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High-Fidelity Point-Based Rendering
of Large-Scale 3D Scan Datasets

Patric Schmitz, Timothy Blut, Christian Mattes, Leif Kobbelt

Abstract—Digitalization of 3D objects and scenes using modern depth sensors and high-resolution RGB cameras enables the
preservation of human cultural artifacts at an unprecedented level of detail. Interactive visualization of these large datasets, however, is
challenging without degradation in visual fidelity. A common solution is to fit the dataset into available video memory by downsampling
and compression. The achievable reproduction accuracy is thereby limited for interactive scenarios, such as immersive exploration in
Virtual Reality (VR). This degradation in visual realism ultimately hinders the effective communication of human cultural knowledge.
This article presents a method to render 3D scan datasets with minimal loss of visual fidelity. A point-based rendering approach
visualizes scan data as a dense splat cloud. For improved surface approximation of thin and sparsely sampled objects, we propose
oriented 3D ellipsoids as rendering primitives. To render massive texture datasets, we present a virtual texturing system that
dynamically loads required image data. It is paired with a single-pass page prediction method that minimizes visible texturing artifacts.
Our system renders a challenging dataset in the order of 70 million points and a texture size of 1.2 terabytes consistently at 90 frames
per second in stereoscopic VR.

Index Terms—3D reconstruction, point-based rendering, virtual texturing, virtual reality
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1 INTRODUCTION

D IGITAL preservation and restoration of cultural arti-
facts is an integral component to the recording of

human history. Virtual replicas of historical sites can serve
different purposes. They enable archiving of geometry and
texture, such that faithful reproduction is possible in the
case of decay, destruction or vandalism. Digital models
furthermore broaden the availability of cultural property.
Travel distance, admission charges, lack of accessibility, or
the necessity for site protection can deny many individuals
the opportunity to experience our cultural treasures.

Digital acquisition of high-precision 3D models can
nowadays be performed in numerous ways. Using spe-
cialized equipment such as 3D laser scanners, structured
light or time-of-flight sensors, or by the fusion of multi-
view image data in photogrammetry, highly detailed digital
reconstructions of real-world objects are achievable. The
affordability of sensors combined with ever-increasing data
capacity and transmission bandwidth enables us to capture,
store and exchange 3D scanned datasets of enormous size.

Heritage preservation, however, comprises more than
just archiving an artifact’s appearance. Ideally, we want to
enable observers to experience a historic site as realistically
as possible, given the sensor resolution at which the object
was captured. People should be able to engage in the
virtualized environment and perceive their surroundings in
the same way as if visiting the real site.

Virtual Reality (VR) offers the potential to create this
sense of presence in immersive virtual environments (IVE).
Yet, while VR systems have recently become affordable, re-
quirements on rendering performance are still demanding.
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For a sufficient degree of immersion, the system needs to
deliver high interactive frame rates at all times. This is
challenging, particularly for datasets that do not fit into
video memory. Downsampling and compression combined
with dynamic level-of-detail (LOD) techniques can alleviate
this, but typically result in decreased visual fidelity.

For exploration of 3D scanned heritage sites in IVEs, we
argue that perceivable losses in reproduction quality are not
tolerable. The inability to faithfully reproduce an artifact
at interactive frame rates ultimately amounts to a loss of
cultural heritage. Our main goal is, therefore, to create a
rendering technique that yields the highest visual quality,
while rendering massive point cloud datasets at interactive
frame rates. To this end, we propose a point-based rendering
system using 3D ellipsoids as a novel rendering primitive.

We furthermore observe that users in IVEs have the
unique possibility to approach artifacts very closely. While
many cultural heritage sites are not fully open to the public,
a digital model enables users to explore freely. Even for
high-quality photographs, the achievable resolution from a
given distance might be insufficient. We therefore choose to
apply a data-driven super-resolution technique to improve
the effective texture resolution by adding plausible detail.

Increasing the effective texture resolution, however, sig-
nificantly aggravates the problem of insufficient GPU mem-
ory. We therefore propose a virtual texturing system that
performs on-demand loading of image data at full reso-
lution, while minimizing visible artifacts with an efficient
prediction algorithm for required virtual texture pages.

In summary, our main contributions are:
• 3D ellipsoids as improved point rendering primitives

for thin and sparsely sampled objects (Section 3)
• Virtual texturing for massive image data (Section 4)
• A single-pass page prediction algorithm (Section 4.3)

c© 2020 IEEE
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2 RELATED WORK

Our proposed method draws heavily on prior research in
point-based rendering techniques and methods to handle
large-scale texture datasets. This section gives an overview
of related work in those fields.

