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Abstract
We propose a novel method to synthesize geometric models from a given class of context-aware structured shapes such as build-
ings and other man-made objects. The central idea is to leverage powerful machine learning methods from the area of natural
language processing for this task. To this end, we propose a technique that maps shapes to strings and vice versa, through an
intermediate shape graph representation. We then convert procedurally generated shape repositories into text databases that,
in turn, can be used to train a variational autoencoder. The autoencoder enables higher level shape manipulation and synthesis
like, for example, interpolation and sampling via its continuous latent space. We provide project code and pre-trained models.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

Automatic 3D model synthesis is one of the most challenging
problems in computer graphics. The standard approach to cre-
ating virtual 3D shapes involves the use of complex modeling
software by skilled artists and can be time consuming and ex-
pensive. Recent data-driven methods for shape synthesis such
as [LXC∗17, SSK∗17] address this problem by training neural net-
works to perform tasks like shape assembly and interpolation. Sim-
ilar to how humans approach 3D modeling, these methods consider
shapes as being composed out of building blocks. An important
limitation of previous approaches, is the limited structural com-
plexity of the produced models. This problem can be attributed to
the types of models available in shape repositories, but the more
significant hurdle is the inability of neural networks to work on ir-
regularly structured input. In this work we propose a combination
of a model-based and a data-driven method that addresses both cre-
ating large number of structured shapes of arbitrary complexity and
representing the topology of structure graphs via strings.

In order to address the problem of creating structural variations
in a principled way, we consider shapes that can be assembled
from building blocks according to an initially unknown tiling shape
grammar: a set of rules describing how to assemble the elementary
pieces locally. To this end, we use as an input a small number of
shapes segmented into rigid, exchangeable parts (building blocks).
These define the set of plausible shape variants: each local configu-
ration of components is considered valid only if the same or a very
similar configuration also occurred in the input models.

However, unlike context-free shape grammars, the grammar as-
sembly rules here are not sufficient to derive a recipe for creating
shape variants. The difference is that context-free production rules
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Figure 1: A simple shape, its shape graph, string representations of
the graph, and shape variants. Both mappings from graph topology
to strings, and back to geometric shapes are not uniquely defined.

are hierarchical and each sequence of applications can be termi-
nated resulting in a globally valid result. Tiling grammar rules de-
scribe only local configurations without termination or correctness
guarantees. For example, the last shape in Figure 1 contains an error
that cannot be resolved by modifying only the pieces of the model
that cause the invalid intersection. Hence, with growing amount of
components, it quickly becomes impossible for probabilistic pro-
cedural modeling methods to generate shapes without violating the
tiling grammar. This makes the problem very difficult, but also in-
teresting, since the resulting shapes can contain cycles and regular
grid patterns that appear very often in man made objects.

In this work we tackle the problem of 3D modeling using ma-
chine learning methods for natural language processing: a do-
main that also deals with non-context free constructions. To this
end, we adapt the simplified molecular-input line-entry system
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(SMILES) [Wei88] for encoding the topology of graphs represent-
ing shapes constructed out of building blocks (see Figure 1). This
string conversion method enables the application of recurrent neu-
ral networks for learning the structure of geometric models.

We demonstrate that it is possible to train a variational autoen-
coder (VAE) [KW13] on strings representing the structure of the
randomly generated 3D models similar to [BVV∗15,GDH∗16] and
generate geometric shapes constructed out of rigid building blocks.
The variational autoencoder is used to map vectors representing
shapes to a continuous latent space and decode points in latent
space to shape representations. This facilitates high level synthe-
sis operation such as interpolation and sampling of discrete shapes.

Synthesizing geometric shapes from a given graph topology pro-
duced in the previous step is also very hard even if there is a unique
way to attach pairs of pieces together [SSK∗17], which is not the
case here. We address the problem by reducing it to a classification
task and train a neural network to estimate how the parts (or graph
nodes) are positioned relative to each other in space.

Since existing shape collections usually consist of samples with
small or no structural variations, we first have to address the prob-
lem of efficiently creating large sets of structured shapes. We ex-
tend and automate the procedural modelling method based on par-
tial graph symmetries [BWS10, LVW∗15] and use it for creating
sets of samples sufficiently large to enable training machine learn-
ing models. As a result, we present a fully automatic shape syn-
thesis framework that can generate large collections of shapes with
significant structural variations using just one or two example mod-
els as input.

