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Figure 1: We show decoding results (blue) for an input shape (red) from the test set. Our convolutional autoencoder with Adaptive Instance

Normalization was trained to output 2500 points for inputs with 2500 points. We also visualize outputs from our decoder with a much higher

(15000) or lower (500) number of points than the number used during training. Note that with 15000 points we are able to robustly and

densely sample the underlying geometry of the input point cloud. Conversely, with 500 points our method is still able to capture the overall

shape of the original input.

Abstract

Automatic synthesis of high quality 3D shapes is an ongoing and challenging area of research. While several data-driven

methods have been proposed that make use of neural networks to generate 3D shapes, none of them reach the level of quality

that deep learning synthesis approaches for images provide. In this work we present a method for a convolutional point cloud

decoder/generator that makes use of recent advances in the domain of image synthesis. Namely, we use Adaptive Instance

Normalization and offer an intuition on why it can improve training. Furthermore, we propose extensions to the minimization of

the commonly used Chamfer distance for auto-encoding point clouds. In addition, we show that careful sampling is important

both for the input geometry and in our point cloud generation process to improve results. The results are evaluated in an auto-

encoding setup to offer both qualitative and quantitative analysis. The proposed decoder is validated by an extensive ablation

study and is able to outperform current state of the art results in a number of experiments. We show the applicability of our

method in the fields of point cloud upsampling, single view reconstruction, and shape synthesis.

CCS Concepts

• Computing methodologies → Shape analysis; Point-based models;

1. Introduction

The question of how to represent 3D geometry as input for neural
networks is still an ongoing field of research. Most recent papers
(e.g. [QSMG17,QYSG17,AML18,FELWM18,LBS∗18]) focus on

† Equal Contribution

how to encode the input in a manner such that its latent represen-
tation can then be used for tasks such as classification or segmen-
tation. However, a smaller amount of work has been done on how
high-fidelity 3D shapes can be generated by a decoder/generator
network. We investigate the problem of generating 3D shapes in an
auto-encoding setup. This allows us to evaluate results both qualita-
tively and quantitatively. While a number of previous works focus
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on the encoder, we mainly target the decoder/generator in this pa-
per.

Synthesis of 3D shapes is a time consuming task (especially
for non-expert users), which is why a number of data-driven ap-
proaches have been proposed to tackle this problem. Methods range
from combining parts of a shape collection to create novel config-
urations over deformation based approaches to the full synthesis
of voxelized, meshed or point sampled 3D shapes. While impres-
sive results have been presented, generated 3D shapes have not yet
reached a quality that is comparable to the state of the art in image
generation, such as recently presented by Karras et al. [KLA19].

We are interested in the complete synthesis of 3D shapes. In par-
ticular we investigate the generation of 3D point clouds since vox-
elized representation incur a heavy memory cost. At the same time
we want to benefit from recent advances in generating high-fidelity
images. Thus, in this work we propose a convolutional decoder for
point clouds. As shown by Groueix et al. [GFK∗18], it is difficult
to achieve high-quality auto-encoding results by training a naïve
point cloud decoder (i.e. a simple multi-layer perceptron). In order
to tackle this problem we propose several measures that allow for a
better conditioning of the optimization problem.

Our contributions can be summarized as follows.

1. We propose a convolutional decoder for point clouds that is able
to outperform current state of the art results on autoencoding
tasks.

2. Our autoencoder is able to handle a varying number of points
both for its input and output. This property makes it straight-
forward to apply our architecture to the task of point cloud up-
sampling.

3. To the best of our knowledge we are the first to apply Adaptive
Instance Normalization as used in current image synthesis re-
search [KLA19] to the area of point cloud generation. We give
an intuition on why this technique is beneficial to training.

4. We propose several additional losses to the commonly used
Chamfer distance that consider both voxel-based and point
cloud differences.

Code and our sampling of the ShapeNet Core dataset (v2)
[CFG∗15] can be found at the project page †.