2.1 Point-based Rendering

While many applications require a mesh representation with
topological surface information, visual reproduction alone
does not benefit from it. Points can instead be used directly
for rendering, saving manual and computational effort.
Levoy and Whitted introduced the idea of using points as
rendering primitives [1]. While naive point cloud rendering
as colored points or viewer-aligned quads is simple to
implement and yields high performance, it can result in
visual gaps and aliasing artifacts. Pfister et al. proposed
surfels (surface elements) as improved rendering primitives
that approximate the local surface with oriented discs in
3D space [2]. Zwicker et al. created the Surface Splatting
technique that renders surfels in a high-quality manner on
the CPU using screen space Elliptical Weighted Average
(EWA) texture filtering [3]. Botsch et al. further improved
the rendering quality with Phong Splatting that associates a
linearly varying normal field with each primitive [4]. The
method was subsequently implemented using capabilities
of modern graphics programming units and a cheap but
effective approximation of EWA texture filtering [5]. To
render sharp features, Zwicker et al. proposed the use of
cliplines that truncate splats along a line in tangent space [6].
Preiner et al. developed Auto Splats that computes normals
and splat radii in screen space during rendering [7].

2.2 Large-Scale Texturing

Much interest in methods to handle the ever-increasing size
of texture data has originated in the visualization of large
geospatial datasets as well as in the gaming industry.

2.2.1 Texture Streaming

Streaming approaches keep only the textures or mipmaps
required for rendering in memory at a given point in time.
The main challenge is to determine when to load which
textures. A simple approach is to subdivide the scene into
fixed zones in which the required set of textures is pre-
computed. By keeping track of neighboring zones, textures
can be streamed into memory before they are needed for
rendering. Blow presented a system that tracks mipmap
levels in a least-recently-used (LRU) cache and predicts
required textures using a mip bias and extrapolated camera
movement [8]. Dumont et al. prioritized textures based on
perceptual importance, using factors such as view point,
illumination, image contrast and frequency content [9]. Van
Waveren proposed a multi-threaded streaming method that
loads compressed images from disk and recompresses them
using a GPU format [10]. Barb presented a method that
weights mip levels by importance based on the covered
screen space when rendered from a probe’s position [11].

2.2.2 Clipmaps
Streaming whole mipmap levels can still require too much
memory, which is often encountered when visualizing aerial
scanned terrain data. Such datasets are typically rendered
with a fixed-perspective viewport that shows a rectangular
section of the dataset. Tanner et al. propose clipmaps that
keep only a fixed-size clipping area in memory [12]. While
the original implementation relies on specialized hardware,
Makarov describes how to implement clipmaps on com-
modity hardware using array textures [13]. While clipmaps
work well for geographic visualization applications, they
are not suited for general scenes since a single contiguous
region of data is kept in memory.

2.2.3 Virtual Texturing
A generalization of clipmaps and texture streaming is vir-
tual texturing. Similar to virtualized memory in modern
operating systems, textures are partitioned into fixed-size
pages and stored in a page pool. Accesses are mapped via an
indirection table that translates virtual into physical texture
coordinates on a per-page basis.

Lefebvre et al. propose a virtual texturing system that
marks required pages by rendering texture coordinates into
a framebuffer that maps each fragment to a page [14]. Van
Weveren describes virtual texturing in the game engine
id Tech 5 that determines required pages by rendering the
scene itself into a framebuffer and reduces visible LOD
snapping by fading in newly loaded mipmaps [15], [16].
Mittring investigates streaming from slow storage devices
and efficient page pool updates [17]. Hollemeersch et al.
propose GPU computing for performance improvements
such as flattening the page ID buffer to reduce the transfer
time, or device-side updating of the indirection table [18].

Contemporary GPU architectures support virtualized
resources that are not limited to 2D textures, but sup-
port 1D textures, cubemaps, volume textures and general
buffers. The indirection tables are opaquely implemented in
hardware, which makes texture accesses much simpler and
removes the need for an additional texture fetch [19]. Our
proposed method leverages hardware support for virtual
texturing using the Vulkan graphics library.

3 ELLIPSOID SPLATTING

Planar splats approximate locally flat surfaces well. Sparsely
sampled, long and thin objects, however, are challenging
to represent with existing point-based rendering primitives.
Discs and ellipses struggle to approximate high local cur-
vature because of their two-dimensional nature. To render
such objects, a large amount of sample points from several
viewing angles is required, which is prohibitive considering
the small contribution to the overall scene. To address this
issue, we propose 3D ellipsoids as a novel point-based
rendering primitive for improved surface approximation.
The piecewise quadratic surface elements reproduce high-
curvature objects with much fewer sample points and sig-
nificantly improve their visual quality.