This paper contains three important contributions (see Figure 2):

• A model-based, automatic method for generating structured
shape variations given just one or a few examples.
• Adapting a data-driven method from natural language process-

ing, for procedural modeling of 3D geometry.
• A data-driven method for instantiation of shape graph topologies

in R3 via edge classification.
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Figure 2: Overview: We convert 3D models into graphs and pro-
cedurally create structural variations. These are converted to text
databases and used to train a variational autoencoder (VAE).
Finally, the training and additional strings representing graph
topologies are instantiated back into 3D models. The number next
to each arrow indicates the corresponding section in the paper.

2. Related Work

Part-based Modeling Funkhouser et al. [FKS∗04] propose a data-
driven shape synthesis method in which a user can cut out parts of

models in an existing shape database and then use them to com-
pose new shapes. Subsequent works expand on various aspects of
the method, e.g., using 2D sketches [LF08] for shape retrieval. Fur-
ther part-based modeling approaches have been recently surveyed
in [MWZ∗13].

Several recent related works on procedural modeling [TLL∗11,
TYK∗12, RMGH15, RJT18] consider hierarchical segmentations
and create further shapes using context-free shape grammars. These
works address the problem of generating desirable variants via
random applications of grammar rules and provide better means
for user control compared to our method. In contrast, the non-
context-free shape grammars we consider here have higher expres-
sive power and are easier to compute automatically. Our method
does not require the shape grammar to be provided as input, which
is beneficial for users without 3D modeling skills.

Our method is closely related to inverse procedural model-
ing techniques for generating variations from a single example
like the works by Bokeloh et al. [BWS10, BWKS11] and Liu
et al. [LVW∗15]. These methods consider shape decompositions
into building blocks that can be assembled into variants. The seg-
mentations are either computed via symmetry detection [BWS10,
BWKS11], or given as input [LVW∗15].

Similar to Liu et al. [LVW∗15] we use partial graph symmetries
to generate random variations by splitting and merging example
part compositions. However, as detailed in Section 4, we propose
an alternative sampling algorithm for faster, automatic and more
robust sampling of large amounts of shape variations.

Data-Driven Shape Processing Xu et al. [XKHK17] survey re-
cent data-driven methods for shape processing including part based
modeling [FKS∗04, KJS07], sketch-based modeling [FWX∗13,
XXM∗13] and shape editing [XZZ∗11, ZCOM13]. Similar to us,
these methods attempt to simplify 3D modeling by leveraging exist-
ing data. The differences are that we generate the example datasets
from a single or several examples.

Recently, Nash and Williams [NW17] also proposed the use of
a variational autoencoder (VAE) for shape synthesis. Their work
however differs significantly from our method since they train a
VAE on a set of shapes with the same structure. Other related deep
generative models for structure variations consider tree [LXC∗17]
or graph [SSK∗17] representations of comparably simpler objects
like chairs and vehicles. The main disadvantage of these related
methods compared to ours is the constrained structural complexity
of the generated shapes which limits them to creating style varia-
tions of the training examples. On the other hand, our method en-
ables synthesis of shapes with arbitrary topology thanks to vector-
izing shape graphs using sequences.

3. Tiling Grammars and Structure Graphs

In the absence of predefined rules for procedural modeling, we have
to find a way to characterize the space of valid shape variations. A
sound way to address this challenge is to use the input models as
examples for a set of valid assembly rules and only use these for
shape synthesis. In other words, as a grammar we use the subset of
the assembly rules already observed in the input models.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



J. Kalojanov & I. Lim & N. Mitra & L. Kobbelt / String-Based Synthesis of Structured Shapes

S1 random subgraph in G1 matching cuts in G2 random variationS2

Figure 3: Graph-based shape sampling. The input models S1,S2 are converted into shape graphs G1,G2. New shape variations are created
automatically via random subgraph sampling and subgraph matching.

More specifically, each part of a certain type in the output shape
has to have a matching number and types of neighbors. Pieces are
considered as neighbors if and only if their surfaces intersect. This
assumption is quite general and does not impose restrictions on the
shape of the parts or their intersections.

For example, the grammar rules derived from the models in Fig-
ure 3 allow each of the green, purple, cyan building blocks to only
attach to brown pieces and to have exactly one (green and cyan) or
three (purple) neighbors. The brown building blocks have exactly
two neighbors and can attach to pieces of every type.

