𝜋 − 𝜃 𝑗

𝑖𝑙
− 𝜃𝑖

𝑙 𝑗
+ 𝜃𝑙

𝑗𝑖

))
per edge 𝑖 𝑗 with opposite vertices 𝑘 .

In the Euclidean case, H is the discrete cotangent Laplace operator.
We solve Hdu = −g and update u → u + 𝑠 · du with step size 𝑠 . In
the flat case, H has rank 𝑛 − 1 and the solution is unique only up
to a constant offset. Here, we shift u (i.e. uniformly scale the edge
lengths) such that the total surface area remains constant. In the
hyperbolic case, H has full rank.
When used for metric sanitization (Sec. 6.7), we apply a single

iteration (with 𝑠 = 1) of the flow. When used to compute an initial
metric of the macro-mesh ℒ (Sec. 7.1), in our experiments we iterate
steps (with 𝑠 = 10−3), stopping when the maximum absolute angle
defect (thus the deviation from the desired constant curvature state)
falls below 10−12. We remark that for success guarantees a strictly
convergent optimization strategy (e.g. trust-region) [Springborn
et al. 2008] and connectivity modification operators [Luo 2004],
[Campen and Zorin 2017] would have to be employed.

REFERENCES
Alexander I Bobenko, Ulrich Pinkall, and Boris A Springborn. 2015. Discrete conformal

maps and ideal hyperbolic polyhedra. Geometry & Topology 19, 4 (2015), 2155–2215.
Marcel Campen and Denis Zorin. 2017. Similarity Maps and Field-Guided T-Splines: a

Perfect Couple. ACM Trans. Graph. 36, 4 (2017).
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal

direction fields. ACM Trans. Graph. 32, 4 (2013), 1–10.
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns

on surfaces. ACM Trans. Graph. 34, 4 (2015), 1–11.
Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spielman.

2016. Sparsified cholesky and multigrid solvers for connection laplacians. In Proceed-
ings of the forty-eighth annual ACM symposium on Theory of Computing. 842–850.

Feng Luo. 2004. Combinatorial Yamabe flow on surfaces. Communications in Contem-
porary Mathematics 6, 05 (2004), 765–780.

Patrick Schmidt, Janis Born, Marcel Campen, and Leif Kobbelt. 2019. Distortion-
Minimizing Injective Maps Between Surfaces. ACM Trans. Graph. 38, 6 (2019).

Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal equivalence of
triangle meshes. ACM Trans. Graph. 27, 3 (2008).

Min Zhang, Ren Guo, Wei Zeng, Feng Luo, Shing-Tung Yau, and Xianfeng Gu. 2014.
The unified discrete surface Ricci flow. Graphical Models 76, 5 (2014), 321–339.

	1 Tangent Vector Transport
	1.1 Transport Operator
	1.2 Vertex Update Tracing
	1.3 Derivative Smoothing
	1.4 Laplacian Pre-Conditioning

	2 Yamabe Flow
	References