3.1 Fitting Ellipsoids to Point Cloud Data
To better approximate surfaces, we fit an ellipsoid to the
local neighborhood of each point in a preprocessing step.
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This involves finding the ellipsoid’s center c and three
axes u,v,w, which we determine as the axes of maximum
variation of a principal component analysis (PCA) [20].

Let P be a set of sufficiently dense sample points of
a surface S. For each point pi ∈ P the algorithm for
computing the axes of an ellipsoid comprises these steps:

1) Find the neighborhood N = {p1, . . . ,pn}
2) Compute the mean p̄ = 1

n

∑n
i=1 pi

3) Compute the covariance matrix C of N
4) Find the eigenvalues λi and eigenvectors ei of C

Common approaches to define the neighborhood are to
use the k-nearest neighbors (k-NN) or all points within a
certain radius ε. The advantage of the k-NN method is that
exactly k points are in the resulting set. However, outliers
can be included in the set if not enough points are in close
proximity. We choose to first include all points in the ε-
neighborhood for a predefined ε. If fewer than Nmin points
are in the set we inspect the k-NN set for k = Nmin .
Points are classified as outliers and removed from the set
if their distance to pi is larger than δ > ε. If the resulting
number of points n satisfies Noutlier ≤ n < Nmin the k-
NN set of Nmin points is used, otherwise pi is discarded.
This procedure yielded robust results with the parameters
ε = 0.02, δ = 0.06, Nmin = 6, Noutlier = 3, where ε and δ
depend on the dataset scale and average sampling density.

The covariance matrix is then computed as

C =
1

n− 1

n∑
i=1

(pi − p̄)(pi − p̄)T

and can be interpreted as a transformation of the unit
sphere to an ellipsoid that matches the shape of the data
distribution. This symmetric positive definite matrix can
be factorized as C = UΣUT where Σ = diag(λ1, λ2, λ3)
contains the eigenvalues of C and U =

[
u1 u2 u3

]
is a rotation matrix. The eigenvalues of Σ correspond to
the variance σ2 along each axis. We choose the axes as
u = 3

√
λ1u1, v = 3

√
λ2u2, w = 3

√
λ3u3 to contain 99.7%

of the points along each axis inside the ellipsoid.

3.2 Rendering
Our method for rendering ellipsoids improves the quadrics
splatting method presented by Sigg et al. [21] by perspec-
tively correct projective texture mapping using photographs
taken from 3D scanner positions. We furthermore improve
rendering performance by utilizing geometry shaders for
primitive instantiation.

The authors define T as the variance matrix that trans-
forms from parameter space to object space. In parameter
space, the ellipsoid becomes the unit sphere, which can be
exploited for rendering. The matrix T is defined in terms of
the three basis vectors u, v, w and the ellipsoid center c:

T =

(
u v w c
0 0 0 1

)
As with all splatting techniques, geometric primitives need
to be rendered to trigger the fragment shader for the re-
spective area of the framebuffer. One way of doing this is
to render a quad with UV coordinates (u, v) ranging from
(−1,−1) to (1, 1). The shader then discards all fragments
for which u2 + v2 > 1 and thus lie outside of the ellipsoid’s

projection. The quad needs to face the camera and be sized
such that it acts as a bounding box of the ellipsoid. This can
be achieved by first computing the basis vectors x, y and
the offset z of the camera-facing quad in parameter space:

z =
(VMT)−1

[
0 0 0 1

]T
‖(VMT)−1

[
0 0 0 1

]T‖
x =

[
0 1 0 0

]T × z

‖
[
0 1 0 0

]T × z‖
y = z× x

where V, M are the view and model matrix. The quad
vertices in parameter space can then be transformed to
object space for rendering:

vi = T(uix + viy + z)

Applying z as an offset in parameter space moves the
quad towards the camera such that the depth of the frag-
ments of the quad serve as a lower bound for the depth
of the ellipsoid. Compared to positioning the quad at the
center of the ellipsoid, this reduces depth misordering when
ellipsoids of different sizes overlap in screen space.

One of the most performance-critical parts when render-
ing a large number of splats is vertex processing. To improve
performance, we draw a single triangle instead of a quad,
with the following UV coordinates:

a =
[
−
√

3 −1
]T
, b =

[
0 2

]T
, c =

[√
3 −1

]T
These coordinates form an equilateral triangle with an edge
length of 2

√
3 that circumscribes the unit circle. This op-

timization works for disc and ellipse splatting as well. A
disadvantage is that about 30% more fragments have to be
rasterized. However, most fragments are discarded early
and in practice the performance gain from the reduced
vertex count outweighs the cost of additional fragments on
modern hardware.

