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Abstract. In this paper we present a method to obtain good approximations of de-
formable bodieswith spring/mass systems. An iterative algorithm based on voronoi
diagramsis usedto get agood massdistribution. Theelastic properties of the system
are optimized by simulated annealing. Results are shown, and some applications
are discussed.
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Real time simulation and interactive control of deformable bodies are of great interest
to computer graphics and other fields like pattern matching or medical visualization.
Spring/mass (or nodal) systems are often used to obtain efficient simulations of
deformable objectsif lower requirements for the simulation precision are given.
Terzopoulos and Waters [15, 13] used them for modeling and simulating facial
tissue. Simulation of woven clothes was done by Breen [4]. In an early work, Miller
[11] used nodal modelsto simulate utricul ar objects.
In medical research similar systems are used to simulate human organs for training
tasks in endoscopic surgery [10, 6], and for general surgery simulation and planning[5].
To reproduce a specific mechanic behaviour of a spring/mass system, parameters
like spring constants can either be preset, or optimized iteratively. We show that within
some general limits, such optimizationsyield systems which approximate objects with
given elastic properties quite well.

1 Nodal Approximations

In generd, a spring/mass system (SMYS) is a collection of points (or particles) with a
specific mass, that are connected by springs, dampers or plastic el ements. The discrete
Lagrangian equation of motion for apoint p; at positionu; and mass m; hasthesimple



form (cf. [19]):
m;; + ’yl-ll' =F° - Z Fij, (1)
JEN;
where v is a general damping coefficient, and F¢ denotes an external force acting on
the point. The forces F;; are exerted by elastic, viscotic and plastic connectors between
p; and neighbour points p; (2V;: set of neighbours).

1.1 Finite Element Formulation of Nodal Systems

The idea of approximating a deformable body with a system of springsis surprisingly
old. In 1868, Kirsch [9] derived the fundamental equationsof e asticity from asystem of
springs approximating asmall cube. Hiswork was one of the bases of the finite el ement
method (FEM).

Today pin jointed trusses (assemblages of axialy loaded elastic bar el ements) are
used in structural mechanics as idealizations for many problems. The FEM approach is
widely used for such systems.

Those trusses can be seen as spring/mass systems. The only differenceisthat within
trusses bars have a mass and joints are massless whereby in a SMS massless springs
are connected by mass pointsthat behave like spherical joints. In both cases, the mass
distribution can be expressed by a mass matrix M.

If only elastic and viscotic connectors are used, equation (1) can be writtenin matrix
calculus (cf. [2]) by:

Mii 4 Du = F° — Ku. (2)

In this equation, u = (u1y, Uty, U1z, -, Una, Uny, Un.)T iS the vector of al point
positions', D is the damping matrix and F¢ denotes the external forces acting on
the nodes. K is the systems stiffness matrix. This matrix describes the forces on nodes
as aresult of deformations and can be seen as a generalized spring constant.

In comparison to other systems of finite elements, nodal systems do have the advan-
tage of M being diagonal, which is simple and convenient for mathematical handling
(cf. [8]). In addition, equation (2) can be solved by loca application of equation (1)
to each node. This leads to more efficient agorithms (cf. [15]), especially if paralle
computers are used.

Table 1 shows some computation rates (cal culations per second). The local simula-
tion method based on equation (1) isindependent of the bandwidth of K. FEM methods
based on equation (2) do have low computation rates if K isrecalculated in every step.
This has to be doneto make the FEM method comparable with thelocal agorithm. If K
isupdated every eighth step, the computation rates for systems with a small bandwidth
are close to that of thelocal method.

For small deformations (the geometric linear case) K can be assumed constant. In
this case the computation rates are high, but simulation precision decreases.

The calculation of equilibrium states is computationa expensive because a linear
equation system based on K hasto be solved.

IMore precisely U describes the displacements of pointsto an initial position with zero inner energy of
the system (indicated by |Ku| = 0).