2. Related Work

Most work on content synthesis with neural networks has been
done on images. The natural extension to 3D data is that of a voxel
grid. This allows a straightforward transfer of many image based
methods (e.g. by replacing 2D with 3D convolutions). Examples
are methods that deal with tasks such as single image shape re-
construction [CXG∗16], shape completion [HLH∗17], and shape
generation [WZX∗16,LXC∗17]. Another option is to represent ge-
ometry as planar patches inserted into an Octree [WSLT18]. How-
ever, as we are interested in point cloud methods we will restrict
our discussion of related work to this domain.

† graphics.rwth-aachen.de/publication/03303

Point-Based Encoders Voxel-based approaches have its draw-
backs when it comes to memory consumption, as the required
memory scales cubically with the resolution of the grid. To deal
with these problems several architectures have emerged, that give
up the regular grid structure and instead work directly on unordered
point clouds. PointNet [QSMG17] is one of the first among those
approaches and does not take any structure or neighbourhood into
account. The internal shape representation here is created by aggre-
gating point descriptors. As the relation between nearby points is
often important to characterize shape, this work has been extended
in PointNet++ [QYSG17] where points are hierarchically grouped
based on their neighbourhood and PointNet is applied to those local
point clouds. On the other hand, dynamic graph CNNs [WSL∗19]
encode the information of a local neighborhood via graph con-
volutions. PCNNs [AML18] generalize convolutions over points
via the extension of the convolution operation to continuous volu-
metric functions. In this manner they benefit from translational in-
variance and parameter sharing of convolutions, without the draw-
back of the memory size of high resolution voxel grids. Rethage et
al. [RWS∗18] propose to combine the advantages of point clouds
and grid structures by extracting features from points in the local
neighbourhood of each grid cell using a network similar to Point-
Net. On the resulting representation, 3D convolutions can be ap-
plied. As a single grid cell encodes details of the point cloud and
not just a binary occupancy value, a low resolution grid is sufficient.
This approach is most similar to the encoder used in our framework.

Point Set Generation Most current approaches [FSG17, NW17,
ADMG18, GWM18, LCHL18] for the generation of point clouds
employ fully connected layers, sometimes in combination with up-
sampling and convolution layers, to generate a fixed number of
points. [LCHL18] employ both a convolution branch to recover
the coarse shape and a fully connected branch for the details of
the object. Unlike our approach they propose 2D convolutions that
result in images with 3 channels, which are interpreted as point
coordinates. A different approach is taken by [SUHR17] where
instead of learning to output points directly, Sinha et al. propose
to learn a mapping from 2D to 3D. By sampling the 2D domain
one can obtain a point cloud. This allows the number of generated
points to be flexible. Groueix et al. [GFK∗18] propose a method
that builds on this approach. However, instead of a single map-
ping a whole atlas of those is learned by training several networks
in the style of [SUHR17] that do not share parameters. The loss
then ensures that each network learns a different mapping and is
responsible for a different part of the shape. We employ a sim-
ilar point generation technique in the sense that we also learn a
mapping from 2D to 3D, instead of using fully connected layers to
directly generate a fixed number of points. However, we arrive at
these maps in a different manner by generating them per grid cell
with our proposed convolutional decoder. A different class of net-
works recently emerged to represent 3D shapes as an implicit func-
tion [PFS∗19,CZ19,MON∗19]. This function can then be sampled
to reconstruct explicit geometry.

3. Convolutional Auto-Encoder for Point Clouds

We want to represent our geometry as point clouds since they can
approximate 3D shapes at a higher resolution without incurring the
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Figure 2: Overview over our convolutional decoder: Given is some latent vector z produced by an encoder. Passing it through a multi-

layer perceptron (MLP) produces w, which consists of a series of scaling and translation parameters [(s1, t1) , . . . ,(sl , tl)]. P is a learned

constant parameter block (in our case it has dimension 512×2×2×2) used to kickstart the convolutional decoding process. The B blocks

each contain an upsampling layer (trilinear by a factor of 2), followed by two convolution and AdaIN layers. The scaling and translation

parameters from w are used for each of the l AdaIN layers in the convolutional decoder. The result is a voxel grid where each cell c has a

feature vector fc. Using fc as input to a MLP we compute the probabilty pc that c contains any point and the estimated local point cloud

density δc, which are then used together with the required output size n to determine the number of points m that should be generated for c.