We represent the structure of each shape via a undirected shape
graph. The nodes of the graph correspond to parts. Every pair of
connected pieces is represented with an edge between their corre-
sponding nodes. We transfer the part labels to the graph by assign-
ing a type to each graph node. The shape graph abstracts away the
geometry information and can be used to reduce the shape synthesis
problem to graph sampling and subgraph matching.

We extract these grammar rules regarding graph topology (num-
ber and types of neighbors for a given node type) from the shape
graphs of the input models and use them to detect variations with
invalid graphs. The same set of rules can be used to check for self
intersecting assemblies, by verifying the shape graph from the ge-
ometric shape after creating it. Later on, the example models are
used to derive a set of allowed approximate positions and orienta-
tions of connected pairs of pieces of certain types. Therefore, the
efficiency of our shape synthesis approach depends on the ability to
quickly compute the shape graph of input models of arbitrary com-
plexity. We solve this using collision detection and by assuming
that a pair of parts is connected if and only if their corresponding
triangle meshes intersect each other.

4. Graph-Based Shape Sampling

Assuming a pair of input models S1,S2, our shape augmentation
method consists of the following steps (also see Figure 3). We com-
pute graphs G1,G2 for each shape using collision detection. We
randomly sample subgraphs in the first shape (S1) and check if a
subgraph with matching boundary exists in the second shape (S2).
We merge each matching pairs of subgraphs and check the resulting
model against the grammar rules extracted from the shape graphs
G1,G2. We output valid shape variations with different node type
histograms to avoid re-discovering the same shape multiple times.

Subgraph Sampling In essence, our shape generation approach
splits each of the input models into two or more pieces that

are recombined into a new shape. The main difficulty is to effi-
ciently discover compatible sub-graphs and avoid duplicates. Liu
et al. [LVW∗15] propose to enumerate all possible graph opera-
tions in O(n3) worst case complexity and O(n2) (quadratic in the
number of graph nodes) expected complexity. Instead of exhaus-
tively searching for all possible operations we sample p random
subgraphs in parallel and keep p linear in the number of available
processors (or threads). Doing so, we spend significantly less ef-
fort sampling the shape variants created by merging exactly two
subgraphs of the input shapes. By recursively applying this proce-
dure on newly created variations we can sample shapes made out
of more than two subgraphs from the input.

Subgraph Matching Each subgraph sample s from the first shape
graph G1, is matched against the the second shape graph G2. We
search for a set of nodes in G2 corresponding to the nodes in G1
connected via boundary edges of s. Both the node types as well
as all pairwise distances between the centroids of the respective
parts have to match. The latter is a necessary condition for the exis-
tence of a rigid transformation T that attaches (docks) the geometry
represented by s to S2 without violating the grammar rules at the
boundary [BWS10]. We randomize our search and terminate after
finding the first set of corresponding boundary nodes in G2 in or-
der to speed up the sampling process in the presence of multiple
matches.

Docking Transformation Estimation Each subgraph with match-
ing boundary needs to be transformed in order to attach it to S2.
Aligning the centroids of the boundary pieces from S1 to their
matching counterparts in S2 can be reduced to finding a transfor-
mation that minimizes the distances between the two sets of points
in the least square sense. The problem can be reduced to comput-
ing an SVD (singular value decomposition) of a 3× 3 covariance
matrix (see the supplemental notes to [SA07] for a detailed proof).

Validation After creating a variation by replacing a subgraph of
G2 with a subgraph of G1 we have to verify that the new shape
does not violate the grammar rules. This can happen, for example,
if some of the nodes in the interiors of the attached subgraphs inter-
fere. Note that we need to test the geometric shape of the variant.
The generated graph topology is always correct by construction:
we only replace nodes on the boundary of the two subgraphs with
nodes of the same type. In order to guarantee that the newly cre-
ated shape is geometrically feasible, we generate it and compute
its shape graph. Both interfering and misaligned parts will pro-
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Figure 4: Example shape vectorization using SMILES strings. All cycles in the shape graph are broken by removing a random edge (lime
green). The remaining spanning tree (gray) is encoded in a string using letters for nodes and brackets to represent branching. The cycle
edges are reintroduced by adding a number next to their adjacent nodes in the string. The resulting strings are used to train a variational
autoencoder. We train on multiple shape variants composed out of the same building blocks.

duce node configurations that are not allowed by the tiling grammar
causing the shape to be discarded as invalid.

