57#ifndef OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH
58#define OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH
63#include <OpenMesh/Core/Mesh/Handles.hh>
64#include <OpenMesh/Core/System/config.hh>
67#if defined(_DEBUG) || defined(DEBUG)
70# include <OpenMesh/Tools/Utils/MeshCheckerT.hh>
71# define ASSERT_CONSISTENCY( T, m ) \
72 assert(OpenMesh::Utils::MeshCheckerT<T>(m).check())
74# define ASSERT_CONSISTENCY( T, m )
78#if defined(OM_CC_MIPS)
105template <
typename MeshType,
typename RealType =
double>
110 typedef RealType real_t;
111 typedef MeshType mesh_t;
114 typedef std::vector< std::vector<real_t> > weights_t;
131 const char *
name()
const override {
return "Uniform Interpolating Sqrt3"; }
136 weights_.resize(_max_valence);
138 weights_[3].resize(4);
139 weights_[3][0] = real_t(+4.0/27);
140 weights_[3][1] = real_t(-5.0/27);
141 weights_[3][2] = real_t(+4.0/27);
142 weights_[3][3] = real_t(+8.0/9);
144 weights_[4].resize(5);
145 weights_[4][0] = real_t(+2.0/9);
146 weights_[4][1] = real_t(-1.0/9);
147 weights_[4][2] = real_t(-1.0/9);
148 weights_[4][3] = real_t(+2.0/9);
149 weights_[4][4] = real_t(+7.0/9);
151 for(
unsigned int K=5; K<_max_valence; ++K)
153 weights_[K].resize(K+1);
154 double aH = 2.0*cos(M_PI/
static_cast<double>(K))/3.0;
155 weights_[K][K] =
static_cast<real_t
>(1.0 - aH*aH);
156 for(
unsigned int i=0; i<K; ++i)
159 weights_[K][i] =
static_cast<real_t
>((aH*aH + 2.0*aH*cos(2.0*
static_cast<double>(i)*M_PI/
static_cast<double>(K) + M_PI/
static_cast<double>(K)) +
160 2.0*aH*aH*cos(4.0*
static_cast<double>(i)*M_PI/
static_cast<double>(K) + 2.0*M_PI/
static_cast<double>(K)))/
static_cast<double>(K));
165 weights_[6].resize(0);
175 _m.request_edge_status();
176 _m.add_property( fp_pos_ );
177 _m.add_property( ep_nv_ );
178 _m.add_property( mp_gen_ );
179 _m.property( mp_gen_ ) = 0;
181 return _m.has_edge_status()
188 _m.release_edge_status();
189 _m.remove_property( fp_pos_ );
190 _m.remove_property( ep_nv_ );
191 _m.remove_property( mp_gen_ );
196 bool subdivide( MeshType& _m,
size_t _n ,
const bool _update_points =
true)
override
201 typename MeshType::VertexIter vit;
202 typename MeshType::VertexVertexIter vvit;
203 typename MeshType::EdgeIter eit;
204 typename MeshType::FaceIter fit;
205 typename MeshType::FaceVertexIter fvit;
206 typename MeshType::FaceHalfedgeIter fheit;
207 typename MeshType::VertexHandle vh;
208 typename MeshType::HalfedgeHandle heh;
209 typename MeshType::Point pos(0,0,0), zero(0,0,0);
210 size_t &gen = _m.property( mp_gen_ );
212 for (
size_t l=0; l<_n; ++l)
215 for (eit=_m.edges_begin(); eit != _m.edges_end();++eit)
217 _m.status( *eit ).set_tagged(
true );
218 if ( (gen%2) && _m.is_boundary(*eit) )
219 compute_new_boundary_points( _m, *eit );
223 typename MeshType::FaceIter fend = _m.faces_end();
224 for (fit = _m.faces_begin();fit != fend; ++fit)
226 if (_m.is_boundary(*fit))
229 _m.property(fp_pos_, *fit).invalidate();
233 for( heh = _m.halfedge_handle(*fit); !_m.is_boundary( _m.opposite_halfedge_handle(heh) ); heh = _m.next_halfedge_handle(heh) )
235 assert(_m.is_boundary( _m.opposite_halfedge_handle(heh) ));
238 if( _m.is_boundary(_m.next_halfedge_handle(heh)) || _m.is_boundary(_m.prev_halfedge_handle(heh)) )
240 if(_m.is_boundary(_m.prev_halfedge_handle(heh)))
241 heh = _m.prev_halfedge_handle(heh);
243 if(_m.is_boundary(_m.next_halfedge_handle(_m.next_halfedge_handle(heh))))
246 pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
247 pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
248 pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
252#ifdef MIRROR_TRIANGLES
254 pos += real_t(2.0/9) * _m.point(_m.to_vertex_handle(heh));
255 pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
256 pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
257 pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
259 pos += real_t(7.0/24) * _m.point(_m.to_vertex_handle(heh));
260 pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
261 pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
262 pos += real_t(-1.0/24) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
268 vh = _m.to_vertex_handle(_m.next_halfedge_handle(heh));
270 if((_m.valence(vh) == 6) || _m.is_boundary(vh))
272#ifdef MIRROR_TRIANGLES
274 pos += real_t(5.0/9) * _m.point(vh);