We then sample a uniform 2-dimensional distribution (grey plane) m times to produce ε1, . . . ,εm. Each εi is concatenated with fc as input to

a MLP which produces a 3-dimensional point. Evaluating the MLP m times produces a point cloud Yc for grid cell c.

memory costs that voxel grids entail. However, we also want to ben-
efit from the advantages of grid structures, enabling the use of con-
volutional layers and Adaptive Instance Normalization (AdaIN). To
this purpose we propose our convolutional decoder (Section 3.1),
which starts out with a low resolution grid and successively in-
creases the resolution up to the final desired grid size. We then gen-
erate points for each grid cell. Conversely, for our encoder (Section
3.2) we embed the input point cloud into a voxel grid. A network
then encodes and stores local parts of the point cloud for each cor-
responding (closest) grid cell. This voxel grid can then be encoded
with a 3D convolutional network.

In traditional convolutional autoencoders the output of the en-
coder is passed to the decoder, who repeatedly upsamples it in order
to produce the reconstruction of the input. This means that even the
encoding of fine details of the shape has to pass through the entire
decoder, since high- and low-level features are not distinguished.
In contrast, our proposed decoder inserts the encoded shape infor-
mation at various stages of the upsampling process. We will ex-
plain our decoder in detail first, followed by the encoder. In order to
achieve high-quality results we introduce several additional losses.

3.1. Decoder

Inspired by Karras et al. [KLA19] we propose a convolutional
decoder for point clouds based on Adaptive Instance Normal-
ization (AdaIN) as used in a number of style-transfer methods
[DSK17, GLK∗17, HB17, DPS∗18]. Given is an encoder that maps
an input point cloud X ∈ R

n×3 to a latent vector z ∈ R
1024. A naïve

decoder would map z to Y ∈ R
m×3 via a multi-layer perceptron

(MLP). One problem with this approach is that a series of fully
connected layers means adding a large number of parameters to the
network.

Another problem is that in order to reconstruct fine detail of X in
Y every layer of the network is required to preserve the entire shape

information. A small change in one of the parameters during back-
propagation can have wide-reaching global effects on Y . While,
one can reduce the number of parameters used by introducing a
convolutional decoder, the problem of the interplay of different pa-
rameters during back-propagation remains. Karras et al. [KLA19]
show that using AdaIN with a convolutional decoder/generator can
produce impressive results for images. An AdaIN layer works by
first normalizing its input features and then applying an affine trans-
formation per instance. The transformation parameters are an ad-
ditional input (e.g. computed from z). In practise, this means that
our decoder is constructed via a series of upsampling, convolution,
instance normalization [UVL16] and affine feature transformation
layers followed by a nonlinearity (see Figure 2). In contrast to tradi-
tional convolutional networks, the entire shape specific information
is introduced through the affine transformations and is not passed
through all layers of the decoder. Instead the upsampling process is
applied to a learnable parameter block P. For more details on the
architecture see Appendix A.

Thus a given z (by some encoder) is mapped to a vector w that
contains the scaling and translation coefficients for each affine fea-
ture transformation layer. For every layer i with feature dimension
d where AdaIN is applied we select a slice wi ∈ R

2d . We interpret
wi = [si; ti] such that si, ti ∈R

d . As we regard only a single layer, we

omit i in the following. The intermediate features x = x(1) . . . x(d)

are first normalized and then scaled and translated:

x̂
(k) =

x(k)−µ(x(k))
√

σ2(x(k))+ ε
· s(k)+ t

(k)
, (1)

where µ(x(k)) and σ2(x(k)) are the mean and variance of x(k) over
one instance. Since all operations are done for each channel sepa-
rately, in the following we will omit k for readability.