We avoid duplicating output models by conservatively discard-
ing shapes with identical node type histograms. Removing dupli-
cates is important if the input shapes have identical subgraphs, in
which case multiple subgraph replacement operations yield copies
of the original models.

5. Variational Autoencoder for Tiling Grammars

The goal of the above shape sampling method is to automatically
generate large amounts of models with structural variations, and
use them as training sets for machine learning. Particularly in-
teresting is the sequence modeling approach used in [GDH∗16,
BVV∗15], which is based on sampling from a continuous structure
representation obtained from the latent space of a variational au-
toencoder (VAE). In this work we generalize the method and apply
it for synthesis of arbitrary geometric shapes constructed according
to a tiling shape grammar.

The variational autoencoder [KW13] is a generative probabilis-
tic model, which implicitly describes the joint probability distribu-
tion over the dataset and corresponding latent variables p(x,z). An
encoder network is used to approximate p(z|x) with q(z|x) by map-
ping data samples to distributions in latent space (typically gaus-
sian). A decoder network models p(x|z) by mapping samples from
q in latent space to an output distribution (typically consisting of
categorical distributions). Here, the input dataset is a collection of
sequences describing the shape graph topology of a set of geomet-
ric models (see Figure 4). After training the network with a rep-
resentative set of sample values one can use the decoding part on
points of the latent space not present in the training set. This facili-
tates operations like sampling, or interpolation of geometric shapes
(molecule formulae or sentences in [GDH∗16, BVV∗15]).

5.1. Shape Graph Vectorization

In order to use a set of shapes as an input for a variational au-
toencoder we need to first convert them to vectors. Since we are
interested in learning the structure of the shape, i.e., how to con-
struct a model out of building blocks, we want to convert the shape
graph to a vector. SMILES strings [Wei88] are a standard method
for molecule representation, which is based on enumerating nodes

as they appear in a spanning tree of the molecule graph. The conver-
sion algorithm is general enough to be applied to arbitrary graphs,
and we employ an analogous conversion method.

We assign a letter to each node type in the shape graph and com-
pute a string by depth-first traversal of the graph. Multiple subtrees
with the same root are enclosed by brackets (except the last subtree
at each node). All remaining (cycle) edges in the graph are recorded
via number suffixes at both end-nodes. The resulting strings are
then trivially converted to one-hot vectors that can be used as input
to a sequence autoencoder (Figure 4).

Since we are interested in shape synthesis and do not have ac-
cess to large bodies of training data, we prefer to compute multiple
strings for each shape and use all of them for learning. Intuitively,
we try to train the autoencoder to distinguish strings that can rep-
resent valid shapes from those that cannot, and accept the slight
drawback of representing the same valid example multiple times.
After training, the decoding part of the neural network is not able
to covert all points in latent space into strings representing valid
shapes. Therefore, we have to verify decoded samples against the
tiling grammar and discard invalid ones. This can be performed by
the same procedure used to verify shape graphs of randomly cre-
ated variations.

5.2. Latent Space Sampling

Even though large regions of points in latent space do not decode
to valid strings (according to the grammar), it is possible to create
shape variations by sampling and decoding random latent points.
Our hypothesis is that valid shapes are mapped to a manifold by the
encoding half of the autoencoder. If true, we are likely to find latent
points corresponding to valid strings in the neighborhoods of the
images of training samples. We experimented with three sampling
strategies and observed results that support this assumption.

Point Perturbations We sample the neighborhood around a latent
point pv corresponding to a valid training example with string sv.
We add a random offset vector r1 to pv and decode the resulting
point pr := pv + r1. Let pr decode to a string sr. If sr = sv or sr is
not valid according to the grammar rules, we re-sample pr using a
new offset vector r2 with increased magnitude in each dimension.
We repeat this procedure until we reach a maximum magnitude (we
used 0.25) or find a valid string not equal to the known sv.
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Linear Interpolation We interpolate points on the line segment
between the images of pairs of training samples. We sample points
on the line segment on equal intervals and sample their neighbor-
hoods with the previous strategy, using smaller offset vector mag-
nitudes. Usually this sampling strategy yielded valid strings close
to the endpoints of the line segments, which is in line with the hy-
pothesis of valid latent point living close to a manifold in latent
space.

