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Fig. 1. Left: input meshes A and B of disk topology. Center and right: these meshes are continuously mapped onto each other via an intermediate flat

domain (top) by composing two planar parametrizations. The map is constrained by just two landmarks (thumb and pinky). Center: both parametrizations

are optimized for isometric distortion; the composed map, however, has high distortion (visualized in red on top). Right: our method directly optimizes the

distortion of the composed map in an end-to-end manner, naturally aligning similarly curved regions as they map to each other with lower isometric distortion.

The problem of discrete surface parametrization, i.e. mapping a mesh to

a planar domain, has been investigated extensively. We address the more

general problem of mapping between surfaces. In particular, we provide a

formulation that yields a map between two disk-topology meshes, which

is continuous and injective by construction and which locally minimizes

intrinsic distortion. A common approach is to express such a map as the

composition of two maps via a simple intermediate domain such as the

plane, and to independently optimize the individual maps. However, even

if both individual maps are of minimal distortion, there is potentially high

distortion in the composed map. In contrast to many previous works, we

minimize distortion in an end-to-end manner, directly optimizing the quality

of the composed map. This setting poses additional challenges due to the

discrete nature of both the source and the target domain. We propose a

formulation that, despite the combinatorial aspects of the problem, allows

for a purely continuous optimization. Further, our approach addresses the

non-smooth nature of discrete distortion measures in this context which

hinders straightforward application of off-the-shelf optimization techniques.

We demonstrate that, despite the challenges inherent to the more involved

setting, discrete surface-to-surface maps can be optimized effectively.
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1 INTRODUCTION

Maps between surfaces are an important tool in Geometry Process-

ing. They are required to transfer information (such as attributes,

features, texture) between objects, to co-process multiple objects

(such as shape collections, animation frames), to interpolate between

objects (e.g. for shape morphing), or to embed and parametrize ob-

jects (e.g. for template fitting). We here consider the case of discrete

surfaces (triangle meshes) that are of disk topology.

A special case is mapping between a surface and the plane, i.e. the

problem of discrete surface parametrization. There is vast literature

on this topic, with many improvements and extensions proposed

each year. The general case of maps between (non-planar) surfaces,

by contrast, has received less treatmentÐit is significantly harder to

handle due to the aspect of combinatorial complexity incurred by

both source and target domain being discrete. In the planar para-

metrization scenario (mapping a discrete surface to the continuous

plane) this aspect does not have to be dealt with. However, the

composition of two independently optimized surface-to-plane maps

does not generally yield an optimal surface-to-surface map.

In many use cases it is, similar to the surface parametrization

setting, desirable or required that the map between surfaces is

• continuous,

• bijective,

• low-distortion.

In some applications, the map is from a source to a target surface,

while in others the setting is symmetric; in these cases, ideally a

method to construct such maps should be

• symmetric

as well, i.e. independent of order. Many previous approaches to the

problem of, under given constraints, constructing and optimizing

maps between surfaces aim for one or more of these properties, but

guarantees can rarely be given.
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Fig. 2. We compute a bijective map between corresponding regions A′ and

B′ of disk-topology surfaces. The extent of the regions covered by the map

does not have to be fixed, but is subject to the optimization.

1.1 Contribution

We present a formulation that yields a map Φ : A′ → B′ between

parts A′ and B′ of disk-topology surfaces A and B. The map is

a continuous bijection between A′ and B′ and minimizes a dis-

tortion measure E(Φ) → min. We say the map is injective when

considering it with respect to one entire surface (e.g. A′ → B).

Bijectivity between A′ and B′ is guaranteed by construction and

the formulation is symmetricÐthe result is not inherently biased

by the order of input surfaces, i.e. Φ and Φ
−1 are on equal footing.

The extent of A′ and B′ on the input surfaces does not have to be

specified in advance; it is determined by our method based on E(Φ).

We employ a second-order optimization method, tailored to the

specific properties of the setting. The full algorithm is summarized

in Appendix A.

1.2 Approach

Like several previous works, e.g. [Aigerman and Lipman 2015; Aiger-

man et al. 2014, 2015; Kanai et al. 1997; Lipman and Funkhouser

2009; Litke et al. 2005; Tierny et al. 2011], we make use of an interme-

diate non-discrete domain (the plane). Our map is composed of two

maps, Φ = д−1 ◦ f , via this intermediate domain. The non-discrete

nature of this domain allows handling the combinatorial aspect of

the problemÐwhich vertex maps into which face, which edge image

crosses which edgesÐimplicitly and thus efficiently.

Unlikemany previous works, however, we formulate the objective

end-to-end; aside from effects related to discretization and regular-

ization, the result is oblivious of the intermediate domain. In other

words, we directly optimize E(Φ), not E(f ) and E(д). This is impor-

tant because even minimal distortion of f and д does not imply

low distortion of Φ. In fact, the optimal mapΦ can be expressed via

maps f and д of arbitrarily high distortion. It all depends on their

interplay; distortion may mutually cancel or amplify (cf. Figure 1), as

also recently pointed out by [Ezuz et al. 2019b]. The end-to-end op-

timization approach naturally favors alignment of similarly curved

surface regions, as they can be mapped to each other with lower

intrinsic distortion. This effect does not at all occur when maps f

and д are constructed/optimized individually, as also described by

[Ezuz et al. 2019b] and [Schreiner et al. 2004].

Using a planar intermediate domain allows us to compute maps

between disk-topology shapes whose boundaries are not in direct

correspondence to each other (e.g. whenA and B are of different ex-

tent or have differently shaped boundary curves). While our method

does provide control over the boundary of the embedding (by fixing

boundary vertex correspondences), it demonstrates its full potential

when the boundary embedding emerges naturally as output of the

optimization (cf. Figure 2).

Our formulation is symmetric in two ways: (1) Due to the sym-

metry of the setup (i.e. no dependence on the order ofA and B), the

optimization is oblivious to whether the map is used to pull infor-

mation from A′ to B′ using Φ
−1 (e.g. texture transfer), push from

A′ to B′ using Φ (e.g. polyline transfer), or exchange information

both ways. (2) We are able to optimize a symmetric distortion mea-

sure (such as the symmetric Dirichlet energy) that equally penalizes

stretching and shrinking. This is of central importance to the quality

of the map, even if it is eventually used to transport information

one-way.

Few works have considered end-to-end optimization in the set-

ting of continuous injective maps before (cf. Section. 2.1). Methods

that operate in this setting typically use local distortion assessment

and optimization [Schreiner et al. 2004] or some form of domain

resampling [Litke et al. 2005]. Through our formulation we now

enable direct and efficient global updates using second-order tech-

niques, without any need for approximation or resampling. This

direct global formulation brings our setting close to the surface-

to-plane case, where enormous advances have been made in the

optimization of geometric energies during the past few years.

Remark: In this paper we do not address the problem of shape cor-

respondence or shape registration [Van Kaick et al. 2011], i.e. the

problem of estimating correspondences given merely two indepen-

dent surfaces as input. We assume either landmark constraints or a

(possibly high-distortion) map initialization are given, and focus on

the problem of accordingly optimizing a map between surfaces for

low distortion in a continuous and bijective manner.

2 RELATED WORK

Taking the term łmapž broadly, there is a vast number of works

on maps between surfaces. We thus distinguish between methods

that, like ours, consider continuous injective/bijective maps (home-

omorphisms) of surfaces, and methods that do not, i.e. methods that

consider other, looser forms of maps or correspondences:

2.1 Surface Homeomorphisms

A variety of ways, direct and indirect (via intermediate domains),

have been used to define and represent homeomorphisms between

discrete surfaces.

• Direct: [Schreiner et al. 2004] (map representation using

barycentric vertex coordinates and explicit edge intersec-

tions); can be tailored to asymmetric (fine mesh ś coarse

mesh) setting [Guskov et al. 2000; Khodakovsky et al. 2003;

Pietroni et al. 2010; Tarini et al. 2011].

