
Using Simulated Annealing to Obtain Good
Nodal Approximations of Deformable Bodies

Oliver Deussen and Leif Kobbelt and Peter Tücke
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Abstract. In this paper we present a method to obtain good approximations of de-
formable bodies with spring/mass systems. An iterative algorithm based on voronoi
diagrams is used to get a good mass distribution. The elastic properties of the system
are optimized by simulated annealing. Results are shown, and some applications
are discussed.
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Real time simulation and interactive control of deformable bodies are of great interest
to computer graphics and other fields like pattern matching or medical visualization.

Spring/mass (or nodal) systems are often used to obtain efficient simulations of
deformable objects if lower requirements for the simulation precision are given.

Terzopoulos and Waters [15, 13] used them for modeling and simulating facial
tissue. Simulation of woven clothes was done by Breen [4]. In an early work, Miller
[11] used nodal models to simulate utricular objects.

In medical research similar systems are used to simulate human organs for training
tasks in endoscopic surgery [10, 6], and for general surgery simulation and planning [5].

To reproduce a specific mechanic behaviour of a spring/mass system, parameters
like spring constants can either be preset, or optimized iteratively. We show that within
some general limits, such optimizations yield systems which approximate objects with
given elastic properties quite well.

1 Nodal Approximations

In general, a spring/mass system (SMS) is a collection of points (or particles) with a
specific mass, that are connected by springs, dampers or plastic elements. The discrete
Lagrangian equation of motion for a point pi at positionui and mass mi has the simple



form (cf. [15]): miüi + 
u̇i = Fe � Xj2NiFij ; (1)
where 
 is a general damping coefficient, and Fe denotes an external force acting on
the point. The forces Fij are exerted by elastic, viscotic and plastic connectors betweenpi and neighbour points pj (Ni: set of neighbours).

1.1 Finite Element Formulation of Nodal Systems

The idea of approximating a deformable body with a system of springs is surprisingly
old. In 1868, Kirsch [9] derived the fundamental equations of elasticity from a system of
springs approximating a small cube. His work was one of the bases of the finite element
method (FEM).

Today pin jointed trusses (assemblages of axially loaded elastic bar elements) are
used in structural mechanics as idealizations for many problems. The FEM approach is
widely used for such systems.

Those trusses can be seen as spring/mass systems. The only difference is that within
trusses bars have a mass and joints are massless whereby in a SMS massless springs
are connected by mass points that behave like spherical joints. In both cases, the mass
distribution can be expressed by a mass matrix M.

If only elastic and viscotic connectors are used, equation (1) can be written in matrix
calculus (cf. [2]) by: Mü+Du̇ = Fe �Ku: (2)
In this equation, u = (u1x; u1y; u1z; :::; unx; uny; unz)T is the vector of all point
positions1, D is the damping matrix and Fe denotes the external forces acting on
the nodes.K is the systems stiffness matrix. This matrix describes the forces on nodes
as a result of deformations and can be seen as a generalized spring constant.

In comparison to other systems of finite elements, nodal systems do have the advan-
tage of M being diagonal, which is simple and convenient for mathematical handling
(cf. [8]). In addition, equation (2) can be solved by local application of equation (1)
to each node. This leads to more efficient algorithms (cf. [15]), especially if parallel
computers are used.

Table 1 shows some computation rates (calculations per second). The local simula-
tion method based on equation (1) is independent of the bandwidth ofK. FEM methods
based on equation (2) do have low computation rates ifK is recalculated in every step.
This has to be done to make the FEM method comparable with the local algorithm. IfK
is updated every eighth step, the computation rates for systems with a small bandwidth
are close to that of the local method.

For small deformations (the geometric linear case) K can be assumed constant. In
this case the computation rates are high, but simulation precision decreases.

The calculation of equilibrium states is computational expensive because a linear
equation system based onK has to be solved.