Latent Path Sampling The results of the previous sampling
strategies motivated us to further restrict sampling locations near
“valid” points in latent space. Instead of sampling point on the line
segment between pairs of encoded training samples, we construct
a path (of length 32) by repeatedly splitting the current segments
with the training samples closest to both endpoints of each seg-
ment. We then sample each path segment equidistantly and sample
in the resulting neighborhoods analogous to the linear interpolation
case. Path sampling delivered more valid samples compared to lin-
ear interpolation, which in turn was slightly more productive than
simply perturbing points.

5.3. Latent Space Structuring

The main motivation behind our learning method is the continu-
ous shape representation provided by the variational autoencoder,
which facilitates high-level shape synthesis operations such as sam-
pling and interpolation. In this Section, we describe how to equip
the latent space with a metric that assigns a semantic or intuitive
meaning to geodesic distances on that (unknown) manifold of sam-
ples decoding into valid strings. This can be achieved either by a
continuous deformation that brings samples corresponding to sim-
ilar shapes closer together or by a discrete structure (graph) that
connects samples of similar shapes.

We demonstrate an example by introducing a pairwise histogram
similarity metric

E(x,y) =
1

Nx +Ny
∑

T∈Types
|Tx−Ty|,

where Nx is the number of building blocks in shape x, and Tx is the
number of building blocks of type T in the shape.

To improve the efficiency of shape sampling, we implemented an
alternative method for latent space exploration based on to topolog-
ical graph search. A conceptually similar approach has been pro-
posed in [BYMW13]. Here, we compute a set of (random and/or
training) points that decode to valid strings and organized them as
nodes in a search graph. We connect each node with a user de-
fined number of closest neighbors (w.r.t. Euclidean distance in la-
tent space) and every other node in the graph that decodes to an
equivalent string, i.e., a string representing the same graph topol-
ogy. Because each shape is represented via multiple strings, we kept
the additional degree of the nodes low (between 3 and 5) in order
to avoid close to fully connected graphs. Using topological search
operations on this graph is more efficient than blindly sampling in
latent space, and allows incorporating application dependent ob-
jectives as edge weights. We then assign edge weights using the
similarity metric, denoted as E.

This allows formulating interpolation between pairs of shapes as

the shortest path in the above graph. The resulting operation is more
efficient, because it does not depend on finding regions of the latent
space that decode to valid words. Furthermore, because of the sim-
ilarity metric and the graph topology, the intermediate shapes on
paths in the graph are subjectively more intuitive interpolation re-
sults than the shapes we encountered by sampling on line segments
in latent space.

We also experimented with a triplet contrastive loss [CSSB10,
SSK∗17], which can improve sampling results by grouping the em-
bedding of similar shapes in latent space. However, in our experi-
ments, the additional loss slowed down training without noticeably
improving the point distribution in latent space. We therefore report
results only with a standard VAE loss function.

6. Instantiation of Structure Graphs

The shape synthesis approach we discussed so far consists of two
parts. We first use an inverse procedural modeling method to gener-
ate a set of models using partial graph symmetries. Then, we vector-
ize the shape graphs of the sample models using SMILES strings,
which are subsequently used as a training set for a variational au-
toencoder. Sampling from the latent space of the autoencoder gen-
erates string representation of further shape graphs with unknown
instantiation in Euclidean space.

In the following, we describe how we reduce instantiation of
structured shape graphs to a classification problem. The main moti-
vation behind our approach is to re-use the procedurally generated
shape database, and train a recurrent neural network to embed topo-
logical graph representation back into 3D. The method consists of
two main steps. We first estimate a set of possible edge categories
for each edge type. In other words, for each pair of parts a,b and of
types A,B, we compute all possible ways to assemble them together
and discretize them into a finite set of categories. (see Figure 5).
Then, we train a recurrent neural network to estimate these discrete
edge configurations from SMILES strings. The resulting sequence
define a spatial embedding of the shape graph represented by the
string.

Local Coordinate Frame Estimation In order to compute al-
lowed configurations of pairs of parts, we first need to estimate a
standard local coordinate frame for each individual piece. A com-
mon approach to address this problem is to perform PCA (Princi-
pal Component Analysis [Pea01]) on the set of vertices and use the
principal axes as a coordinate frame. However, this method is not
reliable for parts with global symmetries because they do not have
a canonical ordering of their principle components.