Table 1: Computation rates (cal culations per second, SUN Sparc 20)

Bandwidth of K 49 | 37| 25|21
1) Local integration 37 | 37|37 |37
2) FEM (K updated every step) 8 | 9|10]| 10
3) FEM (K updated every eighthstep) | 19 | 23 | 31 | 33
4) FEM (K constant) 25 | 32| 43| 48
5) Equilibrium calculation 2514|719

Investigated was a systemwith 84 nodes, 231 edgesand different bandwidth of K. 1) computation
with local method; 2) FEM solution with updating of matrix K in every step; 3) FEM solution, K
is updated every eighth step; 4) FEM solution without updating; 5) computation of equilibrium.

As aconsequence, we use afinite e ement method based on band matricesto obtain
equilibrium states within the optimi zation process (in section 5.3) and |ocal methodsfor
the efficient solution of equation (2) during simulation.

2 Optimal Elastic Systems

Given a deformable body B with mass density p(u), surface A and elastic properties
represented by afunction G (cf. [7]). Thisfunction determines the stress-strain relation

o= G(e), (3)

and thus the forces needed to deform abody in a certain way (see section 5.1).

In the most genera case, we have G € IR® x IRS. For linear problems and elastic
homogeneous and isotropic materials, G isasymmetric 6 x 6 matrix. In thisform the
relationship is known as Hooke's law. For many natural materiasin the linear elastic
case, G can be expressed by two independent constants, usudly £ (Young's modulus)
and v (Poisson’sratio).

The optimization processwill be demonstrated in two-dimensional space withlinear
elastic loads of homogeneous materials. Extensions to 3-D and to anisotropic and
inhomogeneous materia s are discussed below.

To get an optimal spring/mass system, we have to approximate the mass distribution
by discrete mass points, and elasticity by the topology of the connections together with
their spring constants. Thisis donein two steps. First, we find positions and masses of
the points, then we insert and optimize the connections.

3 First Step: Positioning Points

Given an arbitrary body B with surface A, two ways of point positioning were tested.
Regular grids (see below) with predefined connection structures were used as well as
systems based on randomly given points.



3.1 Thelterated Voronoi Approach

Our observation was, that systems with arbitrary given points do not lead to good
resultsin simulating el astic behaviour of homogeneous bodies. To solvethisproblem we
devel oped amethod of moving thepointsslightly in order to obtain amorehomogeneous
point positioning.

For each given point p; € P, the corresponding Voronoi region V (p;, P) is defined
by

V(pi, P)={la—pil <le—pil,q € R pj € P— {pi}}.

The set of resulting regionsfor al p; isatesselation of the plane, it can be computed
in O(nlogn) time for n given points in two-dimensional space (cf. [12]). Since the
boundary of each V' ispolygonal, we can easily intersect it with A.
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Figure 1: Point positioning - @) random points; b) Voronoi regions; c) cutted regions with moved
points; d) regions after 15 iterations, together with point motion.

Next, the p; are moved to the center of gravity of the corresponding Voronoi region
(Figure 1). This process can be iterated. During iteration, the standard deviation of the
point to point distances reduces as well as the standard deviation of the Voronoi-region
sizes (Figure 2).
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Figure 2: Standard deviation during iteration - &) point to point distances; b) sizes of Voronoi-
regions.

Both results indicate a more homogeneous point positioning after some iterations.
After thelast iteration the weights are computed according to section 4 (see bel ow).



3.2 Regular Grids

Besides random positioning of points, we used regular grids together with specific
connection topologies. These configurations lead to good approximation results with
the investigated loads (see below), but may have an anisotropic behaviour because of
their regularity (like crystals do).

Figure 3: a) regular grids used; b) Suitable topologiesto connect the grids.

To combine regular grids with arbitrary surfaces, tesselation is necessary. In the
context of our quantitative study in the following paragraphs, we omit such tessel ations
because their results are hard to interpret.