As a result of this localized interaction the optimization prob-
lem becomes more well behaved. Let ∇x̂L be the gradient of a loss
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function (see Section 3.3) with respect to the output of an interme-
diate normalization layer. The gradient w.r.t. a single cell i of its
input x is given as

∇xiL=
s

√

σ2(x)+ ε

(

∇x̂i
L− 1

⊺ (∇x̂L)
m

− x̂i (∇x̂L)⊺ x̂

m

)

, (2)

where x̂ ∈ R
m and m is the number of cells. For a scaling a ∈ R and

a constant translation b ·1 ∈ R
m, consider the case where ∇x̂L =

a · x̂+b ·1. Then because x̂ has zero mean and unit variance

∇xiL=
s

√

σ2(x)+ ε
(a · x̂i +b−b−a · x̂i) (3)

= 0.

Thus, there is no gradient w.r.t. a scaling and translation of x run-
ning through the normalization layer, which is only natural as such
a transformation would be cancelled out by the normalization any-
ways. AdaIN allows us to set this affine transformation individually
for each object. Therefore, the gradient w.r.t. its parameters does
not have to pass through the entire decoder. Consequently, the con-
volutional layers only have to learn non-affine interactions.

3.1.1. Point Cloud Generation

Our proposed convolutional decoder so far only generates volu-
metric grids. We are however interested in generating point clouds.
Therefore, as shown in Figure 2, for each cell c we feed its encoded
information fc into a simple MLP. This MLP predicts two values
pc and δc. pc is a binary variable predicting whether a cell is filled
or empty. δc is a probability density function (i.e. the likelihood,
that a sample should be generated for a particular cell). Distribut-
ing the estimation of this information over two variables helps us in
dealing with empty cells, as the density prediction seldom actually
reaches zero and we thus would introduce points at unwanted loca-
tions. For all cells that are classified as filled we then distribute the
total number of output samples proportionally to the density esti-
mates of the cells. Thus our network is independent of the number
of points we want to generate. This number can even be changed
between training and inference (see Figure 1).

The actual generation of points is done in a similar manner to
Groueix et al. [GFK∗18] and Yin et al. [YHCOZ18]. The idea is
to learn a parameterization from a k-dimensional domain to R

3.
Then by randomly sampling this domain from a uniform distribu-
tion and applying the map, we get our 3-dimensional points. In all
our experiments we set k = 2, since we assume that locally the
shape can be approximated with a surface patch. In practice we
apply this map by concatenating the k-dimensional sample to the
encoded cell information fc and feeding the resulting vector into
a MLP, which outputs a 3-dimensional point. Thus the MLP rep-
resents a map m fc

: R
k → R

3 conditioned on fc. During inference
we sample the k-dimensional domain uniformly and then apply a
number of steps of Lloyd’s algorithm [Llo82] to ensure an even
coverage of the space. This further improves our results as shown
in Section 4.1. The predicted samples of each cell are offset by the
corresponding cell centers.

z ∈ R
1024

P
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Figure 3: Our convolutional encoder follows a similar method to

Rethage et al. [RWS∗18]. We embed the input point cloud (red) into

a volumetric grid. For each cell we pass all points within a certain

radius from the cell center into a small PointNet. This results in a

grid where each cell encodes local point cloud information via a

32-dimensional feature vector. This is visualized as a multi-colored

grid. The grid is then passed through a 3D CNN. Through a series

of convolution and max-pooling layers we compute an encoding

z ∈ R
1024 of the input point cloud.

3.2. Encoder

For our encoder (see Figure 3) we follow a similar approach to
Rethage et al. [RWS∗18]. We isotropically normalize the input
point cloud such that the longest edge of its axis-aligned bound-
ing box is scaled to the range [−0.5,0.5]. This point cloud X is
then embedded into a volumetric grid consisting of 323 cells. For
each grid cell we encode the local neighborhood of X (all points

within a radius r =
√

3
2 to the cell center) via a small PointNet (pro-

posed by Qi et al. [QSMG17]). Apart from using fewer number of
parameters we also aggregate the final encoding of point clouds by
computing the mean of the point features instead of the maximum
as proposed in the original paper. Since we make use of a PointNet
we are able to handle input point clouds with varying number of
points.