• Indirect, via the plane: [Aigerman and Lipman 2015; Aiger-

man et al. 2014, 2015; Kanai et al. 1997; Kim et al. 2011; Lipman

and Funkhouser 2009; Litke et al. 2005; Tierny et al. 2011],

[Weber and Zorin 2014] (in this latter case used for planar

shapes).

• Indirect, via the hyperbolic plane: [Aigerman and Lipman

2016; Shi et al. 2017].
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• Indirect, via the sphere: [Aigerman et al. 2017; Alexa 2000;

Asirvatham et al. 2005; Baden et al. 2018].

• Indirect, via a base mesh: [Kraevoy and Sheffer 2004; Praun

et al. 2001].

End-to-End Distortion Minimization. To the best of our knowledge,

the only descriptions of symmetric, bijective, and end-to-end distor-

tion optimization of inter-surface maps are [Schreiner et al. 2004]

and [Litke et al. 2005]. Similar to us, [Schreiner et al. 2004] repre-

sent the map via a mutual tessellation and consider the symmetric

Dirichlet energy. Their method does not use a global intermediate

domain and optimization is performed by locally moving single

vertices along random search directions. Convergence to a desirable

minimum inherently requires using a multi-resolution approach

and is affected by numerical instabilities. The method by [Litke et al.

2005] employs a setup that is similar to ours (overlaying two para-

metrizations in the plane and considering an end-to-end distortion

measure). However, optimization is performed by re-sampling the

parameter domain on a regular grid and applying image matching

techniques, which assumes that the surfaces can be mapped to the

plane with relatively moderate distortion.

Other methods are tailored to the mapping between one fine and

one coarse (base) mesh, e.g. [Guskov et al. 2000; Khodakovsky et al.

2003] (distortion reduction via local 1-ring relaxation), [Pietroni et al.

2010; Tarini et al. 2011] (distortion optimization using alternating

semi-local optimization of a generic objective).

A specific scenario where minimal distortion of individual maps

f and д to an intermediate domain does imply minimal distortion of

the composed map д−1 ◦ f , is that of zero-distortion maps. This is,

however, possible only for either very restricted classes of shapes or

very specific distortion measures. For instance, [Li et al. 2008a] and

[Lipman and Funkhouser 2009] construct (quasi-)conformal maps

between surfaces.

2.2 Other Surface Maps

Constructing and optimizing maps that are continuous and bijective

is a hard problem in general. Depending on the use cases, one may

be able to relax requirements in this regard and work with other,

less strictly defined notions of maps. Consequently, a variety of

techniques have been proposed to construct maps of various kinds.

Vertex-Based Maps. Instead of defining the map for each point on

a surface, some representations focus on vertices and their images

only. Examples are vertex-to-vertex maps, e.g. [Rodolà et al. 2015],

or vertex-to-mesh maps, e.g. [Campen et al. 2012; Ezuz et al. 2019a,b;

Yang et al. 2018]. These define the map natively for vertices only.

Images of other points (on edges or in faces) would have to be

deduced if needed. Performing this deduction (by some form of local

but globally consistent parametrization) in an efficient, consistent,

and robust manner is a non-trivial problem. Note that the vertex-

to-mesh setting furthermore is inherently asymmetric; [Ezuz et al.

2019a,b] propose to optimize a forward and a backward map in

tandem to symmetrize the construction. We compare to [Ezuz et al.

2019b] in Figure 12.

Non-Sharp Maps. Various kinds of non-sharp, i.e. not point-to-point,

maps between surfaces have been described, for instance soft maps

[Solomon et al. 2012], functional maps [Ovsjanikov et al. 2012], and

optimal transport based maps [Mandad et al. 2017].

While techniques have been described to convert such distribu-

tion based maps to vertex-to-vertex maps [Ovsjanikov et al. 2012;

Rodolà et al. 2015], conversion to continuous, guaranteed injec-

tive maps is an unsolved challenge. Thus, these methods are not

immediately applicable to the injective mapping problem we are

targeting.

Non-Rigid Registration. Rather than exploiting the 2-manifold nature

of surfaces and defining the map accordingly, some methods employ

maps in the 3-dimensional ambient space. Essentially, one surface

is deformed so as to conform to the other. Examples are [Bouaziz

et al. 2013; Huang et al. 2008; Li et al. 2008b; Sharf et al. 2006; Tam

et al. 2013; Wu et al. 2007; Yang et al. 2018; Zhang et al. 2006].

Due to the use of a piecewise linear setting, the same issues as

with the above vertex-to-mesh maps complicate the deduction of a

homeomorphism. All methods performing non-rigid registration via

spatial deformation eventually rely on some projection operation.

Hence, they do not in general guarantee a continuous and injective

map, which is one of our main objectives. Our method, by contrast,

is fundamentally rooted in the 2-manifold nature of the problem

and directly represents a continuous map.

2.3 Applications

Maps between surfaces are a key ingredient in a variety of applica-

tion areas. We list prominent and recent examples in the following.

Shape Co-Processing. Surface maps are key to geometry processing

methods that operate jointly or compatibly on multiple surfaces,

whether collections of shapes or individual frames of an anima-

tion or deformation process. Examples are co-remeshing [Kraevoy

and Sheffer 2004; Yang et al. 2018], co-quadrangulation [Meng

and He 2016; Zhou et al. 2018], co-segmentation [Golovinskiy and

Funkhouser 2009], co-analysis [Munsell et al. 2008], and co-field-

synthesis [Azencot et al. 2017].

Information Transfer. The transfer of signals, attributes, or other

data between surfaces naturally relies on maps between these. Ex-

amples are detail transfer [Biermann et al. 2002], texture transfer

[Panozzo et al. 2013], deformation transfer [Sumner and Popović

2004], geometry transfer [Kraevoy and Sheffer 2005], mesh template

transfer [Tierny et al. 2011], parametrization transfer (between lev-

els of detail) [Bommes et al. 2013; Ebke et al. 2016; Sander et al.

2001].

Interpolation. For the purpose of shape interpolation or morphing,

maps establishing the surface correspondence are an important

component [Alexa 2002; Lee et al. 1999; Von-Tycowicz et al. 2015].

Embedding/Fitting. The embedding of some kind of graph structure,

template, or base complex in surfaces is another use case requir-

ing maps between manifolds. Instances are polycube mapping for

texturing [Tarini et al. 2004] or meshing [Livesu et al. 2013], mesh

layout embedding [Campen and Kobbelt 2014; Tarini et al. 2011],

and model fitting [Allen et al. 2003; Blanz and Vetter 1999].
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A Φ(A) on B MB

Fig. 3. Left: input meshA. Center: the inter-surface mapΦ embedsA on the

surface of mesh B. Right: the meta meshMB is obtained by intersecting

both mesh connectivities.

Note that continuity and injectivity or bijectivity of the map is either

essential or beneficial for most of these applications. For instance,

discontinuous or non-injective maps would lead to failures like

invalid template embeddings, broken layout topology, torn textures,

morphing artifacts, inconsistent or flipped parametrizations, and

issues due to general non-invertibility and asymmetry.

3 BACKGROUND

We begin by reviewing a key object of interestÐinter-surface mapsÐ

before we introduce our method in Sections 4 and 5.

3.1 Inter-Surface Maps

Consider a pair of 2-manifold surfaces A and B of the same genus.

An inter-surface map [Schreiner et al. 2004] is a continuous bijective

map Φ : A → B between the points on both surfaces.

