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Fig. 1. Visualization of inter-surface maps for pairs of surfaces of varying genus, optimized for low distortion while guaranteeing bijectivity. We represent and

optimize such maps flexibly and compactly via discrete constant-curvature metrics of spherical (genus 0), flat (genus 1), or hyperbolic (genus 2+) type.

We propose a novel approach to represent maps between two discrete sur-

faces of the same genus and to minimize intrinsic mapping distortion. Our

maps are well-defined at every surface point and are guaranteed to be contin-

uous bijections (surface homeomorphisms). As a key feature of our approach,

only the images of vertices need to be represented explicitly, since the images

of all other points (on edges or in faces) are properly defined implicitly. This

definition is via unique geodesics in metrics of constant Gaussian curva-

ture. Our method is built upon the fact that such metrics exist on surfaces

of arbitrary topology, without the need for any cuts or cones (as asserted

by the uniformization theorem). Depending on the surfaces’ genus, these

metrics exhibit one of the three classical geometries: Euclidean, spherical or

hyperbolic. Our formulation handles constructions in all three geometries

in a unified way. In addition, by considering not only the vertex images but

also the discrete metric as degrees of freedom, our formulation enables us

to simultaneously optimize the images of these vertices and images of all

other points.
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1 INTRODUCTION

Maps between surfaces have a variety of uses in Computer Graphics

and Geometry Processing. Classical applications include the transfer

of various types of information between surfaces, such as textures,

geometric detail, deformations, or tessellations. The parametrization

or registration of exemplars over a common base model is another

application scenario. Such inter-surface maps are furthermore of

increasing importance for advanced shape processing tasks, in the

context of co-processing of shape collections, or the analysis of

frame sequences of time-varying or animated shapes.

In these various fields, inter-surfacemaps are used as fundamental

building blocks of complex methods. Being able to reliably compute,

optimize, and provide such maps is therefore of significant practical

interest. Properties of maps that commonly are relevant in such

applications are bijectivity, continuity, and low distortion.

We present a novel approach to represent inter-surface maps

with guaranteed bijectivity and continuity (i.e., surface homeomor-

phisms) and a method to optimize such maps for low distortion in a

direct manner. Our approach is general in that it supports discrete

surfaces (triangle meshes) of arbitrary genus.

1.1 Piecewise Maps

Piecewise-linear maps are a common choice for mapping from a

discrete surface (triangle mesh) to the plane, e.g. for surface parame-

trization purposes. These maps are easily represented by the images

of the vertices alone, i.e. a finite list of 2D point coordinates. The

rest of the map is defined implicitly via barycentric interpolation:

the image of any non-vertex surface point p = 𝛼a+𝛽b+ (1−𝛼 −𝛽)c,

lying in a triangle with vertices a, b, c, is defined as

𝑓 (p) = 𝛼 𝑓 (a) + 𝛽 𝑓 (b) + (1 − 𝛼 − 𝛽) 𝑓 (c).

The fact that the map can be represented in this compact manner,

and that important quantities like the map’s Jacobian are linear in
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the vertex parameters, is a cornerstone for many map generation

and map optimization algorithms.

When considering maps between two discrete surfaces (i.e., inter-

surface maps) such a convenient representation is unavailable: the

above representation, based on barycentric interpolation, exploits

the fact that the Euclidean plane is a linear space. But this is not

the case for a surface (a Riemannian manifold). In particular, there

is no natural notion of interpolation between two or three points

on an arbitrary surface. Methods concerned with formally well-

defined inter-surface maps thus often operate with the plane as an

intermediate domainÐeither globally [Aigerman et al. 2014; Litke

et al. 2005; Schmidt et al. 2019], or locally [Kraevoy and Sheffer 2004;

Schreiner et al. 2004]. This comes with disadvantages though, such

as topological restrictions, limited distortion control, or the inability

to efficiently optimize on a global scale.

A piecewise-linear map to the plane can equivalently be defined

geometrically instead of algebraically (thereby not exploiting the

vector space nature of the plane): edge images are geodesics in

the plane, and for points in the interior of a triangle, the notion

of barycentric coordinates can be viewed as a weighted Fréchet

mean [Panozzo et al. 2013]. However, also this construction fails to

directly extend to surfaces: neither geodesics nor Fréchet means are

unique on a general Riemannian surface [Pennec 2006; Rustamov

2010] and therefore do not globally well-define the map in general.

1.2 Constant-Curvature Metrics

If, however, the Riemannian metric is flat, geodesics and the Fréchet

mean are unique (and continuosly varying), hence the map is well-

defined. Note that intermediate plane methods can be interpreted

as equipping the surface with a flat metric.

This intrinsic metric view allows for further generalization: any

constant curvature metric, including spherical and hyperbolic met-

rics [Bacák 2014], has (under mild assumptions) unique geodesics

and Fréchet means. The latter is exploited in some mapping meth-

ods, such as [Aigerman et al. 2017; Aigerman and Lipman 2016].

The uniformization theorem states that for a Riemannian surface of

any genus such a metric of constant Gaussian curvature 𝐾 exists

globally [Farkas and Kra 1992]. Further, the Gauss-Bonnet theorem∫
𝐾d𝐴 = 4𝜋 (1 − 𝑔) relates the total curvature to the genus 𝑔 of the

closed surface. Thus, depending on its genus, any closed surface

admits a

• 𝑔 = 0: spherical metric (constant curvature 𝐾 > 0),

• 𝑔 = 1: flat metric (constant curvature 𝐾 = 0),

• 𝑔 ≥ 2: hyperbolic metric (constant curvature 𝐾 < 0).

A map from a triangle mesh to a surface equipped with a constant-

curvature metric can again be expressed in a piecewise manner. As

in the planar case, we explicitly define the images of the vertices on

the target surface, while the images of edges are defined implicitly

as the (unique) geodesics in the constant curvature metric. Once the

images of edges are defined, the map can be extended rather easily

to the interior of triangles, as we discuss later.

Note that the paths that edge images take on the target surface are

fully determined by its metric. This metric, however, is not unique;

there is an infinite space of discrete constant-curvature metrics for

a given surface (e.g. every spherical embedding in the genus 0 case).

We take both the vertex images and the metric of the target surface

into account as degrees of freedom in our map representation and

optimization.

1.3 Contribution

We provide a novel representation and an optimization algorithm

for maps between two discrete closed and orientable surfaces.

• Both the map and its inverse are well-defined at every surface

point and guaranteed to be continuous bijections. I.e., we

produce a discrete surface homeomorphism (as opposed to a

mere vertex map).

• Our representation supports surfaces of arbitrary genus in

a unified formulation. No cut graphs, cone singularities, or

transition functions are introduced.

• We optimize map quality using global second-order optimiza-

tion techniques. Common intrinsic distortion measures (such

as the symmetric Dirichlet energy) are supported and are

evaluated in a direct surface-to-surface manner.

• By adjusting the underlying map-defining metric, the opti-

mization controls not only the embedding of vertices on the

target surface, but also of all other points. It is not required

(but supported) to pin down any vertices during optimization.

1.4 Method Overview

In our method, a map from a source to a target triangle mesh is rep-

resented by a vertex-to-surface map in combination with a constant-

curvature metric on the target surface. Given such a representation,

our iterative map optimization algorithm repeatedly performs the

following steps:

(1) Extract a common tessellation (mesh overlay) of both surfaces

by computing geodesics in the constant-curvature metric.

(2) Compute geometric embeddings of the tessellation on both

surfaces, defining the map in a piecewise-linear manner.

(3) Evaluate a distortion measure of the map and compute deriva-

tives w.r.t. the vertex images on the target surface.

(4) Take a modified Newton step, i.e. compute per-vertex updates

as tangent vectors and trace them along the target surface.

(5) Switch the roles of source and target, i.e., obtain the current

vertex-to-surface map in reverse direction as well as the cur-

rent metric of the source mesh. Both are uniquely defined.

Step (5) contains the key ingredient to optimizing both the vertices’

images and the metric: Modifying the vertex-to-surface map in one

direction implies a change of metric in the reverse direction (which

is also directly driven by the map distortion measure). Alternating

between the two representation directions exploits all available

degrees of freedom, while allowing for a simple choice of variables

in each step. It can be seen as a block descent approach.

After giving a precise map representation in Sec. 3 and providing

the background required for the computation of geodesics in the

different types of metrics in Sec. 4, we describe the algorithm to

formally evaluate a constant-curvature-based map in Sec. 5. This

covers steps (1) and (2) listed above. In Sec. 6 the description of the

optimization procedure built on top of this framework, steps (3), (4),

and (5), is elaborated, supplemented by implementation details.
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2 RELATED WORK

Relaxed Surface Maps. The majority of previous approaches to

the problem of inter-surface map representation, computation, and

optimization build on relaxed variants of surface homeomorphisms.

Those can be simpler to represent and easier to optimize, but com-

monly do not provide properties like continuity, bijectivity, or in-

vertibility.

One class of methods focuses on discrete maps, defining the map

for the vertices of a source surface only. Images can be restricted

to target surface vertices (vertex-to-vertex maps), e.g. [Rodolà et al.

2015], or to arbitrary surface points (vertex-to-mesh maps), e.g.

[Ezuz et al. 2019a,b; Yang et al. 2018]. Images of points on edges or

in faces are not inherently defined. Extending the map to those in a

consistent and robust manner is a major non-trivial challenge.

Further classes of methods build on maps which are not defined

in a sharp manner, i.e., which do not map a point onto a point.