In contrast to discs and ellipses, the per-fragment depth
and normal cannot be interpolated by the hardware based
on vertex attributes. In the special case of ellipsoids, both
can be derived from the UV coordinates by projecting onto
the unit sphere in parameter space: ppar = ux + vy +√

1− u2 − v2z. The world space normal nworld and depth d
can then be computed as follows:

nworld = (MT)−Tppar

pclip = PVMTppar =
[
xclip yclip zclip wclip

]T
d =

zclip
wclip

with P, V, and M being the projection, view, and model
matrix, respectively.

Texturing is performed using photographs that were
taken at the 3D scanner positions. As with the per-fragment
depth and normal, we cannot rely on bilinear interpolation
provided by the hardware. To color each fragment correctly,
we project the world position into the image plane of the
associated scanner view. The texture coordinates (s, t) are
computed as follows:

pproj = K
[
R t

]
MTppar =

[
xproj yproj zproj

]T
[
s t

]T
=
[

xproj

zprojw
yproj

zprojh

]T
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Fig. 1. Overview of the virtual texturing system. System components are
represented as rectangles and resources as rounded rectangles. CPU-
side elements are colored in orange and GPU-side elements in green.

where K ∈ R3×3, R ∈ R3×3, and t ∈ R3 are the intrinsic
camera matrix, rotation, and translation of the camera view,
and w and h are the image dimensions.

4 VIRTUAL TEXTURING

In the following we detail our virtual texturing system.
It renders texture datasets much larger than the available
graphics memory with a page-based streaming approach.
Perceivable texturing artifacs are minimized by a page pre-
diction heuristic based on the user’s motion.

The key differences to previous work [16], [18] are:
• Render and determine required pages in single pass
• Page prediction heuristic to prefetch pages
• Hardware support from modern GPUs

An overview of the system architecture is given in Figure 1.
The residency manager keeps track of all pages and updates
the respective GPU resources every frame. The renderer
uses the resources to render the scene and to determine
required pages. These are marked in the feedback buffer that
the feedback resolver then flattens into a linear array of page
IDs to be processed by the residency manager. Pages that
are not yet in system memory are requested from the page
loader that fetches pages from the pagefile.

4.1 Rendering

Our rendering pipeline adapts the deferred shading ap-
proach by Botsch et al. [5] and performs texturing in the
attribute pass. Image data from all 3D scanner photographs
is stored in an array texture with one layer per view.
Textures are sampled via sparse partially-resident images
of the Vulkan API. Virtual address translation is performed
in hardware and texture filtering, such as anisotropic and
trilinear filtering, is performed transparently.

Texture fetches from non-resident pages, which are not
mapped to physical memory, result in undefined behavior.
Such fetches have to be avoided and prior knowledge of
which pages are resident is required. This is provided by
the residency map in Figure 1. It is a 2D array texture with
the same amount of layers as the virtual texture and keeps
track of the most detailed resident mip level per page. This
is used to clamp the minimum mip level during sampling.

We designate a “mip tail” of pages that are always resi-
dent as a fallback when no higher quality pages are mapped.
This is especially important when the view changes quickly
and the system cannot load and map pages in time for
rendering. Our system keeps all mipmaps smaller than
the hardware-defined page size permanently in memory.
This guarantees that some low-detail texture information
can always be presented, while the memory overhead is
negligible at a hardware page-size of 128 × 128 for current
GPU architectures.

We improve rendering performance by sorting all splats
by their texture layer. This reduces texture cache misses,
since splats close to each other that are mapped to the same
layer will likely sample the same virtual texture pages.

4.2 Required Page Feedback

There is no obvious correlation between the splat geometry
and virtual texture pages. Consequently, the system relies
on feedback from the rendering pipeline to determine which
pages are required. In the attribute pass, the IDs of required
pages are computed and marked in the feedback buffer.

A difficulty with blended splat rendering is that multiple
pages can be required per fragment. We therefore allocate a
buffer that holds an integer for each virtual texture page,
which contains all information that is used for the prior-
itization of page uploads. Required pages are marked in
the buffer by writing the respective entry non-atomically.
While nearby fragments write slightly different values to
the feedback buffer, we find that the resulting chance for
non-optimal upload orders is vastly outweighed by the
performance gain of avoiding an atomic operation.

Similar to Hollemeersch et al. [18], the feedback resolver
performs a compute shader pass that reduces the buffer to
a fixed-sized linear array containing all required pages, the
page ID buffer. The buffer is asynchronously read back by the
CPU for further processing by the residency manager.