4 Second Step: Calculation of the Mass Distribution

If the point positions u, are known, we have to approximate the mass distribution of
B by assigning masses m(u;) := m; to the points. The approximation of B by a set
of tupels (u;, m;) is considered to be good, if the mass moments p;x; up to order two
coincide. These moments determine the linear and angular accelerations to external
forces and torques.

The relevant mass moments p; ; of B are computed by

Pijkl = /B u]xuzulzp(u) du jrk+1<2 (4)

Substituting B by afinite set of pointsu; correspondsto approximating thisintegral by
the sum

Pikl = Zuilugluil m; Jtk+1<2 (5
i=1

Equation (5) can be considered as the application of a cubature formulafor theintegrand
function f(u) = u}, u} u}p(u) over thedomain B, where the points u; are the sample
points and m, are the weight coefficients for the formula. Hence, the approximation
(u;, m;) of B meetsall relevant mass moments if and only if this cubature formulahas
at least quadratic polynomial precision, i.e., if and only if

Am = p, (6)

where m = (my,...,m,_1)7 isthe vector of mass coefficients, p = (pooo, P100,
P10, Poo1, P110, P101, Po11, P200s Po20, Pocz) 1S the 10-dimensional vector of exact mo-



mentsof B, and A isthe (10 x n)-matrix with

2 2 2

1 wugr wuyr ... UgiU.1 UG ULy UG

2 2

AT 1 wugn uy2 ... UyUzn UL, Uy Ul
2 2 2

1 upn Uyn ... Uyplep UL, Uy, US,

The solution of the under determined system (6) with least Euclidian norm ||m)||2 is of
theform A7 x withx € IR [3]. Hence, the mass coefficientsm = A7 x can be found
by solving

AATx = p. (7)

Since A isaVandermonde matrix, A A7 isregular if thereisa collection of 10 points
u; which does not lie on a polynomial surface p(z, v, z) = O of degree less than or
equal to two.

Capturing third or higher order moments of B yields no significant improvement of
the approximation und thus the degrees of freedom for the choice of the m; are used
in away that ||m||» is minimal. In this case the masses are distributed as uniform as
possible.

5 Third Step: Optimizing Elasticity

Given n points with positions and masses. The connections can be found as follows:
If the points are distributed randomly, we use a Delaunay triangulation to obtain pairs
of points to be connected by springs. Two points are joined if they have a common
edge in the Voronoi diagram. This triangul ation method is widely used in finite el ement
mechanics.

For regular grids, we tested severd topologiesin order to find suitable elastic ap-
proximations. Good results are given by structures as those shown in Figure 3(b).
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Figure 4: Test configurationswith resulting deformations of a surface.

A good approximation of the e astic propertiesisfound if the system’s di splacement
due to some basic loads is similar to that of the given body B. Figure 4 shows the
configurations used, B is a square plate. In situations (1) and (2), stretching loads are
applied, shearing isdone in situations (3) and (4).



5.1 Getting Reference Values

For some simple bodies and specia configurations it is possible to get an anaytic
solution of the resulting displacements due to external forces (cf. [2]). 2
As areference, we calculate the deformation of the square plate shown in Figure
4(1). Inthissituation auniform distributed forceis applied to one side, the oppositeone
isconstrained in z-direction, but not in y-direction.
'
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Figure 5: a) Plate with uniform distributed load to two opposite sides; b) resulting deformation.

This situation is equivalent to the application of a uniform distributed load o to
two opposite sides, whereby the body is constrained such that rigid body motions are
permitted (Figure 5).