1More precisely u describes the displacements of points to an initial position with zero inner energy of
the system (indicated by jKuj = 0).
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Table 1: Computation rates (calculations per second, SUN Sparc 20)

Bandwidth ofK 49 37 25 21
1) Local integration 37 37 37 37
2) FEM (K updated every step) 8 9 10 10
3) FEM (K updated every eighth step) 19 23 31 33
4) FEM (K constant) 25 32 43 48
5) Equilibrium calculation 2.5 4 7 9

Investigated was a system with 84 nodes, 231 edges and different bandwidth of K. 1) computation
with local method; 2) FEM solution with updating of matrix K in every step; 3) FEM solution, K
is updated every eighth step; 4) FEM solution without updating; 5) computation of equilibrium.

As a consequence, we use a finite element method based on band matrices to obtain
equilibrium states within the optimization process (in section 5.3) and local methods for
the efficient solution of equation (2) during simulation.

2 Optimal Elastic Systems

Given a deformable body B with mass density �(u), surface A and elastic properties
represented by a functionG (cf. [7]). This function determines the stress-strain relation� = G(�); (3)
and thus the forces needed to deform a body in a certain way (see section 5.1).

In the most general case, we have G 2 IR9 � IR6. For linear problems and elastic
homogeneous and isotropic materials, G is a symmetric 6 � 6 matrix. In this form the
relationship is known as Hooke’s law. For many natural materials in the linear elastic
case, G can be expressed by two independent constants, usually E (Young’s modulus)
and � (Poisson’s ratio).

The optimization process will be demonstrated in two-dimensional space with linear
elastic loads of homogeneous materials. Extensions to 3-D and to anisotropic and
inhomogeneous materials are discussed below.

To get an optimal spring/mass system, we have to approximate the mass distribution
by discrete mass points, and elasticity by the topology of the connections together with
their spring constants. This is done in two steps. First, we find positions and masses of
the points, then we insert and optimize the connections.

3 First Step: Positioning Points

Given an arbitrary body B with surface A, two ways of point positioning were tested.
Regular grids (see below) with predefined connection structures were used as well as
systems based on randomly given points.
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3.1 The Iterated Voronoi Approach

Our observation was, that systems with arbitrary given points do not lead to good
results in simulating elastic behaviour of homogeneous bodies. To solve this problem we
developed a method of moving the points slightlyin order to obtain a more homogeneous
point positioning.

For each given point pi 2 P , the corresponding Voronoi region V (pi; P ) is defined
by V (pi; P ) = fjq � pij < jq � pjj; q 2 IR3; pj 2 P � fpigg:

The set of resulting regions for all pi is a tesselation of the plane, it can be computed
in O(n logn) time for n given points in two-dimensional space (cf. [12]). Since the
boundary of each V is polygonal, we can easily intersect it with A.

(a) (b) (c) (d)

Figure 1: Point positioning - a) random points; b) Voronoi regions; c) cutted regions with moved
points; d) regions after 15 iterations, together with point motion.

Next, the pi are moved to the center of gravity of the corresponding Voronoi region
(Figure 1). This process can be iterated. During iteration, the standard deviation of the
point to point distances reduces as well as the standard deviation of the Voronoi-region
sizes (Figure 2).
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Figure 2: Standard deviation during iteration - a) point to point distances; b) sizes of Voronoi-
regions.

Both results indicate a more homogeneous point positioning after some iterations.
After the last iteration the weights are computed according to section 4 (see below).
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3.2 Regular Grids

Besides random positioning of points, we used regular grids together with specific
connection topologies. These configurations lead to good approximation results with
the investigated loads (see below), but may have an anisotropic behaviour because of
their regularity (like crystals do).

Figure 3: a) regular grids used; b) Suitable topologies to connect the grids.

To combine regular grids with arbitrary surfaces, tesselation is necessary. In the
context of our quantitative study in the following paragraphs, we omit such tesselations
because their results are hard to interpret.