Examples are functional maps [Ovsjanikov et al. 2012], soft maps

[Solomon et al. 2012], or maps based on optimal transport principles

[Mandad et al. 2017]. While there are ways to extract sharp maps

out of such distributional maps [Ovsjanikov et al. 2012; Rodolà et al.

2015], the problem of general and robust conversion to an actual

surface homeomorphism remains open.

A different perspective is taken by surface registration methods,

which commonly approach the problem extrinsically. The idea is

to deform one discrete surface onto the other [Bouaziz et al. 2013;

Huang et al. 2008; Sharf et al. 2006; Tam et al. 2013; Wu et al. 2007;

Yang et al. 2018; Zhang et al. 2006]. Similar as with the above vertex-

defined maps, issues come into play when a precise continuous

and bijective map is to be deduced from the piecewise linear, thus

imprecise, deformation.

Strict Surface Homeomorphisms. More closely related to the prob-

lem we address herein are methods that are concerned with con-

tinuously defined maps between discrete surfaces. Many of these

actually exploit the simplicity of defining homeomorphisms to the

plane, cf. Sec. 1.1, and define inter-surface maps indirectly as a com-

position of two such maps [Aigerman and Lipman 2015; Aigerman

et al. 2014, 2015; Kanai et al. 1997; Kim et al. 2011; Lipman and

Funkhouser 2009; Litke et al. 2005; Schmidt et al. 2019; Tierny et al.

2011]. Due to this definition via the plane such methods are often

restricted to surfaces of disk topology. Alternatively, other interme-

diate domains, in particular the sphere [Aigerman et al. 2017; Baden

et al. 2018], can be made use of to define maps between pairs of sur-

faces of different, but again specific, genera. The introduction of cuts

and transitions is required to enable some form of generic extension

to arbitrary topology [Aigerman and Lipman 2016; Aigerman et al.

2014, 2015; Li et al. 2008] in this context.

A major challenge, in particular when employing such indirect

definitions, and even more so when cuts are involved, is the opti-

mization of maps between surfaces in an end-to-end manner. The

relevance of this aspect has recently been discussed in detail in

[Schmidt et al. 2019]. The method described in that paper enables

distortion optimization with respect to the actual distortion mea-

sured between the surfaces (instead of between surface and inter-

mediate domain), but again is restricted to surfaces of disk topology.

A further limitation of several of these methods based on indirect

(a) (b) (c) (d)

Fig. 2. a) Surface A, a cube with distinctly colored faces. b) Image of the

cube on B (a rounded cube) under a map defined by tuple (𝜙,ℎ, ℓ) . c) By

changing ℓ (the constant-curvature metric associated with B), the implicitly

defined edge images of A on B change. d) By additionally changing 𝜙 , the

explicitly represented vertex images are relocated.

definitions is their reliance on constrained corresponding points:

a certain number of corresponding points may have to be known

precisely in advance, because the proposed optimization procedures

inherently preserve them.

Distortion-Minimizing Maps for Arbitrary Genus. When focusing

on methods defining continuous inter-surface maps that support ar-

bitrary genus and direct (i.e. end-to-end) distortion optimization, it

comes down to essentially just one approach: the method described

by Schreiner et al. [2004] and to some extent the similar concur-

rent method by Kraevoy et al. [2004]. While being very generic and

flexible, the approach has one central disadvantage: inherently, the

map can only be optimized in a local fashion. This is because it is

defined in a piecewise manner, essentially per 1-ring, through small

local parametrizations via the plane. These are mutually incompat-

ible, hindering the definition of global optimization operators. In

our approach, maps are represented in a globally consistent man-

ner. We demonstrate that this enables the application of modern

global optimization techniques and believe that it will open up fur-

ther possibilities in the context of efficient processing and use of

inter-surface maps.

Due to its use of constant curvature metrics, our method shares

some aspects with certain (quasi-)conformal mapping methods

based on uniformization, e.g., [Li et al. 2008]. Quite differently,

though, they are tied to conformal distortion consideration. Our

goal is to support generic distortion measures of practical relevance,

which do not solely focus on angle-preservation but offer a flexible

balance between length and angle distortion.

3 MAP REPRESENTATION

Consider two input triangle meshes, defining closed surfaces of the

same genus: A = (VA, EA, TA) and B = (VB, EB, TB) with their

respective sets of vertices, edges and triangles. In slight abuse of

notation, we will also refer via A and B to the two surfaces as sets

of points in R3.

Our core map representation is defined in a directional manner,

i.e., fromA to B, or from B toA. The resulting map, obtained from

this representation, is symmetric, i.e. it can be evaluated in both

directions and neither A nor B is labeled as source or target. When

the map is bijective (as we always ensure in our method) we can

easily switch between representations of the same map in both

directions (cf. Sec. 6.3).
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Fig. 3. A genus 1 object and its tiling (universal cover) of the plane as implied

by a constant curvaturemetric ℓ . Two points on the surface are connected via

geodesics (w.r.t. to ℓ) in different homotopy classes. Given an instance of one

endpoint (orange), paths in different path homotopy classes correspond to

straight line segments to different instances of the second point (turquoise)

in the plane. The homotopy map ℎ assigns to each edge a triangle strip (red)

of the underlying mesh, representing the intended homotopy class.

3.1 Vertex-Based Map Representation

We represent a map from A to B as a tuple (𝜙,ℎ, ℓ), with:

𝜙 : VA → TB × R2 (vertex-to-surface map)

ℎ : EA → 𝐷B (edge homotopy classes)

ℓ : EB → R>0 (discrete metric)

The vertex-to-surface map 𝜙 assigns to each vertex of A a point

in a triangle of B, expressed in a barycentric coordinate system.

The constant curvature metric ℓ on B can be expressed (due to the

discrete setting) as a map assigning to each edge of B its length

under this metric. The image of an edge (𝑣0, 𝑣1) ofA on B is defined

as the geodesic path under the metric ℓ between the points 𝜙 (𝑣0)

and 𝜙 (𝑣1). Given the constant curvature property of ℓ , this geodesic

is uniqueÐup to its path homotopy class, cf. Fig. 3. For disambigua-

tion, the homotopy map ℎ assigns to each edge of A the intended

path homotopy class in B. A path homotopy class is expressed as

a representative dual edge path; the set 𝐷B is the set of dual edge

paths (triangle strips) on B. Fig. 2 illustrates the combined effect of

𝜙 and ℓ . A path homotopy representative ℎ is illustrated in Fig. 5.

3.2 Point-Based Map Definition

To obtain a complete surface-to-surface map Φ : A → B, defined

for every surface point, from a tuple (𝜙,ℎ, ℓ), it remains to fix a

definition of edge and face parametrizations. That is, we have to

settle two questions:

• Consider an edge of A and its image (a geodesic path) on B.

Which point on the edge corresponds to which point on the

path?

• Given a triangle on A and the region its image covers on B,

which point in the triangle is mapped to which point in the

region?

We need to choose these definitions such that the overall map is con-

tinuous, bijective, and such that the reverse map can be represented

in the same form. The latter property is not just for convenience, it

enables a lossless switching of the map’s representation direction;

we make use of this, for instance, in the map distortion optimization

process (cf. Sec. 6).

In the following, we introduce the discrete geometry background

our definitions build on. In Sec. 5, we show how to computationally

construct themapΦ. This includes computing the required geodesics

and defining and evaluating the edge and face parametrizations.

4 PRELIMINARIES: GEODESICS & MODELS

We equip a surface with a constant curvature metric such that each

triangle is a spherical, flat, or hyperbolic triangle, depending on

the curvature being positive, zero, or negative. This means that the

triangle’s edges are geodesics under the metric. Given merely the

three edge lengths of a triangle under the metric, by means of the

map ℓ , the intrinsic shape of the triangle is fully defined.

To compute geodesics under the respective metric we need to, at

least locally, equip the mesh with coordinates realizing this metric.

To this end we need to employ constructions in planar, spherical, or

hyperbolic geometry. In the planar and spherical cases this can be

done quite intuitively in Euclidean space: with respect to a metric

with zero curvature a surface can (locally) be embedded isometrically

(thus equipped with coordinates) in the two-dimensional plane, and

with respect to a metric with constant positive curvature a surface

can be embedded isometrically on a sphere. Hence, in both cases

an isometric embedding in R3 is possible. For the hyperbolic plane,

however, no such isometric embedding exists.

A variety of models of two-dimensional hyperbolic geometry are

available (Poincaré disk model, Poincaré half-space model, Beltrami-

Klein model, hemisphere model, hyperboloid model) [Stillwell 1996].

The latter has favorable properties for our purpose: like the above

spherical and flat cases, the hyperboloid model makes use of R3

as ambient spaceÐjust equipped with a dot product that is non-

Euclidean. Furthermore, again like in the spherical and flat cases,

geodesics are simple plane intersections in this model (cf. Fig.4).

4.1 Unifying Geometry Models

These close similarities allow us to perform computations in a uni-

fied manner regardless of the type of constant curvature metric, i.e.,

regardless of surface genus. To this end, we define the following

three models for the flat, spherical, and hyperbolic case, respectively.

All three are 2-manifolds in R3 equipped with a distance function,

into which a surface of constant curvature can be embedded isomet-

rically (relative to their respective inner product).

Plane Model. The set of points E2 = {p ∈ R3 |𝑝𝑧 = 1} forms a

plane. The Euclidean distance between two points a, b ∈ E2 is given

by dE = ∥a − b∥2.

