54#ifndef OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH
55#define OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH
60#include <OpenMesh/Core/Mesh/Handles.hh>
61#include <OpenMesh/Core/System/config.hh>
63#if defined(_DEBUG) || defined(DEBUG)
66# include <OpenMesh/Tools/Utils/MeshCheckerT.hh>
67# define ASSERT_CONSISTENCY( T, m ) \
68 assert(OpenMesh::Utils::MeshCheckerT<T>(m).check())
70# define ASSERT_CONSISTENCY( T, m )
74#if defined(OM_CC_MIPS)
97template <
typename MeshType,
typename RealType =
double>
102 typedef RealType real_t;
103 typedef MeshType mesh_t;
106 typedef std::pair< real_t, real_t > weight_t;
107 typedef std::vector< std::pair<real_t,real_t> > weights_t;
112 Sqrt3T(
void) :
parent_t(), _1over3( real_t(1.0/3.0) ), _1over27( real_t(1.0/27.0) )
115 explicit Sqrt3T(MeshType &_m) :
parent_t(_m), _1over3( real_t(1.0/3.0) ), _1over27( real_t(1.0/27.0) )
124 const char *
name()
const override {
return "Uniform Sqrt3"; }
130 weights_.resize(_max_valence);
131 std::generate(weights_.begin(), weights_.end(), compute_weight());
140 _m.request_edge_status();
141 _m.add_property( vp_pos_ );
142 _m.add_property( ep_nv_ );
143 _m.add_property( mp_gen_ );
144 _m.property( mp_gen_ ) = 0;
146 return _m.has_edge_status() && vp_pos_.
is_valid()
153 _m.release_edge_status();
154 _m.remove_property( vp_pos_ );
155 _m.remove_property( ep_nv_ );
156 _m.remove_property( mp_gen_ );
160 bool subdivide( MeshType& _m,
size_t _n ,
const bool _update_points =
true)
override
165 typename MeshType::Point pos(0,0,0), zero(0,0,0);
166 size_t &gen = _m.property( mp_gen_ );
168 for (
size_t l=0; l<_n; ++l)
171 for (
auto eh : _m.edges())
173 _m.status( eh ).set_tagged(
true );
174 if ( (gen%2) && _m.is_boundary(eh) )
175 compute_new_boundary_points( _m, eh );
180 for (
auto vh : _m.vertices())
182 if ( _m.is_boundary(vh) )
186 auto heh = _m.halfedge_handle(vh);
189 auto prev_heh = _m.prev_halfedge_handle(heh);
191 assert( _m.is_boundary(heh ) );
192 assert( _m.is_boundary(prev_heh) );
194 pos = _m.point(_m.to_vertex_handle(heh));
195 pos += _m.point(_m.from_vertex_handle(prev_heh));
198 pos += real_t(19.0) * _m.point( vh );
201 _m.property( vp_pos_, vh ) = pos;
205 _m.property( vp_pos_, vh ) = _m.point( vh );
212 for (
auto vvh : _m.vv_range(vh))
214 pos += _m.point( vvh );
217 pos *= weights_[ valence ].second;
218 pos += weights_[ valence ].first * _m.point(vh);
219 _m.property( vp_pos_, vh ) = pos;
224 for (
auto fh : _m.faces())
226 if ( (gen%2) && _m.is_boundary(fh))
228 boundary_split( _m, fh );
232 auto fvit = _m.fv_iter( fh );
233 pos = _m.point( *fvit);
234 pos += _m.point(*(++fvit));
235 pos += _m.point(*(++fvit));
237 auto vh = _m.add_vertex( zero );
238 _m.property( vp_pos_, vh ) = pos;
244 for (
auto vh : _m.vertices())
245 _m.set_point(vh, _m.property( vp_pos_, vh ) );
248 for (
auto eh : _m.edges())
249 if ( _m.status( eh ).tagged() && !_m.is_boundary( eh ) )
253 ASSERT_CONSISTENCY( MeshType, _m );
265 struct compute_weight
267 compute_weight() : valence(-1) { }
270#if !defined(OM_CC_MIPS)
275 real_t alpha = real_t( (4.0-2.0*cos(2.0*M_PI / real_t(valence)) )/9.0 );
276 return weight_t( real_t(1)-alpha, alpha/real_t(valence) );
278 return weight_t(real_t(0.0), real_t(0.0) );
287 void compute_new_boundary_points( MeshType& _m,
288 const typename MeshType::EdgeHandle& _eh)
290 assert( _m.is_boundary(_eh) );
292 typename MeshType::HalfedgeHandle heh;
293 typename MeshType::VertexHandle vh1, vh2, vh3, vh4, vhl, vhr;
294 typename MeshType::Point zero(0,0,0), P1, P2, P3, P4;
309 heh = _m.halfedge_handle(_eh,
310 _m.is_boundary(_m.halfedge_handle(_eh,1)));
312 assert( _m.is_boundary( _m.next_halfedge_handle( heh ) ) );
313 assert( _m.is_boundary( _m.prev_halfedge_handle( heh ) ) );
315 vh1 = _m.to_vertex_handle( _m.next_halfedge_handle( heh ) );
316 vh2 = _m.to_vertex_handle( heh );
317 vh3 = _m.from_vertex_handle( heh );
318 vh4 = _m.from_vertex_handle( _m.prev_halfedge_handle( heh ));
325 vhl = _m.add_vertex(zero);
326 vhr = _m.add_vertex(zero);
328 _m.property(vp_pos_, vhl ) = (P1 + real_t(16.0f) * P2 + real_t(10.0f) * P3) * _1over27;
329 _m.property(vp_pos_, vhr ) = ( real_t(10.0f) * P2 + real_t(16.0f) * P3 + P4) * _1over27;
330 _m.property(ep_nv_, _eh).first = vhl;