Instead of PCA, we use a similar approach that considers only
extremal points which makes it robust to deformations on the inte-
rior of parts. We compute a shape “diagonal” by finding the vertex
v farthest away from the center of gravity and the vertex farthest
away from v. We then find the vertex with maximal distance to the
diagonal. We average multiple vertices with the maximal distances
in any of the three searches if the result is not unique. The diagonal
and the last vertex together with its projection onto the diagonal de-
fine a local coordinate frame, which worked better than PCA axes
in our experiments.
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Figure 5: Data-driven estimation of edge configurations. From left to right: the input model, the allowed edge types according to the
extracted grammar, the part centroids for edges of type CD and DA, and all valid pairwise configurations for each edge type (the second
piece is replicated to illustrate possible local assemblies). We cluster relative positions (and orientations) for each valid pair of types to
estimate possible configurations. Then we train a recurrent neural network to assign configurations to graph edges and thereby embed shape
graphs in 3D.

Edge Category Estimation Using the canonical coordinate
frames for each part type, we can compute a set of valid config-
urations for pairs of adjacent parts. Each configuration represents
a different way to attach (or dock) the two pieces to each other.
We solve this by clustering relative part positions (and, if neces-
sary orientations) for each edge type (see Figure 5) across the shape
database. We use Mean Shift Clustering [Che95], because the num-
ber of clusters is not known in advance. Means Shift Clustering is
a good fit for our data also because the sample points form well-
separated clusters thanks to the precision we enforce when gen-
erating the set of training shapes. Note that we estimate 3D edge
configurations, meaning that the method is not restricted to planar
shape graphs.

Edge Category Mapping A problem we need to work around is
that the characters of SMILES strings represent node sequences in-
stead of edges. However, the graph nodes appear in the string in
the same order they would appear in spanning tree of the graph.
Therefore, it is possible to map a graph edge to each character in
the string representing a graph node: the edge between the node
and its parent in the spanning tree. Additionally, numbers that rep-
resent cycles also correspond directly to graph edges. We assign a
dummy category to each string character that does not represent a
graph node. These include brackets and special characters used to
separate numbers superseding nodes adjacent to multiple cycles.

Edge Category Learning After constructing a mapping between
each SMILES string and a sequence of graph edge categories, we
can train a sequence to sequence model [SVL14] on the resulting
pairs. Since our target sequences have the same length as the input
strings, we can use a standard deep recurrent neural network con-
sisting of an LSTM and a fully connected layer. We extended the
model with a masking layer that restricts prediction to only plausi-
ble edge categories for the particular edge type. The possible cate-
gories for each edge in a string depend only on the node types con-
nected by the edge and can be computed for any shape graph (see
Figure 5). Therefore we multiply each output vector with a mask
that zeroes the predicted probabilities for types different than the
type of the current edge. In our experiments, introducing masking
lowered the initial prediction accuracy, but slightly slowed conver-

gence to the optimal set of parameters during training. On the other
hand, masking eliminates significant number of possible prediction
errors and improves the prediction accuracy on the test samples.

The availability of multiple SMILES-like representations of the
same graph plays to our advantage here, since it provides multi-
ple training samples from each generated shape. Even though the
general problem of instantiating structure graphs is extremely hard,
learning on the shape collections we generate via graph-based sam-
pling resulted in very accurate predictions: the accuracy on the val-
idation set of samples reached 90% and the model consistently pre-
dict test sequences with only few mistakes (e.g. 6 wrong categories
for a sequence of length 85). We reduced the amount of errors by
estimating categories for multiple SMILES strings representing the
same graph and selecting the most likely category for each edge
across all of its occurrences in the sequences. As a result the trained
neural network can be used to provide an initial guess for the instan-
tiation of strings generated by the VAE in Section 5.

Graph Instantiation Using the estimated edge categories, we
convert the graph topology to a geometric shape as follows. We
start at a random edge of the target graph and incrementally add
nodes by transplanting random edges with matching categories
from the (two) input shapes. Note that we need to consider the edge
categories in both edge directions for a correct instantiation. We
improve the success rate of the algorithm by computing the current
shape subgraph and checking it for grammar violations or poorly
attached building blocks. If we detect a violation that cannot be re-
paired by selecting a different edge with matching categories, we
assume that the requested pair of edge categories is wrong and re-
sort to a Monte-Carlo edge insertion step: We select a random edge
from the input shapes with matching node types and resume the
previous construction algorithm if we find one that can be trans-
planted without violating the grammar.