This results in a grid where each cell has an η-dimensional fea-
ture vector (η = 32 in all our experiments). This grid can then be
passed through a 3D CNN, which consists of a series of convolu-
tion, batchnorm and max-pooling layers. The output is an encoding
z ∈ R

1024 of X . For more details on the architecture see Appendix
A.

3.3. Loss Functions

We define the distance of a point sX to a point cloud Y as

d(sX ,Y) = min
sY∈Y

‖sX − sY‖2 . (4)

In order to compare the input point cloud X ∈ R
n×3 to the re-

constructed point cloud Y ∈ R
m×3 we measure the difference with

the commonly used Chamfer distance as proposed for point clouds
in [FSG17],

Lc(X ,Y) =
1

n
∑

sX∈X
d(sX ,Y)2 +

1

m
∑

sY∈Y
d(sY ,X )2

. (5)

This gives us a gradient for every point in Y . However, we found
that additionally formulating a sharper version of the Chamfer dis-
tance benefits training (see Section 4). With the formulation

Lp(X ,Y) =
1

n
p

√

∑
sX∈X

d(sX ,Y)p +
1

m
p

√

∑
sY∈Y

d(sY ,X )p. (6)
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the gradients of points that incur a larger error are weighted more
heavily with p > 2. For high p this measure can be seen as similar
to the Hausdorff distance. In our experiments we used p = 5.

Since Y is generated by offsetting generated per-cell point
clouds Yc by the corresponding cell centers co, we want to enforce
a notion of locality (i.e. each cell only contributes to the part of Y
in its vicinity). Thus we add a loss

Lo(Y) = ∑
c

∑
sc∈Yc

max(dist(sc,co)−m, 0) , (7)

This penalizes any generated points that are too far away from their
cell centers. We choose m =

√
3 to allow points to be distributed

within their generating cell and its direct neighbours.

We cannot directly train the density estimates and filled cell pre-
dictions using only the point-wise differences shown above. This is
because the differences do not give a gradient w.r.t. the number of
points per cell. For this reason we generate ground truth densities
and label the filled cells based on the input. Training the MLP that
predicts the density δ and probability that a cell c is filled p is done
by using the mean squared error

Ld(δ, δ̂) =
1

323 ∑
c

(

δc − δ̂c

)2
, (8)

and the binary cross entropy loss

L f (p, p̂) =− 1

323 ∑
c

p̂c · log(pc)+(1− p̂c) · log(1− pc) (9)

respectively. Here δ̂ and p̂ denote the ground truth. Thus our loss
during training is

λ1Lc(X ,Y)+λ2Lp(X ,Y)+λ3Ld(δ, δ̂) (10)

+λ4L f (p, p̂)+λ5Lo(Y)

In all our experiments we chose λ1 = 1×103, λ2 = 1×101,
λ3 = 1×1010, λ4 = 1×102, and λ5 = 1.

4. Experiments

We evaluate our decoder network both by showing the effectiveness
of several design choices and by comparing our results with the
current state of the art on the task of autoencoding 3D point clouds.
All our experiments with our proposed method were done on the
ShapeNet dataset [CFG∗15], where we evaluated both our method
and the methods proposed in [GFK∗18,LCHL18]. Additionally, we
performed experiments using their respective settings and datasets.
This is necessary for a thorough comparison, since prior work em-
ploys different datasets, data normalization techniques and evalua-
tion criteria. Furthermore, we can assume that their proposed net-
work architectures were tuned according to the respective datasets.
Our networks were trained using AMSGrad [RKK18] (β1 = 0.9,
β2 = 0.999, learning rate = 0.0046). For evaluation on the test-
ing set we used the network weights that performed best on the
validation set. All other networks were trained using the hyper-
parameters settings suggested in the respective works.

Dataset For our experiments we made use of the official train-
ing, validation, and testing split of the ShapeNet Core dataset (v2),
which consists of ca. 50k models in 55 different categories. We

method Chamfer dist.