We assume a linear dastic deformation and a material that can be expressed by
Poisson’sratio » and Young's modulus £ In section 2 we gave the general formulation
of the strain-stress relation (see eguation (3)). This relation, now written in matrix
calculus, hasto be satisfied:

€x 1 1-v v 0 O
€y =5 v 1-v 0 oy , (8)
Yoy 0 0 2(1+v) Toy

3 9 (o8
Ers 0 4 ’ Fy
(% __) o = (5 ) ©
Ay dx Toy Y
and the strain-displacement relation
7 O &
0o £ Yol = e |. (10)
3 1 Uy
oy or ey

Since rigid body motions are permitted, we have £, = 0, F, = 0 and assume

oy, = 0, oy =0, Tey =0

2For more complicated bodiesand situations more precisefinite element methodsare used to get reference
values.



which satisfies equation (9). The stresses can be computed by application of Hooke's
law (equation (8)):

o o

4=V Yoy = 0.
Integration according to equation (10) leads to the desired displacements
ox oy

- +fW), uy = —v— +g(x).

We set f(y) and g(z) to zero, the proof of correctness for doing thisis omitted here.

Uy =

5.2 Initial SMS Configuration

Theinitial spring constants of the SM S are set according to Young's modulus (£). For
a spring of resting length so, the spring constant is set heuristicidly to K = E * so/4.
The upper part of Figure 8(a) shows the calculated displacements of the initial SMS,
approximating the deformationsof the given surface. They are drawn using dotted lines.

5.3 Fagt Calculation of Displacements

During the optimization process, the displacements u of the SMSwhich are due to the
applied forces F¢ have to be calculated very often. Within the equilibrium state of the
system they are obtained by solving

F* — Ku=—F’ (11)

which is the solution of equation (2) with vanishing i and 1. The additional vector F*
describes the bearing forces in fixed points. The equation system is solved on the base
of band matrices, the necessary node enumeration is done with an optimization method
in apreprocessing step. Because K is changed in every optimization step, it can not be
inverted in advance.

54 Quality Criteria

For each point position of the SMS and each of the test configurations, the reference
displacement u"¢/ is calculated according to paragraph 5.1. The aforementioned FEM
approach is used to compute the actual displacements u during optimization.

One possibility to describe the qudity of an SMS approximation is the standard
deviation between actual and reference displacements of all itspoints:

4
G, = \l Z (uires — ui)2. (12)
i=1
Here, u’ denotes displacements according to the test configuration i of Figure 4.
Other criteria are weighted standard deviations where border and corner points have a
stronger influence. We denotetheweight factorsas G5, where a istheweight of inner
points, b that of border pointsand ¢ of corner points.



55 Optimization by Simulated Annealing

Simulated annealing (cf. [1, 14]) is used as optimization method. This algorithm was
originally designed for discrete problems but was later adapted to continuum problems.
The method seems to be adequate because a pure gradient-descent delivered bad results,
and analytic methods were very inefficient because of the high degree of freedom within
the system. Another advantageis the simple algorithm (Figure 6).

temperature := initial temperature;
Gmin = 10%%: { or some other good initial value :-) }
for i := 0 to no_of _temperatures-1 do begin
temperature := temperature * r; { over-exponentia }
good_steps :=0;
k:=0;
repeat
Choose randomly an edge ¢;
Change randomly spring constant of ¢;
Calculate (¢ according to equation (12);
if (G < Gpin) then begin { the system is now a better approximation }
Gmin = G,
good_steps := good_steps + 1;
end else begin
Choose random number p € [0, 1];

G

if (p < ¢ Temaitarure ) { take worse approximation }
then Gin =G,
else put back old spring constant of ¢;
end
k :=k+1;
until (k>nlimit) or (good_steps>glimit)
end

Figure 6: Simulated annealing algorithm.

A drawback of the method is the high sensitivity to the number of temperatures,
the initial temperature, the reduction function and the number of good steps (glimit)
allowed in each temperature. Although, we found generally applicable vaues for those
parameters (e = number of edges):

Parameter | initial temperature r nlimit | glimit
Value [0.0001..0.001] | [0.97..0.99] | e*2 e

The simulated annealing process convergesif nearly no bad steps are done any more
(dueto temperature) and theimprovement at each temperature isbelow some threshold.
We used an over-exponentia temperature reduction to get convergence.

Another possibility isto stop the e gorithm after a specific number of temperatures (e.g.
no_of_temperatures = 2*€) as donein Figure 6. In this case, the time complexity of the
agorithmis O(e?).