We are specifically interested in the discrete case in which A

and B are triangle meshes. Applying Φ to the mesh A embeds its

connectivity on the surface of mesh B. Intuitively, each vertex of A

is mapped to a point on B and each edge is mapped to a curve on

the target surface. Intersecting the embedded connectivity Φ(A)

with the mesh connectivity B forms the meta mesh MB , embedded

on B (cf. Figure 3). Its vertices consist of both original vertex sets as

well as of an additional set of intersection vertices. Its edges are the

edges of both Φ(A) and B, split into segments at their intersections.

Each face ofMB corresponds to the overlap between a face of Φ(A)

and a face of B.

A symmetric constructionÐintersecting Φ
−1(B) with AÐyields

MA. Note that due to the bijectivity of Φ bothMA andMB share

the same connectivity and differ solely in their geometric embedding.

We therefore write M when only the connectivity is of concern.

Adding the assumption that Φ is piecewise affine with respect to

the faces ofM, leads to a number of beneficial properties:

• The edges of bothMA andMB are straight line segments.

• The faces ofMA and MB are polygonal cells.

• Each polygonal cell is planar, as it is a subset of the underlying

target triangle.

• Only 3-, 4-, 5- and 6-gons occur, because each polygon is the

2D intersection between two triangles in the tangent space

of the respective target triangle.

• For the same reason, each polygon is convex.

• Since the map is affine within each polygon, there is no need

to triangulateM.

• The map is fully specified by the vertex positions ofM onA

and B.

The piecewise affine map Φ can be evaluated for a point pA on A

using the following steps: (1) Look up the face of MA the point

lies in, (2) express pA in a local 2D coordinate frame of this face, (3)

apply the affine map, giving the mapped point Φ(pA) in the local

2D coordinate system of the corresponding face inMB :

Φ(pA) = J · pA + t, (1)

with a linear part J ∈ R2×2 and a translation t ∈ R2.

Maps via Planar Parametrizations. One way to locally obtain an

inter-surface map is to overlay two injective parametrizations in a

common planar domain. The map Φ is then defined as the compo-

sition of the first parametrization with the inverse of the second.

If both parametrizations are piecewise affine, it follows that Φ is

piecewise affine too and the above properties hold. The meta mesh

M can be obtained by intersecting the mesh connectivities of A

and B in R2. This setting is particularly convenient because the

edges of bothA and B are straight in the parameter domain, i.e. the

connectivity of M can be completely determined via line segment

intersection tests.

3.2 Distortion Measures

A large number of well-known distortion measures from planar pa-

rametrization can be directly applied in the setting of inter-surface

maps. For each affine piece of a map, orthonormal coordinate sys-

tems in both the source and target domain are set up. Given three

independent points in the source coordinate system a, b, c ∈ R2,

and their images a′, b′, c′ ∈ R2 in the target system, the linear part

J of the map (Equation 1) is:

J =
[

b′ − a′ c′ − a′
]

·
[

b − a c − a
]−1
. (2)

The singular values σmin and σmax of J describe the minimum and

maximum amount of local stretch and can be obtained via a closed-

form solution [Smith and Schaefer 2015]. Isometric distortion mea-

sures penalize the deviation of both values from 1. Popular measures

are the symmetric Dirichlet (SD) energy σ 2min+σ
2
max+σ

−2
min+σ

−2
max =

∥J∥2F+ ∥J
−1∥2F [Schreiner et al. 2004], the as-rigid-as-possible (ARAP)

energy (1−σmin)
2
+ (1−σmax)

2 [Liu et al. 2008] and a symmetrized

version (SARAP) (1 − 1
σmin

)2 + (1 − σmax)
2 [Poranne and Lipman

2016]. Due to the symmetry of the surface-to-surface setting, we are

especially interested in energies satisfying E(Φ) = E(Φ−1), such as

the symmetric Dirichlet energy or the SARAP energy. An additional

property of these two energies is that they are flip-preventing, i.e.

they are natural barriers with respect to local non-injectivities in

the map, diverging to ∞ as a piece of the map degenerates.

While conformal measures, e.g. the as-similar-as-possible (ASAP)

energy (σmax−σmin)
2, are equally supported, we focus on isometric

measures because they are more sensitive towards misaligned geo-

metric features [Schreiner et al. 2004]. In Figure 8 we demonstrate

all four of the above energies with our method.
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A′ B′

Φ

f д

Ω

Fig. 4. We compute the inter-surface map Φ as the composition of a para-

metrization f with the inverse of a parametrization д. The distortion of the

composed map Φ is agnostic to the intermediate domain Ω.

4 DISTORTION-MINIMIZING INTER-SURFACE MAPS

From here on, we consider as input two piecewise linear triangle

meshes A = (VA, EA, T A) and B = (VB, EB, T B) of disk topol-

ogy.

Overview. We construct a partial inter-surface map by overlaying

parametrizations of A and B in a common planar domain. We then

formulate an energy minimization problem in which the 2D images

of all vertices of bothA andB act as variables. Instead of considering

distortion energies of the individual parametrizations, we directly

optimize the end-to-end distortion of the map between the two input

surfaces, effectively cancelling out the influence of the intermediate

domain. Thus, the planar domain merely exists as an abstract space

in which we express our variables.

4.1 Formulation

Let f : A → R2 and д : B → R2 be two globally injective, piece-

wise affine maps, defined at the vertices of the respective meshes.

We refer to the intersection of their images Ω = f (A) ∩д(B) as the

overlap of A and B under f and д, respectively, and use f −1 and

д−1 to denote the inverse maps, restricted to Ω. The inter-surface

map Φ, defined as
Φ = д−1 ◦ f ,

is a bijection between A′
= f −1(Ω) ⊆ A and B′

= д−1(Ω) ⊆ B, as

illustrated in Figure 4.

Wemeasure the distortion ofΦ via the symmetric Dirichlet energy,

equally penalizing the L2 stretch in both directions of the map. Each

of the two stretch measures is integrated over the respective target

surface [Schreiner et al. 2004]:

EΦ =

∫

B′
∥JΦ∥

2
F dAB +

∫

A′
∥J−1

Φ
∥2F dAA, (3)

with JΦ = J−1д · Jf ∈ R2×2 being the Jacobian of the map Φ. Note

that the Dirichlet energy can easily be replaced by other measures

based on JΦ or its singular values (cf. Section 3.2).

As A and B are triangle meshes, we can split the integral over

an entire surface into integrals over its individual triangles:

EΦ =
∑

tB

∫

tB

∥JΦ∥
2
F dAB +

∑

tA

∫

tA

∥J−1
Φ
∥2F dAA,

A′ B′
Ω

Fig. 5. A triangle of meshA is mapped to the plane, where it is split accord-

ing to the edges of mesh B. The resulting pieces are lifted to the surface of

B. Variables in our system are the parameter images of vertices fromA and

B in Ω (magenta). Intersection vertices in Ω as well as images of vertices

on the respective target surface are dependent (turquoise).

where tA ∈ A′ and tB ∈ B′ are restricted to the parts of the triangles

affected by the map. Since f is piecewise affine, its Jacobian Jf is

piecewise constant in the triangulation of A. Analogously, Jд is

piecewise constant in B.

As both triangulations differ from each other, the composed Ja-

cobian JΦ = J−1д · Jf is neither piecewise constant in A nor in B,

but in their mutual tessellation: the meta mesh M, obtained by

intersectingA and B in R2 (cf. Section 3.1). Thus, the above triangle

integrals can be split into sums over the polygonal faces ofM:

EΦ =
∑

ρ ∈M

∥JΦ∥
2
F · A

ρ
B
+ ∥J−1

Φ
∥2F · A

ρ
A
, (4)

whereA
ρ
A

andA
ρ
B
are the areas of the intersection polygon ρ on the

respective surface. Note that Equation 4 is not a discrete approxima-

tion, but an exact realization of Equation 3 in the case of piecewise

linear triangle meshes A and B.