Sphere Model. The set of points S2 = {p ∈ R3 |⟨p, p⟩ = 1},

where ⟨·, ·⟩ is the Euclidean dot product, forms the unit sphere.

The spherical distance between two points a, b ∈ S2 is given by

dS = arccos(⟨a, b⟩).

Hyperboloid Model. The three-dimensional Minkowski space is

R
3 equipped with the dot product ⟨a, b⟩𝑀 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 − 𝑎𝑧𝑏𝑧 .

The set of points H2 = {p ∈ R3 |⟨p, p⟩𝑀 = −1, 𝑝𝑧 > 0} forms the

positive sheet of a two-sheeted hyperboloid in R3 and can be used

as a model of the hyperbolic plane. The hyperbolic distance between

two points a, b ∈ H2 is given by dH = arccosh(−⟨a, b⟩𝑀 ) in this

model [Wilson and Leimeister 2018].
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Fig. 4. Given two points (blue dots) on one of the three model manifolds E2,

S
2, or H2, a geodesic between them is easily computed as the intersection

(blue curve) of a plane through these two points (blue dots) and the origin

(black dot) with the model manifold.

To summarize these three models:

E
2
= {p ∈ R3 | 𝑝𝑧 = 1} dE = ∥a − b∥2

S
2
= {p ∈ R3 | ⟨p, p⟩ = 1} dS = arccos(⟨a, b⟩)

H
2
= {p ∈ R3 | ⟨p, p⟩𝑀 = −1, 𝑝𝑧 > 0} dH = arccosh(−⟨a, b⟩𝑀 )

The orientation of these manifolds is such that the origin 0 ∈ R3

is on the inside. We write d(·, ·) without subscript when referring

to the respective distance function in the generic case.

In Sec. 5.1 we describe how a region of a triangle mesh endowed

with a constant curvature metric can be embedded in the respec-

tive model manifold, locally equipping it with coordinates for the

purpose of geometric constructions. A global embedding is never

required.

4.2 Geometric Constructions

Computing Geodesics. A property beneficial for our purpose is

the following: in each of the three models, geodesic paths can be

obtained by intersecting a plane with the manifold. The geodesic

path through points a and b on the manifold is the manifold’s in-

tersection curve with the plane through the origin 0, a, and b, as

illustrated in Fig. 4. Determining, as relevant in our discrete setting,

which edges are crossed by a geodesic therefore amounts to simple

point-plane orientation tests in 3D Euclidean space.

Geodesic Intersection Test. The question whether a point p on the

manifold lies to the left or to the right of a geodesic through a and b

is answered by checking the sign of the tetrahedral volume spanned

by 0, a, b and p. Testing whether two geodesic segments intersect

each other reduces to four sign checks.

Projection to Manifold. We will make use of certain computations

(interpolation, intersection) in ambient space (R3). This will result

in points on chords (secant lines) of the model manifolds (E2, S2,H2).

In the spherical and hyperbolic cases, these may lie off the manifold.

In this context, we need a consistent definition, relating points p ≠ 0

on an ambient chord to points on the manifold. This is achieved by

a central projection p ↦→ p̃, which amounts to

p̃ = p (E2), p̃ =
p

√
⟨p, p⟩

(S2), p̃ =
p

√
−⟨p, p⟩𝑀

(H2). (1)

In all three cases, this projection bijectively maps an ambient chord

to a geodesic path segment with the same endpoints on the manifold.

Only in the spherical setting can a chord pass through a point (p = 0)

for which the projection is not well-defined; a case that we carefully

exclude in our method. Ultimately, a direct consequence of this is

that our maps are bijections along edges. In Appendix B we show

that this bijectivity property extends also to the interior of triangles.

In the following we always denote point coordinates of a vertex

𝑝 on the model manifold by p̃, whereas a position in ambient space

or on A or B is denoted p.

5 MAP EVALUATION

Given a tuple (𝜙,ℎ, ℓ), we wish to evaluate the map and its distortion

at arbitrary points. To this end, as outlined in Sec. 3.2, we first need

to complete the map definition to an inter-surface map Φ from A

to B: so far the tuple specifies (via 𝜙) the source vertex positions

on the target surface and (via the metric ℓ in conjunction with ℎ)

the paths of source edges on the target surface. It remains to define

a homeomorphism per edge, relating (pointwise) a source edge

with its path on the target surface, as well as a homeomorphism

per triangle, relating it with the region enclosed by its three edges’

paths’ on the target surface.

For reasons of practicality and interoperability, we wish to define

and compute this map Φ in a piecewise linear manner. Furthermore,

we want to be able to efficiently evaluate a distortionmeasure 𝐸 (Φ)Ð

and ultimately optimize the map with respect to it. We therefore

carefully choose all constructions such that we are later able to

compute derivatives of 𝐸 (Φ) with respect to the map-defining data,

in particular the vertex-to-surface map 𝜙 . Concretely, for a vertex of

A, its barycentric coordinates (𝛼, 𝛽) in a triangle ofB are considered

as the main variables for optimization.

Overview. Our constructions can be carried out independently

per triangle of mesh A. In an implementation, efficiency can be

gained by exploiting redundancies, but the per-triangle view allows

for a simpler exposition in the following. For each 𝑡A ∈ A, we

perform the following steps:

• Discover the set of triangles on B that is (partially) covered

by Φ(𝑡A) and embed this region on the model manifold using

ℓ (Sec. 5.1).

• Embed the vertices of 𝑡A (using 𝜙) on top of this embedding

on the model manifold. Determine the three geodesic edge

paths between these vertices and their intersections with the

underlying edges of B. Use this information to collect the

list of intersection pieces (overlay polygons) between 𝑡A and

triangles of B (Sec. 5.2).

• Define piecewise linear homeomorphisms per edge by equip-

ping this combinatorial mesh overlay structure with metric

information: For each edge-edge intersection, compute its pa-

rameters 𝜆, 𝜇 ∈ (0, 1) on the surfaces ofA and B respectively.

For each vertex of B lying inside 𝑡A, compute its barycentric

coordinates in 𝑡A (Sec. 5.3).

• Obtain a piecewise linear map by optimally triangulating each

overlay polygon, while taking care to maintain continuity of

𝐸 (Φ) (Sec. 5.4).
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Fig. 5. Steps of our mesh overlay algorithm, which embeds a triangle (𝑝,𝑞, 𝑟 ) of mesh A on the model manifold (here the hyperboloid, sliced open to reveal

the upper side) and intersects it with the underlying region of mesh B. a) From an initial embedding of point p̃, the position q̃ is found by embedding the

triangle strip ℎ (𝑝,𝑞) ; analogously for r̃ via ℎ (𝑝, 𝑟 ) . b) By following the geodesic paths (p̃, q̃) , (q̃, r̃) and (r̃, p̃) , their supporting triangle strips in mesh B are

discovered. c) All polygonal pieces of these strips lying on the inside of (𝑝,𝑞, 𝑟 ) are collected as overlay polygons. d) Additionally, all triangles of B that are

fully contained in (𝑝,𝑞, 𝑟 ) are discovered by a flood-fill.

5.1 From Metric to Coordinates

Our constructions rely on locally embedding small regions of the

target mesh B on the model manifold according to a given constant-

curvature metric ℓ .

Consider a flat, spherical or hyperbolic triangle 𝑡B = (𝑎, 𝑏, 𝑐)

with edge lengths ℓ𝑎𝑏 , ℓ𝑏𝑐 , ℓ𝑐𝑎 under the metric ℓ . We embed the

triangle on the model manifold by assigning coordinates ã, b̃, c̃ ∈

E
2, S2 or H2 to its vertices that induce the prescribed edge lengths

and preserve surface orientation. This embedding is unique up

to the rigid transformations (orientation-preserving isometries) of

the plane, the sphere, or the hyperbolic plane, respectively. As a

constant-curvature metric has the same intrinsic properties at every

point, our constructions will be invariant to the chosen absolute

position and rotation of the embedding. For similar reasons, all

local embeddings of neighboring or overlapping surface regions are

mutually consistent.

To embed a first triangle, we start by positioning one of its vertices

at ã = (0, 0, 1) and its neighbor b̃ with distance d(ã, b̃) = ℓ𝑎𝑏 in an

arbitrary direction (e.g. along the positive x-axis of the ambient

space). The position of the third vertex c is then uniquely defined

by d(b̃, c̃) = ℓ𝑏𝑐 and d(c̃, ã) = ℓ𝑐𝑎 . Adjacent triangles can then be

embedded incrementally by computing the position of one further

vertex via its ℓ-distances to two existing vertices. We derive the

necessary formulas in Appendix A.

5.2 Computing the Overlay Tessellation

Given the tuple (𝜙,ℎ, ℓ), mapping fromA toB and equippingBwith

the constant curvature metric ℓ , we compute the induced mutual

tessellation ofA and B. It is defined by mapping the triangulation of

A via 𝜙 to the surface of B and overlaying it with the triangulation

of B. This overlay is with respect to the metric ℓ , in which all edges

are unique geodesics.

We start by computing its combinatorial structure, formed by

a set of (abstract) overlay polygons 𝜌 ∈ P , each representing the

overlap of one triangle ofAwith one triangle ofB. Fig. 7b illustrates

all overlay polygons formed by one triangle ofA. In this figure, they

are visualized geometrically on B, but here we first of all determine

them combinatorially. A vertex of 𝜌 corresponds to either (1) a vertex

of A, (2) a vertex of B, or (3) an intersection point between an edge

of A and an edge of B. Being the overlap of two (flat, spherical or

hyperbolic) triangles, 𝜌 is a convex 3-, 4-, 5-, or 6-gon in E2, S2 or

H
2 (cf. the planar case in [Schmidt et al. 2019]).

