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Abstract. We present a new method to interactively compute and visu-
alize fiber bundles extracted from a diffusion magnetic resonance image.
It uses Dijkstra’s shortest path algorithm to find globally optimal path-
ways from a given seed to all other voxels. Our distance function enables
Dijkstra to generalize to larger voxel neighborhoods, resulting in fewer
quantization artifacts of the orientations, while the shortest paths are still
efficiently computable. Our volumetric fiber representation enables the
usage of volume rendering techniques. Therefore no complicated pruning
or analysis of the resulting fiber tree is needed in order to visualize im-
portant fibers. In fact, this can efficiently be done by changing a transfer
function. Our application is highly interactive, allowing the user to focus
completely on the exploration of the data.

1 Introduction

Diffusion Magnetic Resonance Imaging (AMRI) is a non invasive imaging method,
that measures the diffusion of water within living tissue. Fibers, membranes and
other molecular structures are pipelines or obstacles for the water molecules and
thus influence their movements into certain directions, i.e. water majorly flows
along fibers. Diffusion MRI measures this flow and translates these measure-
ments to oriented distribution function (ODFs), which locally characterize the
probability of water flowing into a certain direction. We use Diffusion Tensor
Imaging (DTI) to demonstrate the effectiveness of the suggested pipeline, but a
generalization to High Angular Resolution Diffusion Imaging (HARDI) such as
Q-Ball Imaging [1] is just a matter of adapting a distance function.

To better understand the connectivity within the human brain, the ultimate
goal is to reconstruct the “true” fiber pathways from these ODFs. We present an
efficient method to compute and visualize such globally connected fiber tracts
based on Dijkstra’s shortest path algorithm and represent the resulting pathways
in a volumetric fashion. Related approaches typically use 26 neighbors defining
the edge relation of Dijkstra’s graph, leading to discretization artifacts, especially
problematic for HARDI data. We explore the usage of larger neighborhoods and
thereby reduce such artifacts. Our approach efficiently integrates the ODF along
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a path between neighboring voxels and controls the directional sensitivity of the
propagated front by a single parameter.

The idea of our volumetric fiber representation is to count the number of
pathways (computed during Dijkstra) that run through a given voxel. We adapt a
transfer function, commonly used in volume visualization, to continuously blend
in and out fibers instead of tediously trace and prune the obtained tree structure.

2 Related Work

Classical tractography traces possible nerve tracts starting from a seed position.
Early deterministic approaches are the streamline tracking technique (STT) and
tensor deflection (TEND) [2]. A number of probabilistic tractography techniques
have been presented based on modeling and sampling an ODF in each voxel [3,4].
Difficulties in probabilistic tractography mainly involve the reported running
times [5], which can range to 24h using Monte Carlo-based sampling [3] or need
to be implemented on modern GPUs to reduce the computation time [6]. Some
recently proposed tracking algorithms are based on a weighted graph-structure
[5,7]. Using shortest path algorithms enables globally optimal, deterministic re-
sults and allows to bridge tract connections otherwise lost in other approaches.
As noted in [5] more than 26 neighboring voxels may be required to correctly
capture fiber tract orientations, which leads to a computationally more involved
tracing approach, but no practical details on implementational aspects or analy-
sis of different neighborhoods are given. The most related work to our approach
is [7]. The main difference is that we use physically motivated weights and allow
for arbitrarily sized neighborhoods, which are efficiently integrated in Dijkstra’s
algorithm. Additionally we do not require any heuristics for pruning the short-
est path tree. Simultaneously visualizing all pathways in 3D, often affects the
clarity of the illustration. To enhance explorability, some approaches filter the
computed tracts [8,7] in a preprocessing step. Additionally visualizing scalar
properties such as uncertainties, densities or distances from a seed is often lim-
ited to separate 2D opaque images [5,7]. 3D volume rendering has been used to
render local scalar quantities, such as uncertainty of probabilistic tractography
pathways [9], or local tensor orientations [10]. Our visualization is also based on
volume rendering. Since, highlighting important fibers requires only the adaption
of a transfer function, which can be done in real time. The visualized informa-
tion is purely based on the shortest path tree and thereby follows up on the
future work posed in [7] to further exploit the Dijkstra information for a better
visualization. For an exhaustive overview of dMRI we refer to the survey [11].