4.2 Choice of Optimization Variables

The intermediate flat domain allows a choice of optimization vari-

ables in one global 2D coordinate system. We choose the variable

vector x as the concatenation of all vertex positions of f (A) and

д(B) in R2:

x =
[

pA1 ; . . . pA
|VA |

; pB1 ; . . . p
B

|VB |

]

∈ Rn (5)

is the column vector containing all parameter locations pA and

pB ∈ R2 and the number of variables is n = 2|VA | + 2|VB |.

In this setting, both discrete degrees of freedom (the connectivity

of M) as well as continuous ones (the affine transformation per

polygon) of the inter-surface map Φ are parametrized by a single set

of continuous variables (see Figure 5). In the following, we detail how

the discrete energy EΦ(x) in Equation 4 depends on the variables x.

The Jacobian JΦ(x) = Jд(x)
−1 · Jf (x) in a meta mesh polygon ρ

depends on the individual Jacobians Jf (x) and Jд(x) of the corre-

sponding triangles of A and B. Both can be evaluated using Equa-

tion 2, where a, b, c are constant and a′, b′, c′ directly correspond to

variable vertex positions in R2. While Jf (x) and Jд(x) are linear in

x, the Jacobian of the composed map JΦ(x) = J−1д (x) · Jf (x) is not.

In contrast to the classical parametrization setting, the areaweights

A
ρ
A
(x) and A

ρ
B
(x) in Equation 4 also depend on x. This is because
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(1) the area of ρ in R2 changes with x and (2) the factor by which it

is stretched out on A and B depends on x as well:

A
ρ
A
(x) = det J−1

f
(x) · A

ρ
Ω
(x)

A
ρ
B
(x) = det J−1д (x) · A

ρ
Ω
(x).

While the Jacobians are again computed as above, the area of a

k-gon ρ with vertices pi in R
2 is

A
ρ
Ω
(x) =

1

2

k
∑

i=1

det [pi (x) pi+1(x)]

using pk+1 = p1. Here, each pi can either be a vertex of A, a vertex

of B or the straight line intersection between an edge of A and an

edge of B. In the first two cases, pi directly corresponds to entries

in x. If pi is an intersection vertex, its position is obtained from the

closed-form solution of the 2 × 2 linear system

(1 − λ)aA + λbA = (1 − µ)cB + µdB, (6)

in which aA(x), bA(x), cB(x), dB(x) ∈ R2 are vertex locations of A

and B and as such directly entries of x. The system always has a

unique solution since, by construction of M, intersection vertices

only exist where two edge segments intersect in a single point.

4.3 Continuity of EΦ

In a smooth setting, i.e. with A,B being smooth surfaces and f , д

smooth maps, the energy EΦ is also a smooth function. The only

discretization in our formulation is introduced by replacing A and

B with piecewise linear surfaces. As long as the connectivity of M

does not change, i.e. every mapped vertex stays in its current target

triangle, the discrete EΦ is still a smooth function in x.

The meta mesh does change its connectivity

when the image of a vertex Φ(vA) moves across

an edge eB , i.e switches from triangle tBi to tBj
(see inset). In particular, a set Pold of meta mesh

polygons, which are incident to both the vertex

Φ(vA) and the edge eB , disappears (red). After

the vertex has moved across the edge, a new set

Pnew appears (blue). As Pold overlaps with tBi
and Pnew overlaps with tBj , the pointwise distor-

tion (in terms of the per-element Jacobians JΦ)

in Pnew after the change can be quite different

from the one in Pold before the change.

However, in such a transition the involved area terms in Equa-

tion 4 vanish while the Jacobians remain bounded (since the Jaco-

bians of f and д do not depend on the meta mesh connectivity). As a

result, EΦ(x) is continuous across connectivity changes in the meta

mesh. While the energy function itself is continuous, its derivatives

are not, i.e. EΦ(x) is C
0 but not C1 continuous. Yet, under the as-

sumption that the meshes A and B are approximations to smooth

surfaces, we can expect EΦ to be well-behaved as a piecewise ap-

proximation to a smooth energy functional.

4.4 Injectivity of Φ

We require the parametrizations f and д to be injective maps. As

a consequence, both are invertible on their images in R2 and the

composed map Φ, restricted to their overlap Ω, is a well-defined

bijection. We maintain this property throughout the optimization

by addressing local and global injectivity separately.

Local Injectivity. A parametrization f is locally injective if it is ori-

entation preserving, i.e. det Jf > 0 for all triangles and the sum of

angles around each interior vertex is 2π [Weber and Zorin 2014].

The first property is preserved by flip-preventing energies (cf. Sec-

tion 3.2), which diverge to ∞ as a triangle degenerates. We make

use of this barrier characteristic by adding the symmetric Dirichlet

energies Ef (x) and Eд(x) of the individual parametrizations f and

д with a small weight to our optimization. In addition, we check if

f (x) orд(x) violate the angle sum criterion and return∞ in that case.

(While there is no continuous feasible path to such a configuration,

a discrete step might reach it in rare cases.)

Note that since f and д are guaranteed to be locally injective,

the composed map Φ is locally injective too, without making fur-

ther assumptions about the properties of EΦ. Therefore, non-flip-

preventing energies, such as ARAP, can also be used as the main

distortion measure.

Besides guaranteeing local injectivity, the individual barrier en-

ergies Ef (x) and Eд(x) also have an important regularizing effect:

As Φ is restricted by Ω, there can be variable vertices in x that are

outside of Ω and thus not affected by EΦ(x), resulting in an under-

determined system. However, it is important that such vertices stay

part of the system, as they should be able to freely move in and out

of the overlap during the optimization. In other words, we do not

wish to constrain the boundaries f −1(∂Ω) and д−1(∂Ω) of the map

(unless desired). The regularization ensures a consistent movement

of vertices in R2 \ Ω.

Global Injectivity. In addition, f is globally injective if it is bijective

on its boundary [Lipman 2014], i.e. the boundary of f (A) does not

intersect itself. If either f (A) or д(B) threatens to violate global

injectivity, the method of [Jiang et al. 2017] can be used, which

reduces this problem to the one of local injectivity: A scaffold mesh

is created by filling the empty space between the boundary of the

parametrization and a larger bounding box using a constrained De-

launay triangulation. Again, using the symmetric Dirichlet energy

with a low weight prevents the scaffold triangles from degenerating.

As a result, the parametrization boundary cannot overlap itself.

4.5 Position Constraints

Our method allows adding hard positional constraints in a straight-

forward manner. Intuitively, a vertex of one mesh can be constrained

to remain at its current position on the other surface as in using a

fixing pin.

Consider w.l.o.g. a vertex vA ofA being pinned to its location on

B. Although this fixes Φ(vA), the position f (vA) in R2 is still free

to move around, as long as the corresponding point of B performs

the same movement under д. We therefore constrain pA := f (vA)

via its barycentric coordinates in the triangle of д(B):

pA = αaB + βbB + γ cB,

withα+β+γ = 1, where aB, bB, cB ∈ R2 are the parameter locations

of the triangle vertices. As pA, aB, bB, cB ∈ R2 are variables of

the system and the barycentric coordinates 0 < α, β,γ < 1 are
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(a) (c)(b) (d)

R
2

R
2A on B A on B

Fig. 6. We show two different maps of a single quad A to a fine mesh B.

While all edges are straight in the parameter domain (a, c), their embedding

on the target surface can be curved (b, d). Here, the edges ofA (blue) are

bent by deforming the parametrization of B (gray).

constants, this results in a linear equality constraint. We satisfy

such constraints by variable elimination. Thus, in the following

we refer by x to the reduced variable vector and by EΦ(x) to the

objective function in which all occurrences of pinned vertices pA

have been replaced by the above linear term.