Overlay Algorithm. Per triangle 𝑡A = (𝑝, 𝑞, 𝑟 ) of A, we perform

the following steps (visualized in Fig. 5). We denote by 𝑡𝐵 (𝑝), 𝑡𝐵 (𝑞)

and 𝑡𝐵 (𝑟 ) the triangles of B that contain the image of the respective

vertex of A (as given by 𝜙).

(1) Embed 𝑡A on the model manifold: As vertex images of A are

defined relative to triangles of B, we start by embedding the

triangle 𝑡B (𝑝) on the manifold (as described in Sec. 5.1). To

then embed triangles 𝑡B (𝑞) and 𝑡B (𝑟 ) relative to 𝑡B (𝑝), we

rely on two triangle strips connecting each of them to 𝑡B (𝑝).

These are provided by the homotopymapℎ. We incrementally

add the triangle stripsℎ(𝑝𝑞) andℎ(𝑝𝑟 ) to our local embedding.

Now, with existing embeddings of 𝑡B (𝑝), 𝑡B (𝑞) and 𝑡B (𝑟 ), the

model coordinates p̃, q̃ and r̃ can be determined. This is done

by evaluating the vertices’ respective barycentric coordinates

in ambient space (i.e., in chord triangles spanned by the ver-

tices of B on the model manifold) and projecting the resulting

points to the manifold (Eq. (1)). This is also illustrated in Fig. 6

left. We can now discard all triangle embeddings of B except

for 𝑡𝐵 (𝑝).

(2) We successively compute the intersections of the geodesic

(p̃, q̃) with edges of B. Starting at 𝑡B (𝑝), we check which of

its edges intersects the geodesic (p̃, q̃). We then embed the

neighboring triangle of B (incident to the intersected edge)

and continue the procedure until we reach the target 𝑡B (𝑞).

We have now found the triangle strip of B supporting the

geodesic (p̃, q̃). Using the same procedure we also compute

the strips supporting (q̃, r̃) and (r̃, p̃).

(3) We collect all overlay polygons formed by 𝑡A and triangles of

the three strips supporting (p̃, q̃), (q̃, r̃) and (r̃, p̃). For each

polygon vertex, we record its type (A-vertex, B-vertex, or

A-B-edge-intersection) and the involved mesh elements, i.e.

the triangle it lies in or the two intersecting edges.

(4) There can be triangles of B strictly lying within 𝑡A, i.e. not

intersecting its edges. We discover these by a simple flood-fill

on B, seeded at the inner boundary of the triangle strips. All

triangles of B thus discovered are added to the list of overlay

polygonsÐthey are 3-gons with all three vertices being B-

vertices.

The set P of all overlay polygons emitted in the above procedure

form the facets of the mutual tessellation of A and B.
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5.3 Computing the Overlay Geometry

We equip the overlay tessellation with two geometric embeddings:

one on the surface of A and one on the surface of B. We define

functions that assign to each overlay vertex 𝑣 positions on both

surfaces:
xA : 𝑣 ↦→ A ⊂ R3,

xB : 𝑣 ↦→ B ⊂ R3 .

We carefully define the embedding functions xA and xB in depen-

dence of the vertex-to-surface map 𝜙 . This will later allow us to

compute derivatives with respect to the continuous degrees of free-

dom in 𝜙 , namely the barycentric coordinates 𝛼, 𝛽 of each vertex of

A in a triangle of B.

Depending on the type of 𝑣 (A-vertex, B-vertex, or A-B-edge-

intersection) and the target of the embedding (surface A, surface

B), different cases apply:

A-Vertices. The embedding of anA-vertex onA directly is its cor-

responding vertex position in A (analogously for B-vertices on B);

it does not depend on 𝜙 and always stays fixed. Its embedding on B

is defined directly by the vertex-to-surface map 𝜙 (𝑣) = (𝑡B (𝑣), 𝛼, 𝛽):

xB (𝑣) = 𝛼a + 𝛽b + (1 − 𝛼 − 𝛽)c (2)

with fixed vertex positions a, b, c of the triangle 𝑡B (𝑣) on B.

A-B-Edge-Intersections. Let 𝑣 be the intersection vertex between

edge (p, q) ∈ A and edge (a, b) ∈ B. We define its embedding on

the respective surface via parameters 𝜆A and 𝜆B :

xA (𝑣) = (1 − 𝜆A)p + 𝜆Aq,

xB (𝑣) = (1 − 𝜆B)a + 𝜆Bb,
(3)

To compute these parameters, we make use of a local embedding

containing p̃, q̃, ã and b̃ ∈ E2, S2 or H2, as computed during mesh

overlay. Note that, while ã and b̃ are independent of 𝜙 , the positions

p̃ and q̃ depend on 𝜙 via barycentric interpolation in ambient space

and projection via Eq. (1) to the manifold (illustrated in Fig. 6).

Let ṽ be the intersection point of the geodesics (p̃, q̃) and (ã, b̃) on

the model manifold. Conceptually, we parametrize the curve (p̃, q̃)

via linear interpolation in ambient space and subsequent projection

to the manifold. Under this parametrization, the parameter of the

intersection point ṽ along the geodesic (p̃, q̃) has a simple expres-

sion: It can be computed by intersecting the straight line segment

between p̃ and q̃ in R3 with the plane through 0, ã and b̃:

(1 − 𝜆A)p̃ + 𝜆Aq̃ = 𝑠ã + 𝑡 b̃.

with 𝑠, 𝑡 ∈ R. We employ the symmetric construction to express 𝜆B
by intersecting the line segment between ã and b̃ with the plane

through 0, p̃ and q̃. Applying Cramer’s rule to both systems yields

𝜆A =
det[ã, b̃, p̃]

det[ã, b̃, p̃ − q̃]
𝜆B =

det[p̃, q̃, ã]

det[p̃, q̃, ã − b̃]
. (4)

B-Vertices. Similarly, we express the embedding of a point on A

via barycentric parameters

xA (𝑣) = 𝛼p + 𝛽q + (1 − 𝛼 − 𝛽)r (5)

Fig. 6. Left: 2D Illustration of the edge and facet parametrizations, cor-

responding to the 3D setting on the right. Given a point q defined via

barycentric coordinates 𝛼, 𝛽 on a chord triangle (here: green chord), its

correspondence q̃ on the model manifold is defined via central projection.

Inversely, the barycentric coordinates corresponding to a point q̃ are ob-

tained by projection onto the chord triangle and determining this projected

point’s barycentric coordinates in the planar chord triangle, cf. Eq. (7).

defined by parametrizing the corresponding flat, spherical, or hyper-

bolic triangle on the model manifold via barycentric interpolation

in ambient space followed by central projection, cf. Fig. 6.

Thismeans, given the position ã of a vertex ofB inside the triangle

(p̃, q̃, r̃) on the model manifold, we can again obtain its parameters

(now 𝛼, 𝛽) via a simple construction in ambient space. We intersect

the line through 0 and ã with the plane spanned by p̃, q̃, r̃:

𝑠ã = 𝛼 p̃ + 𝛽q̃ + (1 − 𝛼 − 𝛽)r̃ (6)

Again, Cramer’s rule gives the closed-form solutions

𝛼 =
det[ã, r̃, r̃ − q̃]

det[ã, r̃ − p̃, r̃ − q̃]
𝛽 =

det[ã, r̃ − p̃, r̃]

det[ã, r̃ − p̃, r̃ − q̃]
. (7)

Via xA and xB all vertices of both A and B as well as certain

points on their edges (given by linear parameters 𝜆) now have a

geometric embedding, an image, on the respective other surface.

The mapping of edges can be completed in a simple piecewise linear

manner, where the pieces are delineated by the intersection points

(i.e., the 𝜆-parameters associated with the edge). This is possible

because each such piece falls into a single triangle in the other

surface, such that the corresponding part of the edge’s image (a

geodesic path) is a straight line segment. In this way, the map is

already fully defined on edges and vertices. What remains is to

extend the map into the faces.

5.4 Piecewise-Linear Map Completion

Given embeddings xA, xB of the overlay tessellation on both sur-

faces we now complete the surface-to-surface map Φ. For an overlay

polygon 𝜌 ∈ P , consider its two (planar) embeddings (on A and on

B). These two versions of the polygon are not generally related by

an affine transformationÐrather, in both the spherical and the hy-

perbolic case, by a perspective transformation (homography). This

means, in contrast to the edges, the map is not directly extendable

into the faces as a linear map. A piecewise linear map, however, is

of high importance, not only for downstream applications, but also

to allow simple expressions for common distortion measures.

We therefore triangulate each overlay polygon and extend the

map linearly per triangle, i.e., piecewise-linearly per overlay poly-

gon. From all possible triangulations (1, 2, 5, or 14, depending on
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(a) (b) (c)

Fig. 7. a) Images ofA-edges (blue) on meshB (gray), computed as geodesics

under metric ℓ . Note that, conveniently, they are straight in each triangle by

our definition of the metric inside the triangles. b) Overlay polygons (pink)

formed by one A-triangle with the underlying B-triangles. c) Triangulation

of the involved 4-gons and 5-gons (additional black edges)

polygon valence) we choose the optimal one, minimizing the ob-

jective function 𝐸 (Φ) (defined in Sec. 6). The optimal triangulation

is easily computed per polygon using dynamic programming. We

will refer to the resulting set of triangles as T . Choosing the opti-

mal triangulation instead of an arbitrary one allows us to maintain

continuity of the objective (as we will discuss in Sec. 6.4). In the

genus 1 (flat) case, the triangulation step could be omitted as the two

embeddings of each polygon are related by a linear transformation

in this case (cf. [Schmidt et al. 2019]). The triangulation of overlay

polygons is illustrated in Fig. 7.