3 Fiber Extraction Pipeline

Our approach to transform the information given as local diffusion tensors into
globally connected pathways representing the fibers is based on Dijkstra’s short-
est path algorithm. This algorithm takes an edge weighted graph G = (V, E) as
input, starts from a given (set of) seed node(s) and sequentially conquers the



Interactive Visualization and Exploration for Diffusion Fiber Tracking

remaining nodes of the graph in the order of increasing distances to the seed (cf.
Fig. 1). Since a predecessor map pre[v] is stored for each node v, it is always
possible to trace back a unique path to the seed. In our setting the nodes of the
graph are a subset of the DT image voxels and the weight between two neigh-
boring nodes shall be small if the ODF indicates a large flow between them. To
represent the fibers we use the resulting predecessor map to trace all possible
pathways back to the seed and thereby count for every voxel the number of
pathways that run through it. We use volume rendering techniques to highlight
regions with a high count value, i.e. regions containing many fibers.

3.1 Tracing the DTI Volume

The simultaneous motion of water molecules in different directions (Brownian
motion) can be described by a tensor T € R3*3 = U - D - UT, where U is
an orthogonal matrix storing the main diffusion axes column-wise and D =
diag(A1, A2, A3) is the diagonal matrix of eigenvalues of T'. Given a direction r this
tensor can be used to compute the flow of water into this direction f(r) = r7 T r.
Nodes of G. To restrict our computations to the white matter of the human
brain we define the nodes V' of G to be those voxels with a fractional anisotropy
(FA) > 0.1 [8]. This filters out voxels with no pronounced fiber directions.
Edges of G. When defining the connectivity of G and thereby the set E of
edges, one typically uses the 26 neighbors of the 1-ring of a voxel for simplicity. To
more accurately capture the tensor directions in strongly anisotropic regions, we
present an efficient way to also handle arbitrary n-ring neighborhoods. Since the
goal of using larger voxel neighborhoods is to increase the number of directions,
we can save memory and compute time by discarding redundant edges whose
orientations are already covered by shorter edges (cf. top left image of Fig. 1).
When using n-ring neighborhoods with n > 2 some care has to be taken during
Dijkstra when conquering a voxel v. To avoid back and forth motion of the front
we need to conquer all voxels between v and pre[v]. In a preprocessing step we
intersect each possible edge with a smaller grid defining the neighborhood stencil
and store a list of visited voxels {v;} and a corresponding list of line segments of
length {l;} (cf. bottom left image of Fig. 1). During Dijkstra all voxels between
v and pre[v] can then simply be tagged by traversing the respective list {v;}.
FEdge weights. Imagine the edge e is embedded in a continuous tensor field T,
with x € R3. Intuitively spoken the contribution to the edge distance d[e] of one
infinitesimal line segment dt at position x should be low if the local tensor indi-

cates a strong flow into the edge direction r (||r|| = 1). We base the edge distance
on the inverse metric tensor and define d[e] = fe (bT - diag (%, A%, )\%) . b) dt,
1 2 3

where b = U” - r. The introduced parameter o controls the sensitivity to the
anisotropy of this flow metric. When increasing «, the front rapidly moves along
significant fibers first (cf. Col. 2 of Fig. 2). This integral over an edge is discretized
by a Riemann sum with nearest neighbor sampled tensors {T;} of the voxels {v;}
intersected along the edge and weighted by the length of the respective segments
{l;} (cf. Fig. 1) such that dle] = >, (v7 - T, * - 1) ;.
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Input: A graph G = (V, E) with edge distances d[e] and seed nodes {s}
! /. Output: A predecessor map pre[v] and a distance map dist[v] Vv € V/
for v € V do
dist[v] = oo; pre[v] = —1;
dist[s] = 0; F = {s}; C = 0;
while F #( do
ve = argmin,, ¢ p {dist[v]}
L = { all v € G intersected by the line between pre[v.] and v}
C=CUL; F=F\L;
N = {v € V|(v.,v) € E}
for v, € NN (V\C) do
dist’ = dist[ve] + d[(ve, vn)];
if v, € FF then
if dist’ < dist[v,] then
dist[v,] = dist’; pre[v,] = ve;

Neighborhoods
\

(\w
L] L
\0\) Vi
L]

vg
{v;} and {i;}

else
F = F U {v,}; dist[v,] = dist’; pre[v,] = ve;

n-Ring neighborhood Dijkstra Alg.

Edge Information

Fig. 1. On the top left a quadrant of a 2D visualization of different neighborhood sizes
is shown. Omitted, linear dependent directions are color-coded in gray. The information
(intersected voxels and lengths) stored for each e € E is shown on the bottom left.