4.6 Degrees of Freedom

Again, suppose a setting with smooth surfaces A,B and smooth

maps f ,д into the plane. In this setting, the composed map Φ =

д−1 ◦ f is invariant to any bijective deformation ψ : R2 → R
2

applied to both parametrizations, as it cancels out in the composition

(ψ ◦д)−1 ◦ (ψ ◦ f ) = д−1 ◦ f . It would therefore be sufficient to only

optimize one of the two maps into the plane, keeping the other one

fixed. This does not limit the degrees of freedom, as for any desired

deformation of д(B) the inverse can be applied to f (A), resulting

in the same composition Φ.

In our discrete setting however, the space of deformations the

map Φ is invariant to is smaller. Since the positions of the meta mesh

vertices are defined by straight line intersections, any deformation

of R2 that does not preserve ratios, i.e. that is not affine, can change

Φ. The other way around, (non-degenerate) affine transformations

both preserve the relative location of intersection vertices and cancel

out in the per-element composition of both maps. Consequently, Φ

is invariant exactly to the non-singular affine deformations applied

to both parametrizations f (A) and д(B).

Thus, in contrast to the continuous setting, there is a large space of

mutual deformations in R2, which do represent degrees of freedom

for the map Φ. Hence, it is important to include the vertices of both

meshes in the optimization. Figure 6 shows how the embedding

of an edge of A on B can be altered by deforming the underlying

parametrization of B.

Removing Redundant Degrees of Freedom. The only remaining de-

grees of freedom leading to an underconstrained system in our

setting are the global affine transformations applied to both f (A)

and д(B) simultaneously. The distortion terms Ef and Eд of the in-

dividual parametrizations (Section 4.4) already regularize any global

stretching. However, they are invariant to rigid transformationsÐ

the only remaining class of transformations that needs to be fixed.

We eliminate the redundant translations by fixing the most central

vertex of д(B) to the origin of R2. Similarly, the rotation is removed

by fixing a boundary vertex to one of the coordinate axes. Both

constraints are realized via variable elimination.

5 OPTIMIZATION

In the above formulation, we wish to directly minimize the distor-

tion of the inter-surface map Φ, subject to injectivity constraints as

well as positional hard constraints. While the former are realized

via barrier terms (Section 4.4), the latter are simple variable elimi-

nations (Section 4.5), leaving us with the following unconstrained

minimization problem:

min
x

EΦ(x) + ωR

(

Ef (x) + Eд(x)
)

.

Here, EΦ(x) is the integrated distortion energy of the inter-surface

map (Equation 4) and Ef (x) + Eд(x) are the flip-preventing and

regularizing distortion energies of the individual parametrizations

(Section 4.4), weighted by a small positive factor ωR (10−8 in all

examples). Lastly, x ∈ Rn is the continuous variable vector (Equa-

tion 5). In the following, we refer to the above sum as our objective

function E(x).

We employ a second-order optimization algorithm which follows

the basic scheme of Newton’s method: In each iteration we consider

a second-order approximation of E around the current point x, given

in terms of the gradient g(x) ∈ Rn and Hessian matrix H(x) ∈

R
n×n . We compute the direction vector d(x) ∈ Rn , pointing to the

minimum of the quadratic approximation and take a step sd, with

s > 0, such that the new point x + sd has a lower energy.

In the following, we tailor the optimization method to the proper-

ties of our objective E(x). Specifically, E(x) is a non-convex func-

tion whose dependency on x is significantly more involved than in

the classical parametrization setting. In addition, it violates a pre-

condition of Newton’s method by only possessing C0 continuity.

We show that despite both properties, we can effectively minimize

E(x) with large step sizes. The resulting algorithm is summarized

again in Appendix A.

5.1 Non-Convexity

The discrete inter-surface distortion EΦ(x) includes three main oper-

ators: (1) distortion measure, (2) map composition and (3) edge-edge

intersection.

(1) Typical isometric distortion measures, e.g. the symmetric

Dirichlet, ARAP or SARAP, are generally non-convex [Golla

et al. 2018].

(2) The distortion measure itself is a function of the per-polygon

Jacobians JΦ of the composed map. While the individual per-

triangle Jacobians Jf and Jд are linear in the vertex parameter

locations, the entries of JΦ = J−1д ·Jf are non-convex functions,

due to the 2 × 2 matrix inverse.

(3) Furthermore, the area weights in EΦ(x) require computing in-

tersection vertices between variable line segments by solving

a 2 × 2 linear system (Equation 6). Its closed-form solution

has a non-convex dependency on the variables x.

As a result, we can expect EΦ to be non-convex, i.e. its Hessian to

have negative eigenvalues. One might fear that the non-convexity is

more severe than in the classical parametrization setting, rendering

the optimization less efficient. In our experiments however, we

observe negative eigenvalues of the Hessian of EΦ with similar or

even lower magnitude than in Ef and Eд .
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Nonetheless, Newton’s method requires a positive definite Hes-

sian matrix to produce a descent direction [Boyd and Vandenberghe

2004]. Replacing H with any positive-definite matrix H+ does result

in a descent direction, as gTH+g > 0. While computing the eigende-

composition of H and clamping the negative eigenvalues to a small

positive number gives the closest positive definite matrix toH in the

Frobenius norm, this method is impractical for large matrices [Chen

andWeber 2017]. Instead, we use the approach of [Teran et al. 2005],

who compute the Hessian matrix for each surface element, apply the

projection via eigendecomposition to each one, and obtain H+ as a

sum of positive-definite matrices. We clamp negative eigenvalues

of the per-element Hessians to ε = 10−3 in all our examples.

Assembly of the Hessian Matrix. In case of EΦ(x), this means com-

puting the per-element Hessian Hρ for each polygon ρ of the meta

mesh. Recall that ρ is the intersection of two triangles tA and tB

in the parameter domain. The integrated energy in this polygon

depends on x via the triangle Jacobians Jf and Jд , as well as through

its area Aρ (cf. Section 4.1). The Jacobians are determined by the

vertices in R2 of tA and tB respectively, i.e. by a total of 12 variables.

ρ

tA

tB

The intersection area Aρ in the parameter do-

main depends on the same set of variables, as

each vertex of ρ is either a vertex of tA, a vertex

of tB or an intersection between edges of tA and

tB . Thus, disregarding variable elimination, each

Hρ is a dense symmetric 12 × 12 matrix.

In case of a pin constraint, a vertex is replaced by a combination

of three other vertices, resulting in a slightly larger matrix. If a

vertex is constrained to a fixed 2D location, the matrix is smaller.

The additional energies Ef (x) and Eд(x) consider both meshes

independently and thus result in simpler 6× 6 Hessians per triangle.

After projecting all per-element matrices to positive-definite ma-

trices, we inflate each one to size n × n and compute their sum H+.

The full Hessianmatrix is symmetric and follows a global block struc-

ture in which two diagonal blocks encode dependencies within a

mesh and the off-diagonal block encodes dependencies between the

two meshes. The sparsity pattern in the off-diagonal block largely

depends on the tessellation of the input meshes A and B. In case of

e.g. two similarly uniform tessellations, the off-diagonal block is rel-

atively sparse, since each triangle intersects only a small number of

triangles in the other mesh. If howeverA is a coarse layout and B a

high-resolution surface, the off-diagonal block has few but compara-

bly dense rows, as one triangle ofA covers many triangles ofB. This

density is desirable, as it directly encodes dependencies between

a large number of vertices of B in the quadratic approximation,

allowing a more coordinated movement of those vertices

With the positive definite matrixH+ in place, it is now possible to

obtain a descent direction d by solving the linear system H+d = −g.

5.2 Meta Mesh Combinatorics and Line Search

Using a flat intermediate domain allows us to express the combi-

natorial degrees of freedom (which vertex maps to which triangle,

which edge of A intersects which edge of B) solely in terms of a

continuous variable vector. This comes at the cost of having to infer

the discrete degrees of freedom from the continuous ones.