The success rate of our instantiation method depends on the qual-
ity of estimated edge categories. We could not embed very large
cycles without estimating correctly all (or all but one) configura-
tions of participating edges. However, our method almost always
succeeds for tree-like shape graphs and shapes with smaller cycles,
as discussed in the following section.
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Figure 6: Input shapes S1,S2 and some (not hand-picked) sampled variants for each test model. Note that we are able to synthesize shapes
containing cycles of building blocks, which is not possible when using context-free shape grammars. We maintain high quality by automati-
cally repairing shapes with poorly connected pieces and enforce diversity by discarding variants with repeated node histograms.

7. Evaluation

Implementation We implemented the shape synthesis algorithms
in the paper using C++ with Thrust [BH12], and Python. Please
note that we provide the code as supplemental material and will
make the implementation available as open source with the MIT
license.

Test Models We tested our implementation on 3D models down-
loaded from online repositories or used in related work (the play-
ground model) with node counts ranging from 23 to 70 and triangle
counts between 20000 and 400000. Where necessary, we split the
model into parts and assigned node types by coloring them before
creating two example shapes by applying copy-paste operations,
translations, and rotations of building blocks. We then iteratively
select pairs of shapes, sample random subgraphs and attempt to
combine them into new, valid variations. At the end of each itera-
tion we attempt to correct local part orientations of newly created
shapes and discard the model if the attempt fails, thereby main-
taining reasonably high quality of sampled variations. We repeat
the procedure until we reach a sufficiently large number of strings
that we use for training. Note, that with the exception of the greek
houses examples, we evaluate on examples with very restrictive
grammar rules, which makes it difficult to sample new variations
both procedurally and later from the latent space of the autoen-
coder.

Shape Interpolation See Figure 7 for an example shape interpola-
tion result using the latent space of the trained autoencoder. While
useful for discovering additional shapes, this method is not guar-
anteed to deliver desirable intermediate shapes, because distances
the latent space of the autoencoder do not necessarily correspond

iteration: 1 2 3 4 final

size S1 strings strings strings strings strings
scene size S2 shapes shapes shapes shapes shapes

27K 169 864 4389 28596 138835
church 45K 4 13 37 145 529

sand 23K 88 374 1333 3832 146594
castle 13K 5 17 42 91 484

moon 243K 124 227 346 451 19299
base 413K 5 7 7 10 68

play- 129K 220 629 1751 3257 557895
ground 87K 6 12 17 18 137

brick 113K 233 699 1265 2693 181969
buildings 103K 6 9 15 18 104

greek 28K 501 448639 – – 448639
houses 37K 19 1084 – – 1084

Table 1: Input model sizes in the number of triangles and shape
collection growth with each iteration of sampling. The larger
amount of strings compared to shapes is due to the multiple pos-
sible string representations of the same graph. We did not generate
all possible strings for each shape.

to shape similarity. This can be addressed easily via constraints
on latent space such as the construction detailed in Section 5.3.
The graph topological search (see Figure 10) performed very well
on the majority of datasets and in particular on the playgrounds,
greek houses and moon bases. We validated the embedding pro-
vided by our variational autoencoder by constructing the search
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B(AAAAB(AAAA0)AC)(AC)AAAAB(AAAAB0AAAD)AC

CAB(AAAAB(AC)AA0)AAAAB(AA1)AAAB(AAAAB(AAAB(AA0)AA1)
AAAAB(AC)AAAAB(AD)AC)AC

A(AAAB(AAAAB(AC)AAAAB(AD)AC)AD)B(AC)AC

A(AAAB(AAAAB(AC)AA0)AD)B(AA1)AAAB(AAAAB(AAAB(AA0)AA1)
AAAAB(AC)AAAAB(AD)AC)AC

A(B(AAAAB(AD)AAAAB(AAAA0)AC)AC)AAAB0AAAAB(AC)AAAAB(AD)AC

Figure 7: Latent path example: The models (left to right) and their
string encodings (top to bottom) are discovered on a random path
in latent space with the leftmost and rightmost shapes as endpoints.

graph naïvely from strings(see Table 2). Each point (string) is con-
nected to its 3 nearest points (strings) and all equivalent strings.
However, the simplified method produced graphs with multiple dis-
connected components, and edge augmentation made interpolation
paths very long both topologically and according to E.