4.3 Page Prediction

Simply loading pages after they were seen causes noticeable
artifacts since newly available mipmap levels suddenly pop
into view. This so-called “LOD popping” is illustrated in
Figure 2 and can be very irritating to users, affecting the
immersive experience. Our virtual texturing system mini-
mizes such artifacts by prefetching pages before they are
required for rendering. We employ several heuristics for the
prediction of required pages.

One cause of perceivable LOD popping is forward move-
ment. When getting closer to surfaces, increasingly detailed
mipmap levels are required. A simple but effective solution
is to apply a negative bias to the required mip levels [8].
The system thus detects more detailed mipmap levels before
they are required for rendering.

In practice, camera rotation and sideways movement
often cause more LOD popping than moving forward.
Different parts of the scene move into the camera’s field
of view (FOV), causing completely different textures to be
required for rendering. Without prediction, pages will be
loaded too late and perceivable popping occurs. Camera
motion prediction can be employed to counteract this [8].
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Fig. 2. Example of LOD popping. The marked region on the left appears
to be blurred because no high-detail mipmap is resident for that page.
In the next frame (on the right), the mipmap is available and the blurred
region suddenly disappears. This effect can be very noticeable for users.

∆𝑦

∆𝑥
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𝐜

∆𝑥

Fig. 3. Left: Top view of the extended camera frustum. The dashed lines
represent the off-axis generalized frustum that extends the symmetric
frustum of the visible viewport. Right: The gray region marks the margin
area, while the white region contains the final rendered image.

Performing true camera motion prediction, however, usu-
ally requires rendering a second time with the predicted
camera transformation in addition to normal rendering.

We propose to use an extended frustum for both rendering
and required page prediction in a single pass. The scene is
rendered with an enlarged FOV to see pages close to the
border before they are needed. Only the part of the viewport
that represents the camera’s original FOV is then textured,
shaded and presented to the user.

Increasing the size of the frustum evenly on all sides,
however, leads to inefficient use of fragments. Generally,
the sides of the frustum facing the movement direction are
more important, since pages appearing along the camera
trajectory are likely to be required for rendering in the
next frames. Fragments can be used more efficiently by
employing a generalized camera frustum [22] illustrated in
Figure 3. We apply a heuristic that maps the angular velocity
ω and translational velocity v to the inner viewport’s offset
(∆x,∆y) from the extended frustum center.

∆x = clamp(0.5 ·
(

vx
vmax

+
ωy

ωmax

)
,−1, 1) ∗mx

where vmax and ωmax are the translational and rotational
velocity that cause maximum displacement, mx denotes the
margin size in pixels, and ∆y follows analogously.

More elaborate human motion models can be applied at
this point. We observe, however, that this simple heuristic
already yields satisfying results in our test cases.

Update Page Mappings

Upload Mapped Pages

Upload Residency Map

Read PageID Buffer

Update Tracked Pages

Fetch Required Pages

Allocate PagesGPU Pagefile

Fig. 4. Overview of the physical page update process. CPU-side ele-
ments are colored in orange and GPU-side elements in green.

4.4 Physical Page Updates

An overview of the physical page updating process per-
formed by the residency manager is given in Figure 4.
Virtual texture pages need to be tracked to know which
pages have to be loaded from the pagefile, can be mapped to
a physical page, or be evicted from the page pool to free up
space for other pages. Not all pages are equally important
and thus have a priority assigned to them. The system tracks
all pages in several priority-sorted lists corresponding to the
possible states: seen, loading, loaded, mapped or evicted.

After processing the page ID buffer, a fixed number of
pages with highest priority are fetched from the pagefile.
Fetching pages happens asynchronously to avoid blocking,
which usually takes several frames. Next, space in the page
pool is allocated for a fixed number of high-priority pages,
which also involves deallocating low-priority pages. After-
wards, the virtual to physical page mappings in the GPU’s
translation table are updated and the physical page data is
uploaded. Lastly, the updated residency map is uploaded to
the GPU. All of these steps are performed once per frame.

4.4.1 Page Prioritization
We propose different sort keys to compute the priorities of
tracked pages depending on their state. Seen and loaded
pages are sorted based on how much value they add to
the rendered image. Mapped pages are sorted based on
their “unimportance” to evict pages from the pool that are
least likely to be needed for rendering. The respective sort
keys are combined into a 64 bit priority code, illustrated in
Figure 5. The seen and loaded pages are sorted using the
loadAndMapKey in increasing order, while already mapped
pages are sorted using the evictKey in decreasing order.