With a mutual triangulation and its geometric embedding on

mesh A and B, the surface-to-surface map Φ : A → B is now fully

defined. It is a standard piecewise linear map, linear per triangle of

the mutual triangulation.

6 OPTIMIZATION

Given a bijective inter-surface map in the representation described

above, we now strive to optimize it with respect to a concrete distor-

tion measure. During this optimization, we wish to strictly preserve

bijectivity.

Due to the piecewise-linear definition of our map Φ via a mutual

overlay tessellation, we are in a position to apply ideas recently

described by Schmidt et al. [2019] for optimization. In particular,

we can perform global second-order optimization of the map, for

instance with respect to the symmetric Dirichlet energy, which has

proven to be a good choice for a variety of applications.

A number of modifications and extensions is necessary though.

While this previous method represents maps in a global 2D coordi-

nate system (and thereby is restricted to disk topology), our maps are

defined using local intrinsic coordinates. We describe the required

modifications in the following.

6.1 Objective

With Φ defined in a piecewise-linear manner, a wide range of dis-

tortion measures based on the map Jacobian J ∈ R2×2 is available.

Here we choose the symmetric Dirichlet energy

𝐸 (Φ) =

∫

B

∥J∥2F d𝐴B +

∫

A

∥J−1∥2F d𝐴A (8)

=

∑

𝜏 ∈T

∥J(𝜏)∥2F d𝐴B (𝜏) + ∥J−1 (𝜏)∥2F d𝐴A (𝜏) (9)

evaluated per linear piece 𝜏 ∈ T with normalized area 𝐴A (𝜏) and

𝐴B (𝜏) on the respective surface [Schreiner et al. 2004].

To guarantee that Φ (given a feasible initialization) strictly stays

within the class of bijective maps, we rely on the barrier character

of 𝐸 (Φ). Namely, it diverges to infinity as the image of a triangle of

one mesh approaches a degenerate configuration on the other mesh.

We extend the energy with infinity in the presence of a flipped

triangle, i.e. in configurations in which (𝜙,ℎ, ℓ) does not define

an orientation-preserving map. This is detected during the mesh

overlay procedure in Sec. 5.2.

The construction of the map Φ is parametrized by the vertex-to-

surface map𝜙 . Its continuous degrees of freedom are the barycentric

coordinates 𝛼, 𝛽 per vertex of A in a triangle of B. In slight abuse

of notation, we refer to our variable vector (the concatenation of all

𝛼, 𝛽) as 𝜙 ∈ R𝑛 , with 𝑛 = 2|VA |.

Non-Convexity. The objective 𝐸 (Φ) depends on the variables 𝛼, 𝛽

in 𝜙 via composition of the following operators:

(1) barycentric evaluation in ambient space (linear),

(2) projection to model manifold (Eq. (1), non-convex),

(3) computation of intersection parameters or barycentric coor-

dinates in other mesh (Eq. (4) and (7), non-convex),

(4) barycentric evaluation on surface (Eq. (3) and (5), linear),

(5) symmetric Dirichlet energy (non-convex).

As a composition of non-convex functions, 𝐸 is also a non-convex

function in 𝜙 . In the flat case, in which the projection operator

reduces to the identity, this discussion of non-convexity matches

the one given in [Schmidt et al. 2019, Sec. 5.1] for the disk topology

case.

6.2 Derivatives

For each triangular piece 𝜏 (i.e., part of a polygon 𝜌) of the map,

its Jacobian as well as the areas of its embeddings on A and B

depend on the vertex positions of 𝜏 on both surfaces. These vertex

positions in turn are computed from the variable vector 𝜙 using the

formulas derived in Sec. 5.3. Each piece 𝜏 of the mapÐa summand

in 𝐸 (Φ)Ðemerges as part of the overlap between a pair of triangles

(𝑡A, 𝑡B). While the triangle 𝑡B is constant, the three vertices of 𝑡A
are parametrized via barycentric coordinates. Thus, each overlay

triangle 𝜏 depends on exactly 6 entries in 𝜙 .

We collect all pieces of themap corresponding to the same triangle

𝑡A, i.e. all summands that depend on the same subset of 6 variables.

We then compute the gradient g𝑡A ∈ R6 and Hessian H𝑡A ∈ R6×6

independently for each 𝑡A using automatic differentiation [Walther

and Griewank 2012]. After projecting eachH𝑡A ∈ R6×6 to a positive

definite matrix (see [Schmidt et al. 2019, Sec. 5.1], [Teran et al. 2005,

Sec. 6] for details), we assemble the global gradient g and sparse

Hessian H.

6.3 Switch of Representation Direction

A key feature of our approach is to not only optimize the images of

vertices on the respective target surface, but to also optimize the un-

derlyingmetric, which determines the images of points on edges and

in triangles (cf. Fig. 2). This metric optimization is actually already

present in the above formulation: Updating the vertex-to-surface

map 𝜙 (described in Sec. 6.7) in directionA to B (movingA over B),

comes with an induced change of metric on A. Hence, alternating

between directions of our map representation, i.e. swapping the
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(a) (b) (c)

Fig. 8. 2D illustration of mapping betweenA and B; in this case the model manifold is a circle (local embeddings visualized at the top). a) A map is represented

in direction A to B, by mapping vertices of A (blue) to points in triangles of B. b) An iteration of our algorithm updates the vertex-to-surface map, i.e. moves

the images of A along the surface of B. c) Change of representation direction: using a local embedding on the model manifold, the positions of vertices of B

onA are obtained and the metric lengths of the edges ofA are measured.

roles of A and B between each iteration of optimization, modifies

the constant-curvature metrics of both meshes and in this way takes

advantage of all available degrees of freedom.

While throughout this paper our map representation was defined

(w.l.o.g.) in direction A to B, we now show how to reverse this

direction. We define the operation

(𝜙⊲, ℎ⊲, ℓ⊲) ↦→ (𝜙⊳, ℎ⊳, ℓ⊳),

where 𝜙⊳ is a vertex-to-surface map from B to A, ℎ⊳ assigns a

homotopy representative onA to each edge of B and ℓ⊳ is a discrete

constant-curvature metric assigning a length to each edge of A.

After extracting themapΦ from (𝜙⊲, ℎ⊲, ℓ⊲), all information required

to obtain its alternative representation (𝜙⊳, ℎ⊳, ℓ⊳) is already present:

• The map 𝜙⊳ is fully defined by the assignment of vertices of B

to triangles ofA in Sec. 5.2 and their barycentric coordinates

computed in Eq. (7).

• A (shortest) homotopy representative ℎ⊳ for each edge 𝑒B
of B is obtained by collecting the sequence of edges of A

intersected by 𝑒B (Sec. 5.2) and taking their dual. The resulting

dual path is the triangle strip of A supporting the image of

𝑒B on A.

• The discretemetric ℓ⊳ at each edge ofA is obtained bymeasur-

ing the flat, spherical, or hyperbolic distance d(p̃, q̃) between

its endpoints in one of its embeddings on the model manifold

(Sec. 5.2).

Note that both representations (𝜙⊲, ℎ⊲, ℓ⊲) and (𝜙⊳, ℎ⊳, ℓ⊳), obtained

this way, define the same map Φ. This is due to our symmetric

definitions of the per-edge and per-face parametrizations in Sec. 5.3.

This also implies that the change of representation direction is self-

inverse, i.e., switching the direction twice yields the original map

representation again. Fig. 8 illustrates the switch of representation

direction after an iteration of our algorithm.

6.4 Continuity

For the optimization to have a chance to reasonably optimize with

respect to 𝐸 (Φ), it is important that this objective is continuous in

the variables 𝜙 . This property is ensured by the following aspects

of the described method:

• Due to our definition in Eq. (3) and (6), intersection param-

eters 𝜆 and vertex parameters 𝛼, 𝛽 vary continuously in the

variables 𝜙 by construction.

• When the shape of an overlay polygon undergoes a contin-

uous change due to changes in 𝜙 , the quality (in terms of

𝐸 (Φ)) of its different triangulations changes continuously. At

a point where the optimal triangulation criterion switches

from one triangulation to another, both have the same quality;

hence, 𝐸 (Φ) varies continuously with 𝜙 .

• The objective contribution of each overlay polygon is pro-

portional to its area; hence disappearing or emerging overlay

polygons (when vertex images cross edges) do not cause dis-

continuities [Schmidt et al. 2019].

• As both directed representations, (𝜙⊲, ℎ⊲, ℓ⊲) and (𝜙⊳, ℎ⊳, ℓ⊳),

induce the same map Φ, switching the representation direc-

tions (as done for alternating optimization, cf. Sec. 6.3) does

not cause discontinuities either.

6.5 Unique Geodesics Constraint

Our formulation relies on geodesics in a constant-curvature met-

ric being unique per path homotopy class. While in the flat and

hyperbolic case, this property holds in general, the spherical case

comes with one particular exception: geodesics between antipodal

points are not unique. This case is easily avoided by constraining

all spherical edge lengths to be strictly shorter than 𝜋 .