Specifically, for each point xwe wish to evaluate, we have to com-

pute the meta meshM, by overlaying the connectivites of f (A) and

д(B) in the parameter domain and computing their mutual tessella-

tion. We decide to recomputeM at each x instead of sequentially

tracking its changes during optimization because we target large

step sizes, which would incur a long series of connectivity changes

to be performed explicitly per iteration. Further, we wish to employ

a backtracking line search that starts by testing large steps and

decreases the step size if necessary. Lastly, recomputing the meta

mesh at different x independently is trivially parallelizable.

Given a current point x inside the feasible region (corresponding

to injectivemaps f andд) and a descent direction d, we first compute

the maximum feasible step size smax following [Smith and Schaefer

2015]. This is the step size for which the first triangle of the parame-

trizations f (A) or д(B) degenerates. Starting from s = 0.99 · smax,

we successively decrease s by a factor of 0.8. In addition, we always

check s = 1 if 1 < smax, as it marks the minimum of our quadratic

approximation and indeed often yields the best improvement in

practice. We parallelize the backtracking line search in blocks of

8 step sizes. For each step size s in the current block, we compute

M(x+sd) and evaluate E(x+sd) in parallel. If one or more step sizes

fulfill the Armijo condition (cf. [Nocedal and Wright 2006]), we pick

the one yielding the largest improvement and stop the procedure. If

no step size in the current block fulfills the condition, we proceed

to the next block.

One implication of the varying meta mesh connectivity is that the

sparsity pattern of the Hessian matrixH changes between iterations.

Therefore, we cannot compute a symbolic factorization of H as it is

usually possible in the classical parametrization setting.

5.3 Handling C1 Discontinuities

As discussed in Section 4.3, EΦ(x) isC
0 but notC1 whenever a vertex

v moves from one underlying triangle into another. At such an event

both g and H can jump and, as a consequence, the search direction

d also changes abruptly. A problematic situation arises when the

search direction dv ∈ R2 of the vertex v repeatedly turns by close

to 180◦ and v oscillates around an underlying edge. In addition, it is

possible that the direction component dv of v is of large magnitude,

because a potentially strong increase in EΦ across the discontinuity

is not reflected in local information. In this case, the line search has

to globally reduce the step size s , allowing a single vertex to slow

down the optimization immensely.

A simple, yet effective way to mitigate the problem lies in employ-

ing a momentum-based approach. In particular, we apply temporal

smoothing directly to the discontinuous quantities g and H+, by

blending their current values with accumulated ones by a factor of

0.5 in each iteration. As the sparsity pattern of H+ changes between

iterations, we prevent the accumulated matrix from becoming too

dense by considering only a limited history (of size 6 in all our

examples).

While smoothing H+ preserves positive-definiteness, smoothing

g can lead to a non-descent direction d when solving H+d = −g. In

that case (which we observe only very rarely), we reset the gradient

and Hessian history and re-solve for d using just the most recent

data, thereby guaranteeing a descent direction.
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0 20 60 240A

Ef
Eд
EΦ

Fig. 7. We map between two different poses of a human model. Landmarks

on 6 fingers were used for initialization only. In the initial map, the head of

A is located on the chest ofB. Our algorithm successfully recovers from this

situation and converges to the desired minimum in 240 iterations. While the

end-to-end energy EΦ is minimized, the individual parametrization energies

Ef and Eд increase.

Intuitively, the smoothed g andH+ lead to a smoothed d in which

sudden changes of per-vertex directions have the chance to cancel

out. Most importantly, when a vertex jumps across an underlying

edge, the quadratic approximation of EΦ improves as information

from both sides of the C1 discontinuity is collected. In that sense,

the local approximation of EΦ, based on a smoothed g and H+, more

closely mimics that of a function which is in itself smooth. We

demonstrate the effect of this modification in Section 6.

5.4 Preconditioning

While the optimization algorithm described so far is able to effec-

tively minimize E(x), it can take many iterations to do so, especially

when vertices have to travel long distances on the target surface.

Since the overall energy is very sensitive to the distortion of single

triangles, fine-level adjustments can easily dominate the system.

This prohibits consistent large-scale movements of entire mesh re-

gions in few iterations. We therefore wish to bias the optimization

towards performing low-frequency updates (e.g. large scale align-

ment of similarly curved regions) first and deferring high-frequency

updates (e.g. small scale fine tuning of individual elements) to later

iterations.

We make use of a squared Laplacian preconditioner that comes

with an intuitive interpretation. Specifically, we modify the second-

order Taylor approximation of E around x,

Ê(x + d) = E(x) + g(x)Td +
1

2
dTH+(x)d,

by adding the additional term

1

2
ωLd

TLTMLd.

SD SD ARAP SARAP ASAP

Fig. 8. A single quad is mapped to a finely tessellated surface (left). The

embedded edges are polygonal lines whose resolution is determined by the

underlying mesh. We pinch two vertices of the quad and show how different

energies compensate the constraint.

Here, L is the combined Laplace-Beltrami operator of both meshes,

i.e. then×nmatrix having the cotangent-weighted Laplace-Beltrami

operators ofA and B as diagonal blocks. Similarly,M is the lumped

mass matrix of both meshes, i.e. the diagonal matrix containing the

Voronoi areas of all vertices inA and B. The modification is realized

by replacing the Hessian matrix with H+(x) + ωLL
TML, which is

again positive definite.

We can interpret the update step d as a vector field defined at

the vertices of f (A) and д(B) in R2. Then Ld is the vector field

describing for each vertex the deviation in d from its neighborhood.

Thus, the inner product ⟨Ld, Ld⟩AB = dTLTMLd is a quadratic

measure for the smoothness of d. By adding this measure to Ê, we

penalize the deviation of d from being harmonic.

Note that we do not modify the objective E, but merely its qua-

dratic approximation Ê, resulting in a different optimization path.

The strength of the modification is determined by the weight

ωL, which we control by a simple adaptive strategy, mimicking a

coarse-to-fine behavior. Starting from a high initial value (109 in all

examples), we try the current, a smaller and a larger value in each

iteration. From 1
α ωL, ωL and αωL (α = 1.25 in most examples), we

choose the value yielding the best improvement in E and update

ωL accordingly. In our experiments, this preconditioner improves

the convergence rate of our optimization significantly, as shown in

Section 6.

6 RESULTS

Implementation. We implemented the algorithm using OpenMesh

[Botsch et al. 2002] and Eigen3 [Guennebaud et al. 2010]. To robustly

obtain the meta mesh, we compute the 2D mesh overlay ofA and B

using exact predicates [Shewchuk 1996]. Per-element gradients and

Hessians of E(x) are computed using automatic differentiation with

ADOL-C [Walther and Griewank 2012]. Further, we use the SLIM

implementation in libIGL [Jacobson et al. 2018] for initialization.

Initialization. In our experiments, we start from bijective Tutte em-

beddings of A and B, and initially minimize Ef and Eд separately

using SLIM [Rabinovich et al. 2017]. We use penalty terms [Lévy

2001] to align landmark vertices of A to the corresponding vertices

of B in R2. From thereon, our method maintains point-to-point

constraints exactly as they are provided by the initialization.

Other forms of initialization, e.g. previous injective mapping

methods via the plane, which do not optimize distortion end-to-end

(Section 2.1), could be used as well. If required by the application,

exact satisfaction of landmark constraints can be achieved by using

[Kraevoy et al. 2003] for initialization. This method adds Steiner ver-

tices if necessary to guarantee a feasible parametrization of meshA.
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A B Init PN SPN Ours

Fig. 9. Left: input meshesA and B of similar geometry. Center: embeddings ofA on B are optimized, starting from challenging initial solutions. For each

variant of the algorithm, we show the resulting maps after 550 iterations (if not converged earlier). Our formulation using a projected Newton method (PN), as

described up to Section 5.2, initially removes some fine-level distortion, but then takes prohibitively small steps on the C1 discontinuous objective function.