(1) with randomly sampled point clouds 0.387
(2) without AdaIN 0.385
(3) without regularization loss 0.401
(4) without p-norm 0.384
(5) all of the above 0.440
(6) with randomly sampled map 0.390
(7) our method (9 transformations) 0.401
(8) our method (3 transformations) 0.376

(9) random sampling 0.227

Table 1: Evaluation of the different design choices for our network.

As can be seen, each additional loss, sampling and architecture

choice improves the final result (bold). The reported metric is the

Chamfer distance as introduced in section 3.3 multiplied with 1000.

To put the numbers into context we compare a random sampling of

the same shape with the target.

found that a high quality sampling is important to achieve good re-
sults (see Table 1), as the loss is strongly affected by it. Minimizing
the Chamfer distance on a non-even sparse sampling does not nec-
essarily mean that we are able to achieve a good approximation of
the underlying surface. A large distance from a reconstructed point
to the closest target point can be either caused by a great distance to
the underlying surface (which we want to penalize) or by the lack
of samples in this particular part of the surface (which we do not
want to penalize).Therefore, it is desirable that the sampling is as
even as possible over the entire shape. To achieve such a sampling,
we strongly oversampled the objects uniformly (with roughly 80k
points) and then chose a subset (16k points) of those with farthest
point sampling.

As our encoder sorts all points into a grid, we normalize the
point clouds to the size of the unit cube centered in the origin.
No further data augmentation is applied. All metrics are however
computed on unnormalized shapes to simplify future comparisons.
When not mentioned otherwise, all distances are reported between
point clouds with 2500 points.

4.1. Ablation Study

To motivate our design choices we performed an extensive abla-
tion study, reporting the Chamfer distance obtained on the testing
set for different changes in our input, architecture or loss function
(Table 1). To show the effect of an evenly distributed point cloud,
we trained the network on a uniform random sampling (1) as used
in [LCHL18]. We evaluated on our high quality point clouds. To
motivate the use of AdaIN, we implemented a strong baseline in the
form of a convolutional autoencoder. We used the same encoder as
in our proposed network. However, for the decoder we used a con-
volutional decoder without AdaIN (2) (i.e. z is passed directly into
the decoder and P is no longer necessary). To ensure a fair compar-
ison we used a similar number of parameters.

While our proposed architecture enables the possible application
of nine layers of AdaIN (7), we found that this lead to some over-
fitting on the training data. Therefore, we limit the number of affine
feature transformations to the first three layers (8). All subsequent
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Input our method AtlasNet (125 patches) SO-Net

Figure 4: Qualitive results for different autoencoder models. From left to right: ground truth, our results, [GFK∗18], [LCHL18]. Note that

our method produces less spurious points and reproduces sharper surface details.
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method Chamfer dist.

SO-Net (4608 points) 0.603
SO-Net (2500 points via random subsampling) 0.708
SO-Net (2500 points via farthest point sampling) 0.691
AtlasNet (125 patches) 0.408
our method 0.376

Table 2: Comparison of our method against SO-Net [LCHL18] and

AtlasNet [GFK∗18] on our dataset. The reported number is the

Chamfer distance multiplied by 1000.

outputs of instance normalization layers are not scaled and trans-
lated. This architecture achieved the best result (marked in bold in
Table 1).

To show the effectiveness of the additionally introduced losses,
we trained networks without them and show the difference in the re-
sulting Chamfer distance (3,4). For further comparison, we trained
a network in a fairly simple manner by only using the chamfer dis-
tance as a loss and no AdaIN on randomly sampled point clouds
(5). Finally, we show that sampling the learned map from 2D to 3D
at fixed, well distributed positions (as done in [GFK∗18]) instead
of randomly during inference further improves the results (6). Not
using the cell classification loss has a minor negative impact on
the results in the order of the fourth decimal. To put these numbers
into context, we compare a random sampling of the shape with the
ground truth (9).