An additional constraint is posed by the projection to the sphere

in Eq. (1). Namely, we require the projection of a sphere-inscribed

chord triangle to the sphere to be orientation-preserving. This con-

straint is fulfilled if the plane spanned by three adjacent vertices on

the sphere has an outward pointing normal, i.e. nTp̃ > 0 for a point

p̃ on the plane. Note that satisfaction of this orientation constraint

implies edge lengths shorter than 𝜋 . We enforce it by adding the

barrier term

𝐵(𝜙) =
∑

𝑡A

− log(nTp̃), (10)

with n ∈ R3, ∥n∥ = 1 being the oriented normal of the sphere-

inscribed triangle 𝑡A, computed from the vertex positions p̃, q̃, r̃.

𝐵(𝜙) diverges to infinity as the plane spanned by any three adjacent

vertices on the sphere approaches the origin. We define 𝐵(𝜙) = ∞

for nTp̃ ≤ 0.
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6.6 Metric Regularization

As the map representation in constant curvature space is underdeter-

mined, we follow the suggestions by [Schmidt et al. 2019, Sec. 6.4]

and regularize the optimization towards a low-distortion metric.

This has a beneficial effect on optimization performance and avoids

premature convergence to unfavorable local minima (see Fig. 14).

Per triangle of A and B, we penalize angle and area distortion

between its original shape on the input surface and its shape under

the constant curvature metric, i.e., its shape on the model manifold.

For a triangle with embedding (p̃, q̃, r̃) we compute its inner angles

𝜃𝑝 , 𝜃𝑞, 𝜃𝑟 from its flat, spherical, or hyperbolic edge lengths (using

the respective law of cosines), as well as its area 𝐴̃ via Heron’s

formula. We penalize deviation from the corresponding quantities

𝜃𝑝 , 𝜃𝑞, 𝜃𝑟 , 𝐴 on the input surface in a symmetric manner by

𝑅angle (𝜙) =
∑

𝜃𝑖

(
𝜃𝑖

𝜃𝑖

)2
+

(
𝜃𝑖

𝜃𝑖

)2

for each triangle corner 𝑖 and

𝑅area (𝜙) =
∑

𝑡

(
𝐴̃

𝐴

)2
+

(
𝐴

𝐴̃

)2

per triangle 𝑡 ∈ A or B. These terms are weighted by 𝜔angle and

𝜔area; their choice is discussed in Section 7.2.

6.7 Optimization Algorithm

Our objective function and its derivatives exhibit similar properties

to the one in [Schmidt et al. 2019]. In particular, 𝐸 (𝜙) is a non-convex

function, which is 𝐶0 but not 𝐶1 continuous in 𝜙 , i.e., in the vertex

positions of A on B. Further, at each point in the solution space,

it requires re-computing the set of surface elements (overlay trian-

gles) over which the distortion energy is integrated. Due to these

similarities, we follow the basic optimization scheme of [Schmidt

et al. 2019] and make the following adjustments to adapt it to our

setting.

Derivative Smoothing and Preconditioning. To mitigate the effects

of derivative discontinuities, we maintain temporally smoothed

versions of the gradient and Hessian matrix and compute the New-

ton step based on these. Since we alternate between two optimiza-

tion directions with different sets of variables, we store a separate

smoothed gradient and Hessian for each direction.

In addition, we apply a squared Laplacian pre-conditioner to

favor smooth and consistent vertex movements. I.e., intuitively, for

each variable vertex mapped to the target surface, we penalize the

deviation of its update direction from the average update of its

neighbors.

Tangent Vector Transport. Both of the above techniques rely on

concepts of parallel transport: The derivative history (a vector field

in case of the gradient) needs to be transported from the vertex posi-

tions of a previous iteration to the current vertex positions. Similarly,

update directions of neighboring vertices have to be transported

into a mutual tangent space before they can be compared and aver-

aged. In [Schmidt et al. 2019] this transport is trivially carried out

due to the existence of a global flat coordinate representation. In our

case, per-vertex updates are tangent vectors on the target surface,

defined in local barycentric coordinate systems. We adapt both the

derivative smoothing as well as the Laplacian pre-conditioning to

our setting by means of parallel transport via the surfaces’ Levi-

Civita connection. While conceptually simple, a few details have

to be considered; we give detailed implementation instructions in

Sec. 1 of the supplementary material.

Update Tracing and Line Search. As a result of a Newton step,

we obtain an update direction (d𝛼, d𝛽)T for each vertex of A in

its current barycentric coordinate system. We trace these updates

along the target surface via the same transport operator used above

(see supplementary material for implementation details).

We scale each vertex update by the global step size 𝑠 , determined

in a line search. While in the planar case, the maximum feasible step

size 𝑠max can be computed in closed form [Smith and Schaefer 2015],

such a feature is not trivially available in our discretization of the

spherical and hyperbolic case. Instead, we perform a forward line

search starting from 𝑠 = 1 until a triangle of A is flipped (Sec. 5.2).

We then perform a backtracking line search (multiplying 𝑠 by 0.8)

until the Armijo condition is fulfilled. In the line search, we compute

evaluate the map Φ in order to evaluate 𝐸 (Φ).

Adapting Homotopy Representatives. After obtaining for each ver-

tex ofA the path (p, p′) it travels on B, we update 𝜙 accordingly. It

remains to assign a new dual path ℎ′(p′, q′) to each edge (p, q) of

A such that it represents the same homotopy class as ℎ(p, q) before

the update took place. This is achieved by concatenating: (1) the re-

versed update path (p′, p) with (2) the old homotopy representative

ℎ(p, q) and (3) the update path (q, q′).

Metric Sanitization. We conclude each iteration by switching the

map representation direction (Sec. 6.3). This involves obtaining a

new constant-curvature metric ℓ⊳ on A from local embeddings

computed during mesh overlay in Sec. 5.2. These constructions,

however, are subject to numerical inaccuracies that can accumulate

over multiple iterations. If left untreated, this can cause the metric

to diverge from its constant-curvature property. Since this error is

small in each iteration, it can be treated by a simple sanitization

step following each direction switch. In the flat and hyperbolic

case, we apply one iteration of the discrete Yamabe flow [Bobenko

et al. 2015] to ℓ⊳, restoring its constant-curvature property. We

provide implementation details of this procedure in Sec. 2 of the

supplementary material. In the spherical case, a convenient solution

is to track global embeddings ofA and B into the unit sphere, and to

perform a simple renormalization to the sphere to derive an accurate

ℓ⊳. This global embedding is only used for this sanitization purpose

and is otherwise not required for any of our constructions.

6.8 Landmark Constraints

Vertex-wise landmark constraints, when fulfilled by the initializa-

tion, can be easily maintained throughout our optimization. To fix

a vertex ofA to its current target position on B under 𝜙 , we simply

constrain its update direction to 0 in every iteration. This amounts

to eliminating the variables corresponding to landmark vertices

from the gradient and Hessian matrix before computing a Newton

step.
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Fig. 9. We compute maps between pairs of shapes using the algorithms HOT, RHM and our method. Each map is visualized by transferring a texture from

the source shape to the target shape. The pointwise symmetric Dirichlet energy is visualized as a logarithmic heat map. Cumulative distortion plots show

which percentage of surface area is below a certain distortion threshold, for each of the three methods. Left: We first use a full set of landmarks (red dots).

Right: We then repeat the experiment using only a subset of landmarks. While all algorithms produce fairly good results using the full set of landmarks, HOT

does not align similarly curved regions in the absence of landmarks. Both RHM and our method strive to achieve such alignment (as this results in lower

surface-to-surface distortion). RHM sometimes produces artifacts in regions of high curvature, e.g. the hooves and legs of the horse. This may be due to the

extrinsic nature of their optimization. Our purely intrinsic method does not show such artifacts.

7 RESULTS

In the following we visualize various surface homeomorphisms

optimized by our method. Due to the unified treatment of spherical,

flat, and hyperbolic metrics, surfaces of arbitrary genus are easily

handled by one implementation.

7.1 Initialization

A feasible initialization for themap optimization is a tuple (𝜙,ℎ, ℓ) in-

ducing a bijective orientation-preserving map Φ. There are multiple

ways to obtain such an initialization. For example, in the spherical

case any pair of orientation-preserving bijective spherical parame-

trizations, computed by a method of choice, implies such a tuple.

To carry out our experiments, we make use of an approach in

which we first compute consistent triangular patches [Kraevoy and

Sheffer 2004; Schreiner et al. 2004] on both input meshes. Given

meshes A and B of genus 𝑔 and a set of at least four pairs of corre-

sponding landmark vertices we perform the following steps:

(1) Compute topologically identical path networks on A and

B that form triangular patches and have the landmarks as

vertices. We follow the instructions in [Schreiner et al. 2004].

Let L be this łmacro-meshž connectivity.

(2) Compute a discrete constant-curvaturemetric onL, i.e. assign

flat, spherical, hyperbolic edge lengths toL. In the flat and hy-

perbolic case, obtain these edge lengths via discrete Euclidean

or hyperbolic Yamabe flow [Bobenko et al. 2015] (detailed

in Sec. 2 of the supplementary material). In the spherical

case, we compute an orientation-preserving sphere embed-

ding of L by positioning four landmarks as the vertices of a

sphere-inscribed tetrahedron, followed by Tutte-embedding

the remaining landmarks in its faces and edges, and projecting

them onto the sphere.

(3) Independently per patch, embed its three corners as the ver-

tices of a flat, spherical or hyperbolic triangle 𝑇 in E2, S2 or

H
2 (Sec. 5.1) with the computed edge lengths. Tutte-embed

all vertices of mesh A (analogously for mesh B) contained in

the patch into its corresponding chord triangle (in ambient

space), followed by a projection onto 𝑇 (Eq. (1)).