275 pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(heh));
276 pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
277 pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
278 pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
281 pos += real_t(1.0/9) * _m.point(vh);
282 pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
283 pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
284 pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
285 pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
287 pos += real_t(1.0/2) * _m.point(vh);
288 pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
289 pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
290 pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
291 pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
298 unsigned int K = _m.valence(vh);
299 pos += weights_[K][K]*_m.point(vh);
300 heh = _m.opposite_halfedge_handle( _m.next_halfedge_handle(heh) );
301 for(
unsigned int i = 0; i<K; ++i, heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)) )
303 pos += weights_[K][i]*_m.point(_m.to_vertex_handle(heh));
307 vh = _m.add_vertex( pos );
308 _m.property(fp_pos_, *fit) = vh;
317 for(fvit = _m.fv_iter( *fit ); fvit.is_valid(); ++fvit)
318 if( (_m.valence(*fvit)) == 6 || _m.is_boundary(*fvit) )
323 for(fheit = _m.fh_iter( *fit ); fheit.is_valid(); ++fheit)
327 assert(_m.to_vertex_handle(heh).is_valid());
328 pos += real_t(32.0/81) * _m.point(_m.to_vertex_handle(heh));
330 heh = _m.opposite_halfedge_handle(heh);
331 assert(heh.is_valid());
332 assert(_m.next_halfedge_handle(heh).is_valid());
333 assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
334 pos -= real_t(1.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
336 heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
337 assert(heh.is_valid());
338 assert(_m.next_halfedge_handle(heh).is_valid());
339 assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
340 pos -= real_t(2.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
341 heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
342 assert(heh.is_valid());
343 assert(_m.next_halfedge_handle(heh).is_valid());
344 assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
345 pos -= real_t(2.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
351 for(fheit = _m.fh_iter( *fit ); fheit.is_valid(); ++fheit)
353 vh = _m.to_vertex_handle(*fheit);
354 if( (_m.valence(vh) != 6) && (!_m.is_boundary(vh)) )
356 unsigned int K = _m.valence(vh);
357 pos += weights_[K][K]*_m.point(vh);
358 heh = _m.opposite_halfedge_handle( *fheit );
359 for(
unsigned int i = 0; i<K; ++i, heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)) )
361 pos += weights_[K][i]*_m.point(_m.to_vertex_handle(heh));
365 pos *= real_t(1.0/(3-nOrdinary));
368 vh = _m.add_vertex( pos );
369 _m.property(fp_pos_, *fit) = vh;
374 for (fit = _m.faces_begin();fit != fend; ++fit)
376 if ( _m.is_boundary(*fit) && (gen%2))
378 boundary_split( _m, *fit );
382 assert(_m.property(fp_pos_, *fit).is_valid());
383 _m.split( *fit, _m.property(fp_pos_, *fit) );
388 for (eit=_m.edges_begin(); eit != _m.edges_end(); ++eit)
389 if ( _m.status( *eit ).tagged() && !_m.is_boundary( *eit ) )
393 ASSERT_CONSISTENCY( MeshType, _m );
405 void compute_new_boundary_points( MeshType& _m,
406 const typename MeshType::EdgeHandle& _eh)
408 assert( _m.is_boundary(_eh) );
410 typename MeshType::HalfedgeHandle heh;
411 typename MeshType::VertexHandle vh1, vh2, vh3, vh4, vhl, vhr;
412 typename MeshType::Point P1, P2, P3, P4;
427 heh = _m.halfedge_handle(_eh,
428 _m.is_boundary(_m.halfedge_handle(_eh,1)));
430 assert( _m.is_boundary( _m.next_halfedge_handle( heh ) ) );
431 assert( _m.is_boundary( _m.prev_halfedge_handle( heh ) ) );
433 vh1 = _m.to_vertex_handle( _m.next_halfedge_handle( heh ) );
434 vh2 = _m.to_vertex_handle( heh );
435 vh3 = _m.from_vertex_handle( heh );
436 vh4 = _m.from_vertex_handle( _m.prev_halfedge_handle( heh ));
443 vhl = _m.add_vertex(real_t(-5.0/81)*P1 + real_t(20.0/27)*P2 + real_t(10.0/27)*P3 + real_t(-4.0/81)*P4);
444 vhr = _m.add_vertex(real_t(-5.0/81)*P4 + real_t(20.0/27)*P3 + real_t(10.0/27)*P2 + real_t(-4.0/81)*P1);
446 _m.property(ep_nv_, _eh).first = vhl;
447 _m.property(ep_nv_, _eh).second = vhr;
451 void boundary_split( MeshType& _m,