4 Second Step: Calculation of the Mass Distribution

If the point positions ui are known, we have to approximate the mass distribution ofB by assigning masses m(ui) := mi to the points. The approximation of B by a set
of tupels (ui;mi) is considered to be good, if the mass moments pjkl up to order two
coincide. These moments determine the linear and angular accelerations to external
forces and torques.
The relevant mass moments pjkl of B are computed bypjkl = ZB ujxukyulz�(u) du j + k + l � 2: (4)
SubstitutingB by a finite set of points ui corresponds to approximating this integral by
the sum pjkl = nXi=1

ujxiukyiulzi mi j + k + l � 2: (5)
Equation (5) can be considered as the application of a cubature formula for the integrand
function f(u) = ujx uky ulz�(u) over the domain B, where the points ui are the sample
points and mi are the weight coefficients for the formula. Hence, the approximation(ui;mi) of B meets all relevant mass moments if and only if this cubature formula has
at least quadratic polynomial precision, i.e., if and only ifAm = p; (6)
where m = (m1; : : : ;mn�1)T is the vector of mass coefficients, p = (p000; p100;p010; p001; p110; p101; p011; p200; p020; p002)T is the 10-dimensional vector of exact mo-
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ments of B, andA is the (10 � n)-matrix withAT = 0BBB@ 1 ux1 uy1 : : : uy1uz1 u2x1 u2y1 u2z1

1 ux2 uy2 : : : uy2uz2 u2x2 u2y2 u2z2
...

...
...

. . .
...

...
...

...
1 uxn uyn : : : uynuzn u2xn u2yn u2zn 1CCCA :

The solution of the under determined system (6) with least Euclidian norm kmk2 is of
the formATx with x 2 IR10 [3]. Hence, the mass coefficientsm = ATx can be found
by solving AATx = p: (7)
SinceA is a Vandermonde matrix,AAT is regular if there is a collection of 10 pointsui which does not lie on a polynomial surface p(x; y; z) = 0 of degree less than or
equal to two.

Capturing third or higher order moments of B yields no significant improvement of
the approximation und thus the degrees of freedom for the choice of the mi are used
in a way that kmk2 is minimal. In this case the masses are distributed as uniform as
possible.

5 Third Step: Optimizing Elasticity

Given n points with positions and masses. The connections can be found as follows:
If the points are distributed randomly, we use a Delaunay triangulation to obtain pairs
of points to be connected by springs. Two points are joined if they have a common
edge in the Voronoi diagram. This triangulation method is widely used in finite element
mechanics.

For regular grids, we tested several topologies in order to find suitable elastic ap-
proximations. Good results are given by structures as those shown in Figure 3(b).
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Figure 4: Test configurations with resulting deformations of a surface.

A good approximation of the elastic properties is found if the system’s displacement
due to some basic loads is similar to that of the given body B. Figure 4 shows the
configurations used, B is a square plate. In situations (1) and (2), stretching loads are
applied, shearing is done in situations (3) and (4).
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5.1 Getting Reference Values

For some simple bodies and special configurations it is possible to get an analytic
solution of the resulting displacements due to external forces (cf. [2]). 2

As a reference, we calculate the deformation of the square plate shown in Figure
4(1). In this situation a uniform distributed force is applied to one side, the opposite one
is constrained in x-direction, but not in y-direction.

(a)

σ

x

y

(b)

x

y

σx
E

−νσy
E

Figure 5: a) Plate with uniform distributed load to two opposite sides; b) resulting deformation.

This situation is equivalent to the application of a uniform distributed load � to
two opposite sides, whereby the body is constrained such that rigid body motions are
permitted (Figure 5).