Recently seen pages are most likely to be required for
rendering in the next frames. Similarly, least-recently seen
pages should be evicted first. On top of this, pages that are
only required due to prediction are loaded after pages that
are currently required for rendering. Coarse mip levels are
loaded and mapped first, while the most-detailed mip levels
are evicted first, which ensures filtering across levels works
at all times. Pages are further prioritized by the difference
between their mip level and the corresponding resident mip
level. If the difference is greater, the image is potentially
improved more by loading the page. Pages that are closer to
the screen center are more likely to be required in the next
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255−distanceToCentermipLevel1−isPredicted

8 bits

lastSeen

4 bits4 bits43 bits

most important least important

63 0

mipLevel

4 bits

lastSeen

60 bits

most important least important

63 0

evictKey

loadAndMapKey

15−parentMipLevelmipDifference

4 bits1 bit

Fig. 5. Bit layouts of the sort keys for loading and eviction.

frames, in contrast to pages near the edge of the screen that
are more likely to be out of sight.

4.4.2 Loading From the Pagefile

Before virtual pages can be mapped to physical pages, the
texture data needs to be loaded from the pagefile. It contains
the precomputed mipmap levels for all textures, split into
pages and compressed individually, and is prefixed by a
table that contains the per-page size and file offset. Pages
are compressed using a conventional image format, such as
PNG or JPEG, to reduce the memory footprint and required
bandwidth for reading during runtime.

Page loading should not stall the pipeline and is per-
formed asynchronously. Performance strongly depends on
the underlying storage medium. A fast solid state drive
(SSD) is advisable to achieve high throughput. Load re-
quests are pushed into a thread-safe queue and handled by
a pool of worker threads that push decompressed pages into
a second queue to be consumed by the residency manager.
A considerable bottleneck is the non-deterministic cost of
memory allocation. We solve this with a custom allocator
that reuses page-sized chunks from a preallocated pool.

5 RESULTS AND DISCUSSION

In the following, we present the results of our ellipsoid
splatting technique and virtual texturing system.

5.1 Ellipsoid Splatting

Results of our ellipsoid splatting technique are shown in
Figure 6. The first row shows disc-shaped splats that are
rendered with a globally uniform splat size and cliplines.
Object contours are either overestimated by splats that
are larger than geometric features, or the surface appears
fragmented due to an insufficient local sampling density.
The staircase edge in the forground of the left image shows
that cliplines are well suited to preserve sharp edge features
and that the texture quality is improved. This is due to a
better fit of the primitives to the planar sides of the staircase,
which results in less blended fragments and, consequently,
reduced ghosting and blurring.

The second row illustrates 2D ellipse-shaped splats.
While they adapt to the local sampling density and size
of geometric features, their planar 2D appearance becomes
apparent. Our 3D ellipsoid splats in the third row do not
exhibit this problem, and yield a plausible appearance from
any viewing direction. The current lack of a clipping primi-
tive, however, degrades texture quality in planar regions.

Fig. 6. Comparison of splatting primitives: Uniform-sized disc splats in
the first row illustrate the difficulty to find an adequate global splat size.
2D ellipses in the second row improve the result, but fail to capture object
contours from all viewing angles. Finally, our 3D ellipsoid splats in the
third row achieve a plausible object contour from all viewing angles.

5.2 Virtual Texturing
Our virtual texturing system was evaluated regarding both
visual quality of the result and rendering performance.
We describe the measurement setup and evaluation criteria
before we present the results in the respective subsections.
An impression of the achievable image detail is given in
Figure 7.

5.2.1 Evaluation Methods
To evaluate different aspects of the system, camera trajecto-
ries were recorded from real-world motion with a tracked
VR headset. Four representative paths were recorded:

1) look around: head rotation without disocclusion.
2) forward: constant forward motion.
3) backward: constant backward motion.
4) sideways: sudden disocclusion, sideways motion past an

obstacle reveiling large parts of the scene.
We quantify visual quality in terms of virtual texture page

misses, since perceivable LOD popping can occur whenever
a page is required for rendering but not resident in memory.
System performance is evaluated in terms of frame timings.
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(a) Original 8k textures. (b) Upsampled 32k textures.

(c) A mosaic of 110 centimeters. (d) A wall patch of 65 centimeters.

Fig. 7. Examples of the achievable visual detail by texture upsampling.