graph graph connected avg max
scene type size components weight weight

sand naïve 1000 102 4.71 12.17
castle ours 1000 1 0.50 1.09

moon naïve 1000 30 2.29 5.50
base ours 1000 1 0.39 0.55

greek naïve 1000 67 2.55 11.36
houses ours 1000 1 0.31 0.49

Table 2: Ablation study comparing a naïve search graph construc-
tion using string similarity directly instead of distance in the au-
toencoder latent space (see Section 5.3). We sample shortest paths
between nodes using the string similarity metric E as edge weights
in both cases and report average and maximum (accumulated) edge
weights along these random path samples (lower is better).

Probabilistic Methods Shape modeling methods based on sub-
sequet random applications of grammar rules to generate shapes
are not well suited for the topological variations we consider here.
We can demonstrate this by ignoring the suggested edge categories
in the last step of our instantiation implementation, converting it
to a naïve random shape assembly algorithm. In Figure 8 we can
see several failed attempts to compute a valid shape containing
a long cycle. The probability of reproducing this particular cy-
cle is approximately 1

514 because of the 6 possible edge config-
urations for each of the 15 participating green (C) and red (A)
tower pieces. Even a seemingly simple example such as the shape
in Figure 9 is very unlikely to be constructed via random applica-
tions of production rules, while we were able to embed the string

target string:
CDA(DC)(DC)(DCDCDCDCDCDADADADADCD0)DCDCDCDC0

valid

Figure 8: Invalid MCMC attempts to embed a graph with a large
cycle in 3D. The only “valid” (according to the extracted grammar)
shape does not have the graph topology represented by the string.
The remaining shapes contain a wall piece (D) and/or a red tower
piece (A) with less than two neighbors.

from the first attempt. It should be noted, that related works (such
as [RJT18, RMGH15]) using context-free grammars, where this
problem is not present, can provide improved probability at each
step, however the exponential nature of the problem remains.

string: B(D)C(AC(BD)AC(AC0BD)BD)AC(AC(BD)A0)BD

training sample graph embedding

Figure 9: Example model, its string decoded form the VAE’s latent
space, and embedded in 3D via estimated edge configurations.

Compression The trained VAE model and instantiation RNN can
be used as a compressed representation of the shape database. Each
of the training shapes as well as additional samples generated via
latent space sampling can be stored as two sequences: the string
representing the graph topology and the corresponding sequence of
edge categories suffice to reconstruct the shape exactly by “borrow-
ing” geometry from the pair of input models.

Limitations Even though, this work makes a step towards solving
the problem, both discovering and instantiation of strings repre-
senting shapes with cycles, remains harder compared to context-
free variations. This is most likely caused by the string conversion
method, which is better suited for encoding sequences and works
around branching and cycles via additional characters. An extreme
example presents itself in the brick buildings dataset, where we had
to discard the cycle edges and only used strings representing the
spanning trees of the shape graphs for training. We believe that
these limitation can be lifted by using a better variational autoen-
coder, better suited for sampling vectorized graph topologies, e.g.,
methods similar to Liu et al. [LABG18]. It should also be noted that
the amount of automation (an important aspect of our work) can
become a limitation in application scenarios that require a higher
degree of user control during modeling.
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new

newnew

Figure 10: Shape interpolation examples. We display random shortest paths from the graph in latent space with edge weights according to a
similarity metric. The resulting intermediate shapes are more intuitive compared to using Euclidean distances in latent space. Shapes marked
as “new” were not present in the (automatically generated) training sets and were discovered by sampling the latent space of the variational
autoencoder.
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8. Conclusion

We introduce a combination of a model-based and a data-driven
shape synthesis method able to create shapes from non-context-
free shape grammars, a problem that is undecidable in general. We
achieve this by learning vectorized representations of shape graphs
with a variational autoencoder and perform high-level modeling
operations via sampling in the resulting continuous latent space.
We also demonstrate how the resulting sequences can be mapped
back to geometric shapes by solving a classification problem. In
addition, we deduce the assembly rules and automatically create
sufficient training shapes from a single (or a few) example shape
decomposed into building blocks. Altogether, our method provides
a proof of concept for automatic shape synthesis of structured shape
variations with arbitrary number of parts.
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