const typename MeshType::FaceHandle& _fh )
453 assert( _m.is_boundary(_fh) );
455 typename MeshType::VertexHandle vhl, vhr;
456 typename MeshType::FaceEdgeIter fe_it;
457 typename MeshType::HalfedgeHandle heh;
460 for( fe_it=_m.fe_iter( _fh ); fe_it.is_valid() && !_m.is_boundary( *fe_it ); ++fe_it ) {};
463 vhl = _m.property(ep_nv_, *fe_it).first;
464 vhr = _m.property(ep_nv_, *fe_it).second;
479 heh = _m.halfedge_handle(*fe_it, _m.is_boundary(_m.halfedge_handle(*fe_it,0)));
481 typename MeshType::HalfedgeHandle pl_P3;
484 boundary_split( _m, heh, vhl );
485 pl_P3 = _m.next_halfedge_handle( heh );
486 boundary_split( _m, heh );
489 boundary_split( _m, pl_P3, vhr );
490 boundary_split( _m, pl_P3 );
492 assert( _m.is_boundary( vhl ) && _m.halfedge_handle(vhl).is_valid() );
493 assert( _m.is_boundary( vhr ) && _m.halfedge_handle(vhr).is_valid() );
496 void boundary_split(MeshType& _m,
497 const typename MeshType::HalfedgeHandle& _heh,
498 const typename MeshType::VertexHandle& _vh)
500 assert( _m.is_boundary( _m.edge_handle(_heh) ) );
502 typename MeshType::HalfedgeHandle
504 opp_heh( _m.opposite_halfedge_handle(_heh) ),
505 new_heh, opp_new_heh;
506 typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh));
507 typename MeshType::HalfedgeHandle t_heh;
528 _m.next_halfedge_handle(t_heh) != opp_heh;
529 t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh)))
532 assert( _m.is_boundary( t_heh ) );
534 new_heh = _m.new_edge( _vh, to_vh );
535 opp_new_heh = _m.opposite_halfedge_handle(new_heh);
538 _m.set_next_halfedge_handle(t_heh, opp_new_heh);
539 _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh));
540 _m.set_next_halfedge_handle(heh, new_heh);
541 _m.set_next_halfedge_handle(opp_new_heh, opp_heh);
544 _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh));
547 _m.set_vertex_handle(heh, _vh);
550 _m.set_face_handle(new_heh, _m.face_handle(heh));
554 _m.set_halfedge_handle( to_vh, opp_new_heh );
557 _m.set_halfedge_handle( _vh, opp_heh );
560 void boundary_split( MeshType& _m,
561 const typename MeshType::HalfedgeHandle& _heh)
563 assert( _m.is_boundary( _m.opposite_halfedge_handle( _heh ) ) );
565 typename MeshType::HalfedgeHandle
567 n_heh(_m.next_halfedge_handle(heh));
569 typename MeshType::VertexHandle
570 to_vh(_m.to_vertex_handle(heh));
572 typename MeshType::HalfedgeHandle
573 heh2(_m.new_edge(to_vh,
574 _m.to_vertex_handle(_m.next_halfedge_handle(n_heh)))),
575 heh3(_m.opposite_halfedge_handle(heh2));
577 typename MeshType::FaceHandle
578 new_fh(_m.new_face()),
579 fh(_m.face_handle(heh));
582 _m.set_face_handle(heh, new_fh);
583 _m.set_face_handle(heh2, new_fh);
584 _m.set_next_halfedge_handle(heh2, _m.next_halfedge_handle(_m.next_halfedge_handle(n_heh)));
585 _m.set_next_halfedge_handle(heh, heh2);
586 _m.set_face_handle( _m.next_halfedge_handle(heh2), new_fh);
588 _m.set_next_halfedge_handle(heh3, n_heh);
589 _m.set_next_halfedge_handle(_m.next_halfedge_handle(n_heh), heh3);
590 _m.set_face_handle(heh3, fh);
592 _m.set_halfedge_handle( fh, n_heh);
593 _m.set_halfedge_handle(new_fh, heh);
603 typename MeshType::VertexHandle> > ep_nv_;
Contains all the mesh ingredients like the polygonal mesh, the triangle mesh, different mesh kernels ...
Definition: MeshItems.hh:59
bool is_valid() const
The handle is valid iff the index is not negative.
Definition: Handles.hh:72
Handle representing an edge property.
Definition: Property.hh:447
Uniform Interpolating Sqrt3 subdivision algorithm
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:107
bool cleanup(MeshType &_m) override
Cleanup mesh after usage, e.g. remove added properties.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:186
const char * name() const override
Return name of subdivision algorithm.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:131
bool subdivide(MeshType &_m, size_t _n, const bool _update_points=true) override
Subdivide mesh _m _n times.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:196
bool prepare(MeshType &_m) override
Prepare mesh, e.g.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:173
void init_weights(size_t _max_valence=50)
Pre-compute weights.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:134
Abstract base class for uniform subdivision algorithms.
Definition: SubdividerT.hh:89