6 Extensonto3-D

Because equations (2) and (11) are formulated independently to the dimension, the
method can be extended to 3-D without general changes. Instead of optimizingthe four
situations of Figure 4, now we have to consider nine basic loads (Figure 7).
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Figure 7: Basic loads in three dimensional space.

Reference val ues can be obtained similar to the 2-D method demonstrated in section
5.1. The annealing process works the same way as shown in Figure 6.

Some more €ffort is needed to calculate the Voronoi regions (now polyhedrons)
withinthe mass point iteration. The number of edges obtained by the Delaunay triangu-
lationis O(n) if workingin 2-D, but O(n%) in three dimensional space (cf. [12]). This
is of interest because the optimization has quadratic time compl exity.

7 Reaults

In the upper part of Figure 8, initial displacements of a system with 25 nodes and
connection structure 1 (see Figure 3(b)) are shown, in the lower part the system is
optimized. The constants for horizontal, vertical and diagonal springs rsp. are set to
the same value, which is convenient for homogeneous bodies and reduces optimization
effort. The same system with all constants optimized separately is shownin Figure 9.

Rectangular cells are useful to simulate anisotropic behaviour. This can be seen in
Figure 10, where different elasticitiesin z and y direction are modeled.

An inhomogeneous materia issimulated in Figure 11, theresults are yet in need of
improvement, but demonstrate the capability of the optimization.
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Figure 12 showstheinfluence of Voronoai iterations on homogeneity and opti mization
quality of anodal approximeation.

8 Conclusion and Future Work

Spring mass systems are often used for rea time simulation of complex deformable
objects. Our method allowsthe generation of systems with definite mechanic behaviour.
We found a way to obtain an adequate mass distribution and simulated homogeneous
meaterials as well as inhomogeneities and anisotropies. Systems up to some hundred
pointswere optimized successfully. For large systems the opti mi zation is computational
expensive but this has to be done only once.

Besides the full implementation of the 3-D case, we are working on frequency
analysis. This is a promising approach because natural frequencies give some more
information about the dynamic behaviour of deformable systems. Natural frequencies
w; can be obtained by solving the eigenval ue problem

(K- AM)u=0. (13)

The frequencies are derived by A; = w?. Once again we have the advantage that M
isdiagona, what makes efficient cal culation methods applicable.

Frequency analysisisto be inserted into our optimization process in order to obtain
nodal systemswith good equilibrium and natural frequency approximeations.

In addition, natural frequencies can be used to find very efficient integration methods
for specific systems and situations. No stepsize control is needed if the highest natural
frequencies are integrated with respect to the sampling theorem. This can be used in
virtud reality applications like surgery simulation or virtual sculpting, for which our
optimization process as well is of high interest.
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Figure 8: Initial (first line) and optimized displacements of a system with 25 nodes and connec-
tion structure 1. Stiffnesses for horizontal, vertical and diagonal springs are set to the same value
(Gl;e;]_g 1 2.8 — 055)
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Figure 9: If al spring constants are optimized separate (which is to be done for inhomogeneous
bodies) the system approximates the given deformations (G'1.315 : 2.3 — 0.6) but has some
irregularities within the grid.

L |

Figure 10: Modeling anisotropic behaviour with rectangular cells (G1.3.15 : 10.5 — 0.48). The
system has different elasticitiesin = and y-direction, thus the deformations due to the test loads
are different.

'
I |

Figure 11: Simulation of an inhomogeneous material. The Young's modulus of the left third of
the plateis twice as high asthe right part. In the upper part of the figure the initial approximation
of the spring/mass system was omitted. The lower part showsthe optimized system.

13



a) Initial given points
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b) System after one iteration
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d) System after 15 iterations
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Figure 12: Optimized displacementswith different number of preceding Voronoi-iterations. The
The starting quality raises more than the quality after the optimization with 100 temperatures.
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