Our test dataset is a high quality laserscan of the Aachen
Cathedral interior. It consists of over 70 million points and
443 photographs each with a resolution of 7360×4912. While
this is already a large texture dataset, our goal is to provide
maximum visual detail, even if users in an IVE approach
objects very closely. We therefore applied a state-of-the-art
super-resolution technique based on generative adversarial
networks to upscale the individual images to a resolution of
29440×19648 [23]. While the improved image detail should
not be mistaken for actual detail, it significantly improves
the perceived quality for exploration in IVEs and demon-
strates the feasibility of our approach for datasets of much
higher resolution than our current data acquisition pipeline
provides. The corresponding pagefiles contain 79.35 GB and
1269.61 GB of uncompressed texture data, respectively.

In the following, we denote the original dataset as 8k
and the upsampled dataset as 32k. If not explicitly noted
otherwise, performance measurements in this section are
given for the much more challenging 32k dataset. With the
proposed prediction methods, the original 8k dataset could
be reproduced with virtually no page misses at all.

The scenes were rendered in stereo with an effective
screen resolution of 1440×1600 per eye. A prediction margin
of 15% and a constant mip bias of -0.5 were used. All tests
were performed on a Debian GNU/Linux system with the
following specifications: Intel Core i7 4770, 16 GB RAM,
Nvidia Geforce GTX 1080 8 GB (driver version 418.74),
Samsung 840 EVO 250 GB SSD.

5.2.2 Page Prediction
To evaluate the amount of visible artifacts caused by LOD
popping, Table 1 shows the average number of page misses
for each test condition. Four prediction configurations were

0 1 2 3 4 5 6

3D ellipsoids

discs +
2D ellipses

1.74 3.77 0.09

1.47 2.13 0.09 Depth
Attribute
Remainder

(a) Rendering cost of 3D ellipsoids versus 2D discs or ellipses.

0 1 2 3 4 5 6 7 8

frustum

nothing

1.82 2.54 3.0

1.2 1.86 2.87 Depth
Attribute
Remainder

(b) Rendering cost of frustum prediction with required page feedback
and texture page upload in the remainder pass (15% margin).

Fig. 8. GPU performance overhead of the proposed methods (in ms).
For technical details about the different render passes refer to [5].

compared: nothing applies no prediction, bias applies a con-
stant negative mip bias, frustum uses the extended frus-
tum from Section 4.3, and combined applies both prediction
heuristics. All values are given relative to the nothing condi-
tion as a baseline.

TABLE 1
Average number of page misses for each configuration.

Look Around Forward Backwards Sideways
nothing: 1.00 1.00 1.00 1.00

bias: 0.82 0.33 0.97 1.09
frustum: 0.21 1.06 0.13 0.91

combined: 0.07 0.44 0.15 1.17

5.2.3 System Performance
The rendering cost incurred by our proposed methods is
illustrated in Figure 8. The top figure shows the GPU-side
overhead for 3D ellipsoid splatting compared to 2D disc and
ellipse splatting without virtual texturing. The bottom figure
shows the additional cost of frustum page prediction for the
virtual texturing system.

To evaluate overall system performance, we present
absolute frame timings for the two different texture datasets
in Figure 9. The CPU frame times amount to the process-
ing steps illustrated in Figure 4, excluding read operations
from disk, which are performed asynchronously. The GPU
frame times include rendering and reduction of the feedback
buffer in addition to the data transfer times.

5.3 Discussion
We discuss our results regarding the achievable visual qual-
ity and overall system performance. Finally, we give a brief
report of feedback we obtained from visitors in a public
museum exhibition.

5.3.1 Visual Quality
Our ellipsoid fitting and splatting approach works particu-
larly well for sparsely sampled, long and thin objects, as can
be seen in Figure 6. For these kinds of objects, the cliplines
for disc splatting cannot be reliably estimated. The splat size
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32k
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(a) CPU frametimes (in ms)
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32k
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(b) GPU frametimes (in ms)

Fig. 9. Distribution of frame timings in milliseconds over all configura-
tions. The red marker denotes the median, the box represents quartiles
and the whiskers the extrema of the distribution.

thus commonly exceeds the object contours and produces
noticeable texturing artifacts. Due to their three-dimensional
nature, ellipsoids approximate objects such as ropes, candles
and chains much more accurately using a smaller number
of primitives.

Even more importantly, a 3D ellipsoid gives rise to a
plausible contour from all viewing angles. This becomes
particularly apparent when moving around objects. Discs
and ellipses reveal their planar shape, while 3D ellipsoids
appear as consistent volumetric objects, which makes close-
up views appear much more realistic. This significantly
improves the plausibility and, in our judgement, the illusion
of presence in the reconstructed environment.