3.2 Representing Fibers

The unique predecessor relation pre[v] (cf. Fig. 1) defines a tree of globally
optimal shortest paths along nerve fibers starting from a seed node. Instead
of extracting an explicit tree topology, we represent the structure of this tree
in a volumetric fashion by tracing back all end points to the seed (end points
are defined as tree nodes having a predecessor but no successors and are found
by building a successor map from the predecessor information). Whenever we
traverse a voxel during this process we increase a value stored at that voxel by
the respective partial edge length [;. The result is a volumetric image where
voxels have high intensity values if intersected by many pathways.

4 Results

We used a DT image with 128x120x75 voxels, from which we extracted 171041
nodes with FA > 0.1. We simultaneously visualize an anatomical image and the
volumetric fiber representation (cf. Sec. 3.2) using direct volume rendering. By
designing a transfer function that maps intensities I smaller than a user defined
value I, to blue and opacity 0 and intensities larger I, to red and opacity 1,
we can continuously prune fibers by interactively adapting I, and I,. Within
the interval we linearly interpolate opacity and hue values. Defining a narrow
interval at the right spectrum of intensities only visualizes the main fibers, while
a wide interval also reveals fine structures (cf. Col. 4 of Fig. 2). Exploring the
volume and simultaneous seed placement using a 3D mouse is possible at high
frame rates of about 50 fps on an Intel(R) Core(TM) i7 CPU with 2.67 GHz.
Since all computations (cf. Sec. 3) run in a separate thread and updates are
displayed immediately after computation, the application is highly interactive.
Since voxels with a high flow rate are conquered first, the last conquered
nodes of G usually do not contain many paths. This allows us to speed up the
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Fig. 2. Connection between the eyes and the visual cortex. Col. 1: Effect of conquering
different portions of the graph. Col. 2: Influence of a. Col. 3: Different neighborhood
sizes. Col. 4: Visual pruning of the tree by changing the transfer function.

computation by only conquering a certain portion of the graph. Our experiments
indicate that all important pathways have been extracted, when aborting the
computation after conquering 50% of the nodes (cf. Col. 1 of Fig 2). While

Cells (%) O-Ring 1-Ring 2Ring 3-Ring Table 1. Timings (in ms) for different
100 160/160 240/160 420/160 660/155 . .
75 135/110 190/120 350/140 600/155 portions (25% - 100%) and neighborhood
50 90/80  140/75 255/105 450/118 sizes (the O-ring has 6 neighbors).
25 35/28 100/50 105/40 300/70

timings for Dijkstra are mainly affected by the neighborhood size (first numbers
in Table 1), the timings for tracing back endpoints (second numbers) are mainly
influenced by the amount of endpoints, which depends on the portion of nodes
to be conquered. Col. 2 of Fig. 2 shows how the parameter a can be used to
influence the anisotropic movement of the front. Keeping « small results in a
more spherical expansion pattern while high values for « force the front to quickly
follow important paths. In this example we place the seed near the left eye and
major pathways end near the visual cortex. Using the 1-ring results in pathways
similar to using larger neighborhoods (cf. Col. 3 of Fig. 2). This is good, since such
neighborhoods were often used in previous works. Nevertheless, including voxels
from the 2-ring reveals more, finer structures. When using larger neighborhoods
we only gain a bit more information, so we use the 2-ring by default.

5 Discussion

We presented an efficient method based on Dijkstra’s algorithms to compute
and visualize globally connected pathways representing fibers originating from
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an interactively placed seed point. Compared to earlier approaches we investi-
gated the usage of larger neighborhood sizes to reduce discretization artifacts,
presented an efficient way to precompute the edge weights, and implemented the
fiber extraction in a separated thread, which enables the interactive exploration
of the diffusion data. Since our visualization approach is based on volume render-
ing, highlighting important fibers is just a matter of adapting a transfer function.
We visually validated that the enhancement of the anisotropic movement of the
front (parameter « in Section 3.1) and the usage of a larger voxel neighborhood,
yields plausible and smooth pathways according to our collaborating partners
from the field of medicine.

To visualize specific nerve bundles, we plan to interactively define a target
region besides the seed, which requires the user to have some anatomical knowl-
edge. After computing Dijkstra one can automatically select those endpoints,
whose paths to the seed intersect the user defined target region. We expect that
tracing back (cf. Sec. 3.2) those paths would restrict the visualization to specific
connections. In our current system we represent the ODF by a single elliptically
shaped tensor. In future work we would like to use arbitrary ODFs to compute
the edge distances. Then, this approach also works for HARDI data like Q-Ball
Images, which would lead to even more reliable representations of the fibers.
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