(4) Now, a bijective map between each macro-triangle patch on

the surface of A or B and its corresponding flat, spherical,

hyperbolic triangle is available. Composing such a map from

a patch of A with the inverse of the corresponding map of

B, fully defines 𝜙 , ℎ and ℓ for all triangles contained in the

patch. For each vertex of A we save which triangle of B it

falls into as well as its barycentric coordinates in that triangle.

For each edge of A we detect intersections with edges of B

to initialize ℎ. For each edge of B we store its flat, spherical,

or hyperbolic length on the model manifold to define ℓ .

(5) Reduce initial metric distortion (caused by jagged patch bound-

aries, distortion in the patch-wise Tutte embeddings, or non-

optimal initial placement of landmark vertices on the model

manifold): Perform the first 200 iterations ofmap optimization

with increased metric regularization weights (𝜔angle = 100

and 𝜔area = 10). In the spherical case, where global metric

embeddings are available, we use global coordinates (vertex

positions of A and B on the sphere, parametrized as points

in R3, projected to S2) for increased efficiency in this step.
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Fig. 10. We compute maps between non-isometric pairs of shapes, in which some amount of distortion is inevitable. All landmark correspondences (red dots)

are kept fixed during the optimization. HOT generally produces smooth but highly distorted maps due to missing feature alignment (e.g. tail of the ant). RHM

effectively eliminates distortion in some areas (e.g. body of the ant) but accumulates distortion in other areas. Our method produces a more even distribution

of the inevitable distortion (note the low maximum distortion of our results in the cumulative distortion plots).

7.2 Experiments and Comparison

In our experiments, we chose weights 𝜔angle = 1, 𝜔area = 0.001 and

performed a maximum of 600 iterations, except for the intentionally

bad initializations in Fig. 13, which required 1500 iterations.

We compare the maps produced by our method to results of

the state-of-the-art mapping methods HOT [Aigerman and Lipman

2016] and RHM [Ezuz et al. 2019b]. We ran all three algorithms on

the same input data (meshesA,B and a set of landmark constraints).

We report the pointwise symmetric Dirichlet energy and visualize

it via log-scale heat maps and cumulative distortion plots.

HOT comes with strict bijectivity guarantees via the use of two

global embeddings into a hyperbolic cone orbifold. I.e. it, like our

formulation, produces continuous and bijective maps (surface home-

omorphisms). In contrast to our algorithm, HOT inherently relies on

keeping a set of landmark constraints fixed during the optimization

(as these form the singularities of the intermediate cone manifold).

Further, the formulation of [Aigerman and Lipman 2016] does not in-

clude an assessment of surface-to-surface distortion. This produces

low distortion maps only if similarly curved surface regions happen

to align in the intermediate domain. In Fig. 9, we demonstrate that,

when reducing the set of landmarks, this is not always the case.

RHM, by contrast, does optimize surface-to-surface distortion

via a relaxed version of the symmetric Dirichlet energy. However,

the resulting map is represented via two (not necessarily compat-

ible) vertex-to-surface maps in both mapping directions, without

a continuous notion of interpolation on edges and inside triangles.

Further, by relying on a (potentially discontinuous) surface projec-

tion operator, it does not allow for strict bijectivity guarantees. We

observe that while the resulting maps are well-behaved at most

surface points, high distortion often concentrates in small areas,

especially in regions of high curvature, such as tips of extremities

(see Figures 9, 10, 11). We believe this to be due to the extrinsic

aspects of the approach in combination with a discrete piecewise

linear representation. Cases in which a certain amount of map dis-

tortion is inevitable (as in the highly non-isometric shape pairs in

Fig. 10) are handled gracefully by our method and the distortion is

distributed evenly.

Neither our method nor RHM is immune to converging to subop-

timal local minima. However, we generally observe a good conver-

gence behaviour. In Fig. 9, omitting a number of landmarks in key

geometric regions does not prevent our method from converging

Fig. 11. We demonstrate our method on surfaces of genus 3 and 5 and com-

pare to RHM. In both examples, landmarks are only used for initialization.

While our method consistently achieves low map distortion at all surface

points, RHM tends to concentrate distortion in some areas.

to the desired minimum. Fig. 13 examines the sensitivity of our

optimization to the initial map. While a number of different initial-

izations converge to the same (expected) solution, the last two cases

show initializations that lead to undesired local optima.

Figures 11 and 12 demonstrate the applicability of our methods

to surfaces of varying genus. While in Figures 9 and 10, landmarks

are kept fixed during the optimization, all landmarks are released

after initialization in Fig. 11.

In Fig. 14 we show the relevance of metric regularization and

observe that a low-distortion representation in constant curvature

space benefits optimization performance and avoids small local

minima.

As an example of information transfer, we map textures between

multiple shapes in Fig. 12. Our method guarantees a continuous and

bijective transfer. Mapping artifacts such as fold-overs or texture

tearing cannot occur. This is of particular importance when the

transferred data is used as an input for further processing applica-

tions, e.g. in the context of transferring integer-grid maps [Bommes

et al. 2013] for subsequent quad mesh extraction. An additional

property of our map definition is that it can transfer data that ex-

hibits discontinuities across edges. This case occurs for example
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Fig. 12. Maps between different objects of genus 1 and genus 3 visualized

via texture transfer and texture swapping. (a) and (b) show the same map

being used in opposite directions, transferring the duck texture onto the

donut and vice versa. In (c) the texture of the pretzel is mapped in a low

distortion manner onto another genus 3 object, and in (d) the texture of a

vase is mapped onto a different exemplar. Due to guaranteed bijectivity and

continuity, no tearing artifacts or folds do occur.

when mapping textures with seams. A seam of the source mesh is

faithfully represented on the target mesh via the mutual tessellation.

In other words, we are able to map data defined per triangle corner

instead of mere per-vertex information.

Timings. We implemented our method using automatic differen-

tiation via [Walther and Griewank 2012]. While this enables flex-

ible prototyping, it comes at a significant run time cost. E.g. the

pig/armadillo example in Fig. 10 with 15𝑘 triangles takes 20s for the

evaluation of gradient and Hessian per optimization iteration. This

cost is not inherent to our strategy itself and can therefore most

likely be reduced significantly using other forms of differentiation

(which are not performed on the fly at run time). All other steps of

our unoptimized implementation are comparably inexpensive. On

the same example, the linear solve took less than 0.1𝑠 per iteration.

The overlay computation, including the construction of all required

model embeddings, exact intersection tests, and optimal polygon

triangulation took less than 0.1𝑠 per evaluation.

8 LIMITATIONS & FUTURE WORK

Our current implementation allowed us to demonstrate the efficacy

and effectiveness of the proposed representation and method, as

presented in the previous section; it serves as a proof of concept.

For practical efficiency, a relevant aspect for future work will be the

investigation of techniquesÐon the implementation side as well as

on the conceptual sideÐto speed up the time taken to perform map

optimization. Combining the approach with some multi-resolution

scheme will be an interesting direction. It could serve not only as a

way to speed up the computation, but also to reach better optima

via a multi-scale strategy. Depending on the application scenario

(e.g., when initializations are bad, shapes are complex, or landmarks

are few), this could be a major benefit, considering the non-linear

nature of the optmization problem one faces in the inter-surface

setting.

A further valuable direction is related to numerics. The current

implementation sometimes suffers from numerical inaccuracies,

for instance when tiny embedding errors accumulate along very

long triangle strips (when the two surfaces have very different edge

lengths) or the metric accumulates non-constant curvature over the

course of long optimization sequences. We have already described

Fig. 13. We compute maps between two genus 0 hand models starting from

different initializations (top row). Our optimization (bottom row) converges

to the expected result if the initialization is reasonably close.

some ways to sanitize this (cf. Sec. 6.7) that proved to work well

in our experiments. Nevertheless, a deeper exploration of options

for ensuring consistency despite inaccuracy will be interesting. An

alternative could be the use of adaptive precision techniques, like

in recent work on mesh processing [Hu et al. 2018].

While we have already applied several modern optimization tech-

niques and tweaks in our method, cf. Sec. 6, a variety of further

significant improvement options, in particular tailored to parametri-

zation and mapping problems, have been described in recent years

[Claici et al. 2017; Kovalsky et al. 2016; Liu et al. 2018; Shtengel et al.

2017]. While these are probably not trivially applicable in our con-

text, i.e., without a global coordinate system, it will be worthwhile

exploring how ideas can be adopted.
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A EMBEDDING FROM METRIC

To equip a local surface region with coordinates w.r.t. the metric ℓ ,

i.e. to embed it in E2, S2 or H2, we perform the following steps: In

all three models, we choose to position the first vertex of the first

triangle at ã = (0, 0, 1)T and the second vertex b̃ with distance ℓ𝑎𝑏
in an arbitrary direction, e.g.

b̃ =




(ℓ𝑎𝑏 , 0, 1)
T

E
2

(sin ℓ𝑎𝑏 , 0, cos ℓ𝑎𝑏 )
T

S
2

(

√
(cosh2 ℓ𝑎𝑏 − 1), 0, cosh ℓ𝑎𝑏 )

T
H
2

Given two points ã and b̃ on one of the model manifolds E2, S2 or

H
2, we now want to embed a third point c̃ with known distances

ℓ𝑎𝑐 and ℓ𝑏𝑐 to the given points and such that the triangle ã, b̃, c̃ is

oriented counter-clockwise. In all three cases we can compute c̃ via

constructions in the Euclidean ambient space.