We assume a linear elastic deformation and a material that can be expressed by
Poisson’s ratio � and Young’s modulusE. In section 2 we gave the general formulation
of the strain-stress relation (see equation (3)). This relation, now written in matrix
calculus, has to be satisfied:0@ �x�y
xy 1A = 1E 0@ 1 � � � 0� 1 � � 0

0 0 2(1 + �) 1A0@ �x�y�xy 1A ; (8)
as well as the equilibrium condition @@x 0 @@y

0 @@y @@x !0@ �x�y�xy 1A = � FxFy � (9)
and the strain-displacement relation0@ @@x 0

0 @@y@@y @@x 1A� uxuy � = 0@ �x�y
xy 1A : (10)
Since rigid body motions are permitted, we have Fx = 0; Fy = 0 and assume�x = �; �y = 0; �xy = 0

2For more complicated bodies and situations more precise finite element methods are used to get reference
values.
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which satisfies equation (9). The stresses can be computed by application of Hooke’s
law (equation (8)): �x = �E ; �y = �� �E ; 
xy = 0:
Integration according to equation (10) leads to the desired displacementsux = �xE + f(y); uy = �� �yE + g(x):
We set f(y) and g(x) to zero, the proof of correctness for doing this is omitted here.

5.2 Initial SMS Configuration

The initial spring constants of the SMS are set according to Young’s modulus (E). For
a spring of resting length s0, the spring constant is set heuristicially to K = E � s0=4.
The upper part of Figure 8(a) shows the calculated displacements of the initial SMS,
approximating the deformations of the given surface. They are drawn using dotted lines.

5.3 Fast Calculation of Displacements

During the optimization process, the displacements u of the SMS which are due to the
applied forces Fe have to be calculated very often. Within the equilibrium state of the
system they are obtained by solvingFe �Ku = �Fb; (11)
which is the solution of equation (2) with vanishing ü and u̇. The additional vector Fb
describes the bearing forces in fixed points. The equation system is solved on the base
of band matrices, the necessary node enumeration is done with an optimization method
in a preprocessing step. Because K is changed in every optimization step, it can not be
inverted in advance.

5.4 Quality Criteria

For each point position of the SMS and each of the test configurations, the reference
displacement uref is calculated according to paragraph 5.1. The aforementioned FEM
approach is used to compute the actual displacements u during optimization.

One possibility to describe the quality of an SMS approximation is the standard
deviation between actual and reference displacements of all its points:Gs :=vuut 4Xi=1

�ui;ref � ui�2: (12)
Here, ui denotes displacements according to the test configuration i of Figure 4.

Other criteria are weighted standard deviations where border and corner points have a
stronger influence. We denote the weight factors as Ga:b:c, where a is the weight of inner
points, b that of border points and c of corner points.
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5.5 Optimization by Simulated Annealing

Simulated annealing (cf. [1, 14]) is used as optimization method. This algorithm was
originally designed for discrete problems but was later adapted to continuum problems.
The method seems to be adequate because a pure gradient-descent delivered bad results,
and analytic methods were very inefficient because of the high degree of freedom within
the system. Another advantage is the simple algorithm (Figure 6).

temperature := initial temperature;Gmin := 1034; f or some other good initial value :-) g
for i := 0 to no of temperatures-1 do begin

temperature := temperature * ri; f over-exponential g
good steps := 0;
k := 0;
repeat

Choose randomly an edge e;
Change randomly spring constant of e;
Calculate G according to equation (12);
if (G < Gmin) then begin f the system is now a better approximation gGmin := G;

good steps := good steps + 1;
end else begin

Choose random number p 2 [0; 1];
if (p < e Gmin�Gtemperature ) f take worse approximation g

then Gmin := G;
else put back old spring constant of e;

end
k := k+1;

until (k>nlimit) or (good steps>glimit)
end

Figure 6: Simulated annealing algorithm.

A drawback of the method is the high sensitivity to the number of temperatures,
the initial temperature, the reduction function and the number of good steps (glimit)
allowed in each temperature. Although, we found generally applicable values for those
parameters (e = number of edges):

Parameter initial temperature r nlimit glimit
Value [0:0001::0:001] [0:97::0:99] e � 2 e

The simulated annealing process converges if nearly no bad steps are done any more
(due to temperature) and the improvement at each temperature is below some threshold.
We used an over-exponential temperature reduction to get convergence.
Another possibility is to stop the algorithm after a specific number of temperatures (e.g.
no of temperatures = 2*e) as done in Figure 6. In this case, the time complexity of the
algorithm is O(e2).
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6 Extension to 3-D

Because equations (2) and (11) are formulated independently to the dimension, the
method can be extended to 3-D without general changes. Instead of optimizing the four
situations of Figure 4, now we have to consider nine basic loads (Figure 7).
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Figure 7: Basic loads in three dimensional space.