Smoothing the quadratic approximation of EΦ (Section 5.3, SPN) performs the expected movement in one example (hand) but slows down prematurely in

the other (foot). Our full method, including the Laplacian preconditioner (Section 5.4), reaches the desired minimum in less than 100 (hand) and 150 (foot)

iterations.

A B on A B on A

B A on B A onB

Init

Init

Result

Result

Fig. 10. We map between meshes of different triangulation quality. While

A is uniformly tessellated, we reduced the triangulation quality of B by a

series of edge flips (43% of triangles have an inner angle of less than 10◦).

Our method effectively optimizes the initially distorted map and converges

within 400 iterations. A logarithmic heat map shows the symmetric Dirichlet

energy per polygon before and after the optimization.

Comparison to Surface-to-PlaneOptimization. In Figure 1, we demon-

strate that optimizing two surface-to-plane maps can be quite differ-

ent from optimizing their composition. Specifically, we optimize Ef
and Eд under landmark constraints, as described in Section 4.5, and

compare to our results. Figure 7 plots the energies EΦ, Ef and Eд
for a different example and shows that in fact Ef and Eд increase

when optimizing for low distortion in the end-to-end map.

Distortion Measures. While we use the symmetric Dirichlet energy

in our examples unless stated otherwise, our formulation supports

a variety of other distortion measures (cf. Section 3.2). In Figure 8,

we demonstrate the behavior of different measures in the presence

of external constraints. In contrast to the classical parametrization

setting, embedded edges can bend to the extent permitted by the

resolution of the target domain.

Fig. 11. We compute maps between two hands, starting from increasingly

challenging initial maps (top row). Our optimization (bottom row) recovers

the expected map as long as the initialization is reasonably close.

Dependence on Initialization. Solving a non-convex optimization

problem with a potentially large number of local minima naturally

bears the risk of converging to an undesired minimum. Such minima

arise in particular when similarly curved regions align locallyÐ

producing low distortionÐwhile the geometry is still misaligned

on a more global scale. In our experiments, we observe that a small

number of landmark constraints is enough to guide our algorithm to

the correct minimum (see Figure 13). Depending on the application,

we maintain these constraints during the optimization (Figure 1,

Figure 12) or use them for initialization only (Figure 7, Figure 11,

Figure 15).

Meta Mesh Complexity. We observed that in all our examples the

number of polygons inM is bounded by a factor of 10 compared

to the sum of triangles in A and B; even if the input meshes show

considerable differences in tessellation quality. A similar observa-

tion has already been reported by [Praun et al. 2001]. In Figure 10

we successfully optimize a map between a uniform and a highly

anisotropic triangulation.
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Fig. 12. Comparison to related methods on differently challenging inputs. While we run HOT and RHM on closed surfaces, we add a hole to each input mesh

for WA and our method. Landmark constraints are shown in red and kept fixed during the optimization. Logarithmic heat maps show the symmetric Dirichlet

energy per polygon. Due to the low number of landmarks, WA creates a consistent map only in the vicinity of constraint vertices or in flat regions. HOT always

produces a continuous bijective map, but has no incentive to align similarly curved regions away from landmarks (see arms of the octopus and tail of the dino).

RHM does optimize for map distortion, but suffers from projection artifacts and thus does not produce injective maps (note how the color singularity on the

octopus in the second row is mapped twice). While our method only operates on disk-topology meshes, it always produces an injective map, distributes the

inevitable distortion evenly and aligns features far away from landmarks (see e.g. the arms of the octopus and the correctly mapped top of the camel’s hump).
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Fig. 13. Maps between source shapes (a) and target shapes (b-e) with successively more landmark constraints (red). We show the converged results of our

optimization, with numbers next to models indicating the amount of landmarks used. While insufficient constraints can lead to undesired local optima (b, c), a

low number of landmarks is usually enough find the intended distortion minimum (d). Additional landmarks can be added to fine-tune the map in presence of

geometric differences between the shapes (e).

Meta Mesh Geometry. As polygons of the meta mesh are intersec-

tions between pairs of input triangles, their shape does become

arbitrarily bad and often near-degenerate, even for high-quality

input meshes. Still, we can determine the meta mesh connectivity

robustly using exact predicates. Further, note that our objective

function depends on the shape of meta mesh polygons only in terms

of their area (cf. Section 4.2). No map Jacobians are computed using

the geometry of meta mesh polygons. As a result, numerical inaccu-

racies due to near-degenerate polygons only have a minuscule effect

on the overall objective function; we never encountered negative

effects in our experiments.

6.1 Modified Newton Method

Our optimization algorithm modifies Newton’s method. Projected

Newton (PN) makes use of an element-wise positive definite Hes-

sian projection (Section 5.1) and allows optimizing a non-convex

function. We refer to the method that, in addition, uses a smoothed

quadratic approximation (Section 5.3) as Smoothed Projected New-

ton (SPN). Finally, adding the Laplacian preconditioner (Section 5.4)

yields our method. We compare the behavior of these variants in

Figure 9.

Per-Iteration Cost. The algorithm requires fewer than 400 iterations

in all our examples. On our largest mesh pair (PigśCamel, Figure 12,

26,000 and 19,000 input triangles), the algorithm converged in 169

iterations, with a per-iteration run time of 38 seconds. This is mainly

due to our current implementation using algorithmic differentiation,

which enables flexible prototyping. With 30 seconds per iteration,

this step dominates the process and we expect significant speedups

using other forms of differentiation. On the same example, solving

the linear system takes 5 seconds and 3 seconds are spent in the line

search. This contains computing the multiple instances of the meta

mesh in parallel, each of which takes about 0.3 seconds using exact

predicates.

6.2 Comparison to Other Mapping Approaches

We compare our method to Weighted Averages on Surfaces (WA)

[Panozzo et al. 2013], Hyperbolic Orbifold Tutte Embeddings (HOT)

[Aigerman and Lipman 2015] and Reversible Harmonic Maps (RHM)

[Ezuz et al. 2019b], for which implementations provided by the au-

thors are available. While HOT and RHM operate on closed surfaces,

our algorithm requires disk topology meshes and WA can handle

both settings. To enable a fair comparison in terms of map quality,

we cut a small hole in each input mesh for our method and WA. We

then visualize the resulting maps and their distortion in areas away

from the boundary (see Figure 12).

WA expresses a point as a weighted average of the surrounding

landmark vertices and synthesizes a corresponding point on the

other surface. While the approach is flexible in its application, it is

not well suited for scenarios with complex shapes with few land-

marks, as the resulting maps exhibit high distortion and a large

number of discontinuities.

HOT maps both meshes to a hyperbolic orbifold, while introduc-

ing cuts and cone singularities at the landmark vertices. Both maps

are optimized separately and the composed map is guaranteed to be

a continuous bijection. In contrast to our method (which composes

high-distortion maps f and д into the plane to a low-distortion

map Φ), HOT chooses an intermediate domain that allows for low-

distortion maps f and д in the first place. Due to the absence of an

end-to-end distortion measure, however, the method is in general

oblivious to misalignment of similarly curved regions.

RHMmaps vertices of both meshes to the embedding space of the

respective target mesh. It optimizes for both vertex positions and

their projections to the target surface. Bijectivity of the resulting

map is favored via a quadratic term but cannot be enforced. In fact,

the resulting maps show various discontinuities.

Our method produces a bijection between the corresponding

parts of both meshes by construction. As a result of the end-to-end

distortion optimization, matching regions align automatically, even

far away from landmarks.