Flat. Given are ã, b̃ ∈ E2 and ℓ𝑎𝑐 = ∥c̃ − ã∥2, ℓ𝑏𝑐 = ∥c̃ − b̃∥2,

ℓ𝑎𝑏 = ∥b̃ − ã∥2. Both candidate solutions for c̃ ∈ E2 lie on a line

perpendicular to the line connecting ã and b̃. Let p0 + 𝑡n be this line

with n = Rot90 (b̃ − ã) and p0 = (1 − 𝑠)ã + 𝑠b̃. Then 𝑠 and 𝑡 are:

𝑠 =
ℓ2𝑎𝑐 − ℓ

2
𝑏𝑐

+ ℓ𝑎𝑏2

2ℓ2
𝑎𝑏

𝑡 = ±

√
ℓ2𝑎𝑐 − 𝑠

2ℓ2
𝑎𝑏

ℓ𝑎𝑏
.

Choosing the positive solution for 𝑡 gives the counter-clockwise

oriented triangle ã, b̃, c̃.
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Spherical & Hyperbolic. Given are ã, b̃ ∈ S2 (or H2) and ℓ𝑎𝑐 =

d(ã, c̃), ℓ𝑏𝑐 = d(b̃, c̃), with d being the spherical (or hyperbolic) dis-

tance function, respectively.

Around the given point ã, the iso-curves of d(ã, ·) are defined

by the intersection of the model manifold (unit sphere or hyper-

boloid) with a tangent plane at ã, shifted in negative normal di-

rection. Let nT𝑎p = 𝑑𝑎 be this plane, with n𝑎 = [𝑎𝑥 , 𝑎𝑦, 𝑎𝑧]
T (n𝑎 =

[−𝑎𝑥 ,−𝑎𝑦, 𝑎𝑧]
T), then 𝑑𝑎 = cos(ℓ𝑎𝑐 ) (𝑑𝑎 = cosh(ℓ𝑎𝑐 ), proof below).

The points with given distances ℓ𝑎𝑐 and ℓ𝑏𝑐 to ã and b̃ lie on

the intersection line of the planes nT𝑎p = 𝑑𝑎 and nT
𝑏
p = 𝑑𝑏 . We

parametrize this line by p0 + 𝑡n. Since n lies in both planes we can

choose n = n𝑎 × n𝑏 and a point p0 on the line can be obtained as:

p0 =
𝑑𝑏

nT
𝑏
n′𝑎

n′𝑎 +
𝑑𝑎

nT𝑎n
′
𝑏

n′
𝑏

with n′𝑎 = n × n𝑎 and n′
𝑏

= n × n𝑏 . Both candidates for c̃ are

then obtained as the intersection points of this line with the sphere

⟨p, p⟩ = 1 (hyperboloid ⟨p, p⟩𝑀 = −1), i.e. via the solutions of the

quadratic equation 𝑐2𝑡
2 + 𝑐1𝑡 + 𝑐0 = 0 with coefficients

𝑐2 = ⟨n, n⟩, 𝑐1 = 0, 𝑐0 = ⟨p0, p0⟩ − 1 (S2)

𝑐2 = ⟨n, n⟩𝑀 , 𝑐1 = 2⟨n, p0⟩𝑀 , 𝑐0 = ⟨p0, p0⟩𝑀 + 1 (H2)

which are 𝑡 = ±(−𝑐1 +
√
𝑐21 − 4𝑐2𝑐0)/(2𝑐2). Choosing the positive

solution for 𝑡 gives the counter-clockwise oriented spherical (hy-

perbolic) triangle ã, b̃, c̃.

In the spherical case this construction is limited to ℓ𝑎𝑏 , ℓ𝑏𝑐 , ℓ𝑐𝑎 < 𝜋 .

We ensure that this constraint is always fulfilled (cf. Sec. 6.5).

The iso-curves of 𝑑H are shifted tangent plane intersections. For

ã ∈ H2, the ℓ𝑎𝑐 -iso-curve of the hyperbolic distance function 𝑑H is

the set of points c̃ ∈ H2 for which ℓ𝑎𝑐 = arccosh(−⟨ã, c̃⟩𝑀 ). We can

rewrite −⟨ã, c̃⟩𝑀 as [−𝑎𝑥 ,−𝑎𝑦, 𝑎𝑧]
Tc̃ = nT𝑎 c̃ = cosh(ℓ𝑎𝑐 ). The vector

n𝑎 is a normal of the implicit surface ℎ(a) = 𝑎2𝑥 + 𝑎2𝑦 − 𝑎2𝑧 + 1 at

point a since [ 𝜕ℎ
𝜕𝑎𝑥

, 𝜕ℎ
𝜕𝑎𝑦

, 𝜕ℎ
𝜕𝑎𝑧

] = −n𝑎 .

B PROJECTION PROPERTIES

In this section we show that the projections between ambient space

R
3 and model manifold, as employed in our constructions, define a

continuous, bijective, and orientation-preserving (c.b.o.) map.

Let 𝑡 be a flat/spherical/hyperbolic triangle with positive area

spanned by (finite) vertices ã, b̃, c̃ ∈ E2/S2/H2, such that the triangle

lies within one open halfspace about the origin of R3. Note that for

the flat and hyperbolic case this is always true (as E2 and H2 are

entirely contained in such a halfspace), whereas for the spherical

case it is ensured by the barrier term (10).

Let 𝐶 = {ray(0, p̃) : p̃ ∈ 𝑡} ⊂ R3

be the cone of central rays through

points of 𝑡 (see inset for the hyperbolic

case). Due to the halfspace contain-

ment of 𝑡 , 𝐶 is a convex cone. Since 𝑡

has positive area,𝐶 is non-degenerate.

Note that each ray 𝐶 pierces exactly

one such point, as the model man-

ifolds, and therefore 𝑡 , and entirely

backfacing wrt. the origin. As each

edge of 𝑡 is a geodesic, i.e. the intersection of a plane through the

origin with the model manifold, 𝐶 is a triangular cone with the

edges ray(0, ã), ray(0, b̃), ray(0, c̃).

Let 𝑡 be a flat triangle in R3 with vertices on these rays: 𝜆aã,

𝜆bb̃ 𝜆cc̃ where 𝜆a, 𝜆b, 𝜆c > 0. The triangle 𝑡 is the image of 𝑡 under

central projection to the model manifold E2/S2/H2; vice versa, 𝑡 is

the image of 𝑡 under central projection to the supporting plane of 𝑡 .

Since both 𝑡 and 𝑡 form a base of𝐶 , i.e. each ray in𝐶 pierces 𝑡 and

𝑡 exactly once, the central projection between 𝑡 and 𝑡 is continuous

and bijective. It is also orientation preserving, as both 𝑡 and 𝑡 are

backfacing w.r.t. the origin. Hence, the projection is c.b.o.

This theorem holds under the above preconditions that 𝑡 (1) has

positive area and (2) is contained within one halfspace about the

origin. In the following we show that the maps generated by our

initialization satisfy these preconditions and that the optimization

maintains them.

B.1 Map Initialization

Per macro-triangle of the macro-mesh (cf. Sec. 7.1), its initial con-

stant curvature metric defines a triangle 𝑇 with positive area. The

assumption that its vertices are initially contained within one half-

space about the origin is fulfilled by construction in the spherical

case, cf. Sec. 7.1, step (2).

The central projection from the corresponding chord triangle

𝑇 onto 𝑇 is c.b.o. The individual triangles 𝑡 of A and B, Tutte-

embedded in a c.b.o. manner in𝑇 , therefore project onto conforming

triangles 𝑡 with positive area in𝑇 , i.e., on the model manifold. Hence,

after initialization, A and B are equipped with non-degenerate

constant curvature metrics.

B.2 Map Optimization

By initialization, each model triangle 𝑡B implied by the constant

curvature metric has positive area. Therefore, the map from each 𝑡B
to its chord triangle 𝑡B is c.b.o. For each triangle ofA: Let 𝑡A be the

flat triangle in R3 spanned by its three vertices that (via 𝜙) lie in 𝑡𝑎
B
,

𝑡𝑏
B
, 𝑡𝑐
B
. Let 𝑡𝐴 be its image under central projection. As asserted by

our initialization, 𝑡𝐴 has positive area, hence, this projection is c.b.o.

The combined map 𝑡A → E2/S2/H2 → 𝑡B (restricted to 𝑡A ∩ 𝑡B ,

i.e., to an overlay polygon 𝜌) therefore is c.b.o. as well.

Relocating a vertex of 𝑡A in R3 during an optimization iteration

maintains the c.b.o. property as long as the above preconditions

are preserved, i.e., as long as 𝑡A maintains positive area and stays

within an open halfspace about the origin of R3. Both conditions

are preserved explicitly via barrier terms, Eq. (8) and Eq. (10), re-

spectively.

Switching the direction of map representation (cf. Sec. 6.3) main-

tains the c.b.o property, because it does not change the metric, i.e., it

preserves every triangle image 𝑡A or 𝑡B on E2/S2/H2. It therefore

in particular preserves positivity and halfspace containment.

The c.b.o. nature of the map per overlay polygon 𝜌 trivially carries

over to restrictions, in particular to the triangles of a triangulation

of 𝜌 (cf. Sec. 5.4). The linearization of the map, as detailed in Sec. 5.4,

is a continuous bijection that, due to preserving the map at the

triangle’s vertices, is orientation-preserving as well.
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