4.2. Comparison

We compare against AtlasNet [GFK∗18] and SO-Net [LCHL18]
both on our own dataset (Table 2) as well as on their respective
datasets (Table 3). For AtlasNet we trained their best performing
network (125 Patches) on our dataset. SO-Net does not allow to
output point clouds with 2500 points without changing the sug-
gested architecture. Instead, we compare against the two presented
versions of the network. One generates 1280 points (Table 3) and
one has an output size of 4608 points (Table 2). The numbers re-
ported in their paper are from a network outputting 1280 points,
consequently we trained ours similarly (i.e. 1024 input points and
1280 output points). Furthermore, they use a slightly different defi-
nition of the Chamfer distance. They compute the Euclidean dis-
tance between closest points instead of its squared version. For
a fair comparison on our dataset we report the Chamfer distance
between a target of 2500 points and the entire point cloud (4608
points) as well as subsamplings (2500 points) of it.

Note that the computed distances are not comparable across
datasets due to differences in normalization and evaluation meth-
ods. As can be seen in Tables 2 and 3 our method outperforms
AtlasNet and SO-Net on our dataset as well as on the ones used
by the respective authors. Qualitative results are shown in Figure 4.
For these examples, our method is less prone to produce outliers
and reconstructs the shape contours more faithfully.

5. Applications

To demonstrate the usefulness of our convolutional decoder we
show results in three applications. Our hyper-parameters and ar-

method Chamfer dist.

AtlasNet (25 Patches) 1.56
AtlasNet (125 Patches) 1.51
our method 1.42

SO-Net (1280 points) 0.033
our method (1280 points) 0.030

Table 3: Comparison against AtlasNet and SO-Net on their re-

spective datasets. Our models were trained without any additional

hyper-parameter tuning. The reported number for the comparison

against AtlasNet is the Chamfer distance multiplied by 1000. The

comparison against SO-Net is based on the Chamfer distance as

reported in their paper [LCHL18].

Figure 5: We show some qualitative results for single view recon-

struction. The input images are shown on the left. Reconstruction

results are visualized in blue. The ground truth is rendered in green.

chitecture were not tuned particularly for these demonstrations. We
expect that with more carefully chosen settings, better results could
be achieved.

Single View Reconstruction For single view reconstruction (see
Figure 5) we follow [CXG∗16] and use a subset of ShapeNet con-
sisting of 13 classes. To be comparable we use their rendered views,
as well as their sampling. Similar to [GWM18] we used a pre-
trained VGG-11 [SZ15] as an encoder. The rest of our network is
unchanged to the autoencoder setting. We manage to achieve com-
petitive quantitative results as shown in Table 4.

method Chamfer dist.

Fan et al. [FSG17] 4.128
Lin et al. [LKL18] 3.547
MRTNet [GWM18] 3.088

our method 3.398

Table 4: Quantitative results for Single View Reconstruction. The

reported numbers are Chamfer distance (as defined in [LCHL18]),

scaled by 100, computed on point clouds of size 4096

c© 2019 The Author(s)
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Figure 6: Qualitative results for our point cloud upsampling.

Severely under-sampled input point clouds (50 points) are shown

in red. The network predictions and ground truth point clouds are

shown in blue and green respectively (16000 points).

Point Cloud Upsampling As our network architecture is indiffer-
ent to the number of input or output points, it is straightforward to
use our model for the task of point cloud upsampling. We train our
network on our training set to take between 50 and 500 input points,
but output 5000. Although there are several methods that use neu-
ral networks for point cloud upsampling [YWH∗19,YLF∗18], their
setting is different as they regard local patches of the geometry and
compute a denser sampling there. In contrast, we regard the shape
as a whole. As a result these methods require the input to be sam-
pled densely enough that local patches convey geometric meaning.
For our method it is sufficient that the general shape is conveyed
in order to get results of a good quality. We demonstrate this on
severely under-sampled point clouds of the test set with only 50
points as input (Figure 6). Note that our method is able to robustly
output point clouds of size 16000 even though the network was
trained to output 5000 points.