6.3 Application: Template Embedding

The method allows embedding different types of template meshes

in a target surface. Depending on the scenario, the template may be

a finely tessellated mesh (e.g. for compatible remeshing) or a coarse

(quadrilateral, polygonal) complex or layout (e.g. for morphable

models, polycube mapping). In Figure 14 we embed a coarse artist-

generated quad layout on a finely tessellated surface. In contrast to

many other methods, our embedding does not rely on a projection

operator, i.e. does not risk invalidating layout topology. Further,

given a rough initial alignment, the method does not inherently

require any type of descriptor or correspondence information but

can operate purely based on the distortion of the embedding.
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Fig. 14. We use our algorithm to embed a quad template (left) on a tar-

get surface. From a rough initial alignment (center), our method finds a

minimum-distortion embedding (right). We obtain a continuous and in-

jective embedding of the entire template, including its edges and faces.

(Note that, as the template mesh has quadrilateral elements, it is virtually

triangulated for the optimization process.)

6.4 Application: Texture Transfer

Our maps can transfer various attribute fields (continuous or not)

between surfaces. In Figures 13 and 15, we demonstrate texture

transfer between differently shaped meshes. While the maps in Fig-

ure 15 require significant stretch, the inevitable distortion is evenly

distributed over the stretched areas and landmark correspondences

are only needed for initialization. Since our maps are continuous,

they will never tear a texture or introduce additional seams. As the

maps are injective, textures cannot fold over.

Especially due to those two properties, our method is also well

suited to transfer surface parametrizations, e.g. integer-grid-maps

in the context of quadrangulation, between meshes.

7 LIMITATIONS & FUTURE WORK

The most obvious limitation of our current formulation is the focus

on disk-topology surfaces. It will naturally be interesting to investi-

gate options for generalization to closed and higher-genus surfaces.

For instance, the use of locally injective global parametrizations

with cuts and cones for the intermediate maps could be an alterna-

tive. A challenge in the context of end-to-end optimization will be

transitions across cuts that need to be taken into account. In contrast

to switching to non-planar intermediate domains (like the sphere,

the hyperbolic plane, etc., cf. Sec. 2.1) this would allow preserving

the Euclidean, piecewise linear setting, typically enabling simpler

optimization setups.

A main feature of our method is its free-

boundary setting. If one, however, wishes to con-

strain the coverage region, boundary vertices can

be constrained to fixed locations (e.g. as in Figure 9).

The inset shows another example of free boundary

(top, the starfish assumes its natural shape dur-

ing optimization) versus fixed boundary (bottom).

Note that this, however, not only predetermines

the region to be covered but also the map along its

boundary curve. Depending on the use case, it may be interesting to

let this boundary curve parametrization be part of the optimization

(i.e. enable sliding of boundary vertices along the prescribed curve).

Of course, we are dealing with a non-linear optimization problem.

The result is thus a local optimum. Combining our approach with

some form of multi-scale technique in order to achieve better optima

would be an interesting orthogonal endeavor. A related direction is

that of integration of multi-resolution /multi-grid schemes for the

purpose of speed-up.

In the context of surface-to-plane mapping, a number of tech-

niques were recently introduced that go beyond classical Newton-

style optimization. Using domain-specific or measure-specific modi-

fications, significant improvements in terms of convergence behav-

ior can be achieved [Claici et al. 2017; Kovalsky et al. 2016; Liu et al.

2018; Rabinovich et al. 2017; Shtengel et al. 2017]. As these are not

trivially applicable in our setting (with elementary objective terms

formulated based on the polygonal meta mesh), investigating the

potential of the underlying ideas in the inter-surface context is a

highly interesting challenge for future work.

A bijective map between surfaces expresses a one-to-one corre-

spondence between them. Natural questions are whether and how

inter-surface map optimization can be used in the context of the

shape correspondence / registration problem. Isometry-related ob-

jectives, as used here, incentivize the intrinsic alignment in terms of

Gaussian curvature distribution only. To obtain semantically mean-

ingful results, further measures (e.g. based on extrinsic information

and higher-level descriptors) would have to be taken into account.

Investigating the potential of such augmentations is another inter-

esting avenue.
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A PSEUDOCODE

We supply a comprehensive summary of our method from an im-

plementation perspective in Algorithm 1.

In presence of position constraints (Section 4.5), vertex positions

in Line 6 are substituted with the respective linear combination. In

that case, the dimensions of the per-element gradients g
ρ
Φ
, gt

A

f
, gt

B

д

and Hessians H
ρ
Φ
,HtA

f
,HtB

д can differ. Further, note that g(i) and

H(i) refer to the global gradient and Hessian in iteration i , which

are implicitly omitted in sums if i < 0.

ALGORITHM 1: Inter-Surface Map Optimization

Input: x(0) (2D vertex coordinates ofA and B in the plane)

1 Compute the combined Laplacian L ∈ Rn×n and

mass matrix M ∈ Rn×n ofA and B (Sec. 5.4).

2 for iteration i = 0 . . . imax do

3 Compute meta mesh polygons M(x(i )).

4 foreach polygon ρ = tA ∩ tB inM(x(i )) do

5 Compute E
ρ

Φ
, Ef

tA , Eд
tB per element (Eq. 4 & Sec. 4.4).

6 Compute (using auto-differentiation) the gradients and

Hessians w.r.t. the 6 vertices of tA and tB , namely:

g
ρ

Φ
∈ R12 and gt

A

f
, gt

B

д ∈ R6

H
ρ

Φ
∈ R12×12 and Ht

A

f
, Ht

B

д ∈ R6×6.

7 Project H
ρ

Φ
, Ht

A

f
and Ht

B

д to s.p.d. matrices via eigen

decomposition, i.e. H•
•+ := VD+V

T (Sec. 5.1).

8 Assemble the global gradient g(i ) ∈ Rn and sparse Hessian

matrix H(i ) ∈ Rn×n (Sec. 5.1).

9 g :=
∑6
j=1 0.5

j · g(i−j+1) and H :=
∑6
j=1 0.5

j · H(i−j+1) (Sec 5.3)

10 foreach ℓ ∈ {−1, 0, 1} do

11 ωℓ := α ℓ · ω (i−1) (multiple choice, Sec. 5.4)

12 Solve (H + ωℓL
TML)d = −g (Sec. 5.4).

13 if dTg(i ) > 0 then

14 Discard all g(<i ), H(<i ) and goto line 9 (reset history).

15 Compute max. step size smax [Smith and Schaefer 2015].

16 s := 0.99 · smax

17 for k = 0 . . . do

18 xk ,ℓ := x(i ) + sd (line search)

19 Compute meta mesh polygons M(xk ,ℓ ).

20 Evaluate E(xk ,ℓ ).

21 Break if E(xk ,ℓ ) ≤ E(x(i )) + 10−4 · sdT g (Armijo rule).

22 s := 0.8 · s

23 k∗, ℓ∗ := argmink ,ℓ E(xk ,ℓ )

24 ω (i ) := ωℓ∗

25 x(i+1) := xk∗ ,ℓ∗

ACM Trans. Graph., Vol. 38, No. 6, Article 1. Publication date: November 2019.


	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Approach

	2 Related Work
	2.1 Surface Homeomorphisms
	2.2 Other Surface Maps
	2.3 Applications

	3 Background
	3.1 Inter-Surface Maps
	3.2 Distortion Measures

	4 Distortion-Minimizing Inter-Surface Maps
	4.1 Formulation
	4.2 Choice of Optimization Variables
	4.3 Continuity of [def:EPhi-discrete]E
	4.4 Injectivity of [def:Phi]
	4.5 Position Constraints
	4.6 Degrees of Freedom

	5 Optimization
	5.1 Non-Convexity
	5.2 Meta Mesh Combinatorics and Line Search
	5.3 Handling C1 Discontinuities
	5.4  Preconditioning

	6 Results
	6.1 Modified Newton Method
	6.2 Comparison to Other Mapping Approaches
	6.3 Application: Template Embedding
	6.4 Application: Texture Transfer

	7 Limitations & Future Work
	Acknowledgments
	References
	A Pseudocode