Reference values can be obtained similar to the 2-D method demonstrated in section
5.1. The annealing process works the same way as shown in Figure 6.

Some more effort is needed to calculate the Voronoi regions (now polyhedrons)
within the mass point iteration. The number of edges obtained by the Delaunay triangu-
lation is O(n) if working in 2-D, but O(n 3

2 ) in three dimensional space (cf. [12]). This
is of interest because the optimization has quadratic time complexity.

7 Results

In the upper part of Figure 8, initial displacements of a system with 25 nodes and
connection structure 1 (see Figure 3(b)) are shown, in the lower part the system is
optimized. The constants for horizontal, vertical and diagonal springs rsp. are set to
the same value, which is convenient for homogeneous bodies and reduces optimization
effort. The same system with all constants optimized separately is shown in Figure 9.

Rectangular cells are useful to simulate anisotropic behaviour. This can be seen in
Figure 10, where different elasticities in x and y direction are modeled.

An inhomogeneous material is simulated in Figure 11, the results are yet in need of
improvement, but demonstrate the capability of the optimization.
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Figure 12 shows the influence of Voronoi iterations on homogeneity and optimization
quality of a nodal approximation.

8 Conclusion and Future Work

Spring mass systems are often used for real time simulation of complex deformable
objects. Our method allows the generation of systems with definite mechanic behaviour.
We found a way to obtain an adequate mass distribution and simulated homogeneous
materials as well as inhomogeneities and anisotropies. Systems up to some hundred
points were optimized successfully. For large systems the optimization is computational
expensive but this has to be done only once.

Besides the full implementation of the 3-D case, we are working on frequency
analysis. This is a promising approach because natural frequencies give some more
information about the dynamic behaviour of deformable systems. Natural frequencies!i can be obtained by solving the eigenvalue problem(K � �M)u = 0: (13)

The frequencies are derived by �i = !2i . Once again we have the advantage thatM
is diagonal, what makes efficient calculation methods applicable.

Frequency analysis is to be inserted into our optimization process in order to obtain
nodal systems with good equilibrium and natural frequency approximations.

In addition, natural frequencies can be used to find very efficient integration methods
for specific systems and situations. No stepsize control is needed if the highest natural
frequencies are integrated with respect to the sampling theorem. This can be used in
virtual reality applications like surgery simulation or virtual sculpting, for which our
optimization process as well is of high interest.
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Figure 8: Initial (first line) and optimized displacements of a system with 25 nodes and connec-
tion structure 1. Stiffnesses for horizontal, vertical and diagonal springs are set to the same value
(G1:6:18 : 2:8 ! 0:55)
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Figure 9: If all spring constants are optimized separate (which is to be done for inhomogeneous
bodies) the system approximates the given deformations (G1:3:15 : 2:3 ! 0:6) but has some
irregularities within the grid.

Figure 10: Modeling anisotropic behaviour with rectangular cells (G1:3:15 : 10:5 ! 0:48). The
system has different elasticities in x and y-direction, thus the deformations due to the test loads
are different.

Figure 11: Simulation of an inhomogeneous material. The Young’s modulus of the left third of
the plate is twice as high as the right part. In the upper part of the figure the initial approximation
of the spring/mass system was omitted. The lower part shows the optimized system.
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a) Initial given points

b) System after one iteration

c) System after five iterations

d) System after 15 iterations

e) System after 50 iterations

Voronoi iterations 0 1 5 15 50G1:3:15 before optimization 8.6 7.8 7.6 6.0 6.1G1:3:15 after optimization 0.45 0.47 0.44 0.42 0.37

Figure 12: Optimized displacements with different number of preceding Voronoi-iterations. The
The starting quality raises more than the quality after the optimization with 100 temperatures.
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