Point Cloud Synthesis Our decoder can not only be used to re-
construct point clouds for a given input but is also able to generate
new shapes as well. A commonly used generative model is the vari-
ational autoencoder (VAE) as proposed by Kingma et al. [KW14].
We implemented a conditional VAE version of our network, with
only minor changes to the original autoencoder. Conditioning on
different classes is done by passing the category as a one-hot en-
coding vector into a MLP, which generates P (see Figure 2). The
latent vector z is sampled from a multivariate Gaussian, whose pa-
rameters are predicted by the encoder. This allows us to sample the
latent space in order to generate shapes for a specified category as
shown in Figure 7.

6. Conclusion

In this work we have introduced a convolutional decoder that can
generate high quality point clouds of arbitrary size. Our method is
able to achieve state of the art results for auto-encoding tasks by
making use of the benefits offered by AdaIN, careful considera-

Figure 7: Here we show some samples generated with our condi-

tional VAE for the categories "car", "chair", and "airplane".

tion of even sampling, as well as several additions to the Chamfer
distance as losses. We outline several possible applications for our
method in the fields of single view reconstruction, point cloud up-
sampling and synthesis.

Our architecture inherits some of the common limitations that
come with voxel-based representations. That is, our method is not
invariant to rotations of the input and could incur a larger memory
cost at higher grid resolutions. However, we show that with a rela-
tively low resolution (323) we are able to generate results of a high
quality. Furthermore, we approximate the geometry in each filled
grid cell as a surface patch. For locally more complex geometries
this might be a limitation.

Nevertheless, we are convinced that our method is useful in fu-
ture research on 3D shape synthesis. One direction is the use of
a generator similar to our decoder in the setting of generative ad-
versial networks (GANs) as originally proposed by Goodfellow et
al. [GPAM∗14]. Another interesting research direction are more
detailed shape modifications enabled by affine feature transforma-
tions at varying levels of detail.
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Appendix A: Network Architecture

Our encoder consists of a small PointNet and an 3D CNN. The
PointNet is constructed as FC8-FC16-FC32-FC32. FCx is a fully
connected layer (in this case without bias) with output dimension-
ality x. After every fully connected layer we apply batchnorm as
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proposed by Ioffe and Szegedy [IS15]. We also apply the expo-
nential linear unit (ELU) as an activation function as proposed by
Clevert et al. [CUH16] after every batchnorm layer except for the
last one. In order to construct the final 32-dimensional feature vec-
tor for each cell we compute the mean feature instead of taking the
maximum.

The 3D CNN is constructed as C64-C64-C64-MP-C128-C128-
MP-C256-C256-MP-C512-C512-MP-C512-C1024. Cx is a 3D
convolution layer with kernel size 3 × 3 × 3, zero-padding of 1,
stride of 1, and output feature dimensionality x. For C1024 we use
no padding and a kernel size of 2×2×2 in order to reduce the out-
put to a 1024-dimensional vector. We do not use bias for our con-
volution operations. After every convolution layer we apply batch-
norm and ELU. MP refers to a max-pooling layer with kernel size
2×2×2 and stride 1.

For our decoder we use a fully connected layer with bias to
map z to w.The convolutional decoder is constructed as P-C512-U-
C512-C256-U-C256-C128-U-C128-C64-U-C64-C62. P refers to
the learnable constant parameter block of size 512× 2× 2× 2. Cx

refers to 3D convolution layers with output feature dimensionality
x, kernel size 3× 3× 3, stride of 1, and zero-padding of 1. We do
not use bias for our convolution operations. After every convolution
and P we apply dropout as proposed by Srivastava et al. [SHK∗14]
with a probabilty of 0.2. AdaIN is applied after every dropout layer
and after P with the scaling and translation parameters provided by
w. For every convolution layer we apply ELU after AdaIN.

Our point cloud generation MLP is structured as FC64-FC64-
FC32-FC32-FC16-FC16-FC8-FC3. We apply ELU after every FC
layer except for the last one.

The MLP that estimates the density and classifies whether a grid
cell contains points or not is constructed as FC16-FC8-FC4-FC2.
After every fully connected layer we apply batchnorm and ELU
except for the last one.
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