Objects with sharp but planar features that can be ap-
proximated well using cliplines are, however, not repro-
duced as precisely by the rounded 3D ellipsoids. This can
be observed in the left column of Figure 6. Therefore, we
suggest to use a hybrid method that uses the proposed 3D
ellipsoids for thin and long objects, and the well-established
disc and ellipse splats with cliplines for planar regions of
the dataset. Implementation of a suitable heuristic to choose
between the two primitive on a point-by-point basis remains
a topic for future research.

Evaluation of the prediction heuristics in Table 1 shows
that by using the extended camera frustum in combination
with a negative mip bias, the number of texture page misses,
and thus visual artifacts in the form of LOD snapping, can
be significantly reduced for the most common cases.

In the less frequent case where large parts of the scene
are disoccluded at once, such as in the sideways test, the pre-
diction can have a slightly negative effect. Too many pages
need to be mapped and loaded, such that the overhead of
prematurely loading pages that are eventually not needed
outweighs the potential benefit. Our implementation can be
improved in this regard by carefully flushing the loading
queues during all stages. Currently, a loading job that has
once started will occupy resources in the pipeline that could
potentially be allocated for higher-priority pages.

5.3.2 Performance
Our virtual texturing system with both page prediction
heuristics enabled can maintain a constant update rate of
90 frames per second required for today’s VR headsets. As
evident in Figure 9, the GPU frametimes were always below
11 ms even for the high-resolution textures.

Rendering 3D ellipsoids compared to planar primitives
is about 50% more expensive, as shown by the GPU timings
in Figure 8a. Real scenes, however, typically contain large
planar areas that can be rendered with disc-shaped splats
just as effectively. The additional performance cost to render
the typically small subset of thin and elongated objects as
3D ellipsoids is negligible given the overall improvement in
visual reproduction accuracy.

Furthermore, Figure 8b shows that the performance cost
of page prediction using an extended frustum is very mod-
erate. Considering the substantial reduction in page miss
artifacts, which can be seen in Table 1, the improvement in
visual fidelity is certainly worth the additional effort.

Overall, the performance of our point-based rendering
and virtual texturing system has proven sufficient to render
very challenging scenes with massively detailed texture
datasets in VR without sacrificing reproduction accuracy.

5.3.3 Audience Reception

We had the fortunate opportunity to present our work to
the public at the German museum exhibition “Thrill of
Deception. From Ancient Art to Virtual Reality” at Ludwig
Forum Aachen. It attracted over 30.000 visitors during a
four-month period, and we received very positive informal
audience feedback. People were excited to see the potential
of contemporary VR technology and were thoroughly im-
pressed by the quality and visual detail that can be achieved
on consumer-grade hardware.

6 LIMITATIONS AND FUTURE WORK

In the following, we outline limitations of our proposed
method as well as potential future research opportunities.

For an effective hybrid rendering approach, a robust
determination of how well a splat neighborhood can be
approximated using 2D ellipses and cliplines rather than
3D ellipsoids is necessary. Outlier points need to be reliably
characterized to enable an approximation with better feature
preservation. Furthermore, large features might be approx-
imated with fewer splats using a region growing approach
that fits ellipsoids to neighborhoods of increasing size.

Further improvements can be made regarding rendering
quality by reconsidering the choice of blending weights for
the final shading pass. While the current approach uses only
the fragment’s distance to the splat center, more sophisti-
cated blending methods could reduce ghosting or smearing
artifacts that sometimes become apparent. The depth of the
blended fragment along the view ray could be considered,
using a heuristic similar to McGuire et al. [24], or fragments
with more reliable image data could be preferred to better
preserve sharp texture features.

Emerging VR headsets enable tracking of the user’s eye
movement. Foveated rendering can be implemented as pre-
sented by Guenter et al. [25], and more fine-grained priori-
tization of virtual texture pages is possible. In combination
with methods that estimate the perceived change in visual
quality caused by mapping or eviction, this could achieve
faithful reproduction of even larger datasets, without requir-
ing additional bandwidth or rendering performance.
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7 CONCLUSION

We presented a method for the immersive visualization of
3D scanned datasets with massive amounts of texture data.
Using the presented techniques, cultural heritage sites can
be interactively explored in VR with minimal loss of fidelity.

To better approximate the shape of thin and sparsely
sampled objects, we presented 3D ellipsoids as a novel
point-based rendering primitive. For certain types of objects,
the visual quality we could achieve is superior to prior
methods, especially when moving freely around objects in
an immersive virtual environment.

We implemented a virtual texturing system that lever-
ages modern hardware capabilities and was carefully op-
timized to meet our performance requirements. To further
improve the rendering quality while moving through the
environment, a virtual texture page prediction heuristic was
proposed. With the presented solution, we are able to ren-
der terabyte-scale texture datasets at interactive framerates
without compromising visual detail.
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