331 _m.property(ep_nv_, _eh).second = vhr;
335 void boundary_split( MeshType& _m,
const typename MeshType::FaceHandle& _fh )
337 assert( _m.is_boundary(_fh) );
339 typename MeshType::VertexHandle vhl, vhr;
340 typename MeshType::FaceEdgeIter fe_it;
341 typename MeshType::HalfedgeHandle heh;
344 for( fe_it=_m.fe_iter( _fh ); fe_it.is_valid() && !_m.is_boundary( *fe_it ); ++fe_it ) {};
347 vhl = _m.property(ep_nv_, *fe_it).first;
348 vhr = _m.property(ep_nv_, *fe_it).second;
363 heh = _m.halfedge_handle(*fe_it,
364 _m.is_boundary(_m.halfedge_handle(*fe_it,0)));
366 typename MeshType::HalfedgeHandle pl_P3;
369 boundary_split( _m, heh, vhl );
370 pl_P3 = _m.next_halfedge_handle( heh );
371 boundary_split( _m, heh );
374 boundary_split( _m, pl_P3, vhr );
375 boundary_split( _m, pl_P3 );
377 assert( _m.is_boundary( vhl ) && _m.halfedge_handle(vhl).is_valid() );
378 assert( _m.is_boundary( vhr ) && _m.halfedge_handle(vhr).is_valid() );
381 void boundary_split(MeshType& _m,
382 const typename MeshType::HalfedgeHandle& _heh,
383 const typename MeshType::VertexHandle& _vh)
385 assert( _m.is_boundary( _m.edge_handle(_heh) ) );
387 typename MeshType::HalfedgeHandle
389 opp_heh( _m.opposite_halfedge_handle(_heh) ),
390 new_heh, opp_new_heh;
391 typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh));
392 typename MeshType::HalfedgeHandle t_heh;
413 _m.next_halfedge_handle(t_heh) != opp_heh;
414 t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh)))
417 assert( _m.is_boundary( t_heh ) );
419 new_heh = _m.new_edge( _vh, to_vh );
420 opp_new_heh = _m.opposite_halfedge_handle(new_heh);
424 _m.set_next_halfedge_handle(t_heh, opp_new_heh);
426 _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh));
427 _m.set_next_halfedge_handle(heh, new_heh);
428 _m.set_next_halfedge_handle(opp_new_heh, opp_heh);
431 _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh));
434 _m.set_vertex_handle(heh, _vh);
437 _m.set_face_handle(new_heh, _m.face_handle(heh));
441 _m.set_halfedge_handle( to_vh, opp_new_heh );
444 _m.set_halfedge_handle( _vh, opp_heh );
447 void boundary_split( MeshType& _m,
448 const typename MeshType::HalfedgeHandle& _heh)
450 assert( _m.is_boundary( _m.opposite_halfedge_handle( _heh ) ) );
452 typename MeshType::HalfedgeHandle
454 n_heh(_m.next_halfedge_handle(heh));
456 typename MeshType::VertexHandle
457 to_vh(_m.to_vertex_handle(heh));
459 typename MeshType::HalfedgeHandle
460 heh2(_m.new_edge(to_vh,
461 _m.to_vertex_handle(_m.next_halfedge_handle(n_heh)))),
462 heh3(_m.opposite_halfedge_handle(heh2));
464 typename MeshType::FaceHandle
465 new_fh(_m.new_face()),
466 fh(_m.face_handle(heh));
470#define set_next_heh set_next_halfedge_handle
471#define next_heh next_halfedge_handle
473 _m.set_face_handle(heh, new_fh);
474 _m.set_face_handle(heh2, new_fh);
475 _m.set_next_heh(heh2, _m.next_heh(_m.next_heh(n_heh)));
476 _m.set_next_heh(heh, heh2);
477 _m.set_face_handle( _m.next_heh(heh2), new_fh);
481 _m.set_next_heh(heh3, n_heh);
482 _m.set_next_heh(_m.next_halfedge_handle(n_heh), heh3);
483 _m.set_face_handle(heh3, fh);
486 _m.set_halfedge_handle( fh, n_heh);
487 _m.set_halfedge_handle(new_fh, heh);
489#undef set_next_halfedge_handle
490#undef next_halfedge_handle
499 typename MeshType::VertexHandle> > ep_nv_;
502 const real_t _1over3;
503 const real_t _1over27;
Contains all the mesh ingredients like the polygonal mesh, the triangle mesh, different mesh kernels ...
Definition: MeshItems.hh:59
bool is_valid() const
The handle is valid iff the index is not negative.
Definition: Handles.hh:72
Handle representing an edge property.
Definition: Property.hh:447
Uniform Sqrt3 subdivision algorithm
Definition: Sqrt3T.hh:99
bool cleanup(MeshType &_m) override
Cleanup mesh after usage, e.g. remove added properties.
Definition: Sqrt3T.hh:151
bool subdivide(MeshType &_m, size_t _n, const bool _update_points=true) override
Subdivide mesh _m _n times.
Definition: Sqrt3T.hh:160
bool prepare(MeshType &_m) override
Prepare mesh, e.g.
Definition: Sqrt3T.hh:138
const char * name() const override
Return name of subdivision algorithm.
Definition: Sqrt3T.hh:124
void init_weights(size_t _max_valence=50)
Pre-compute weights.
Definition: Sqrt3T.hh:128
Abstract base class for uniform subdivision algorithms.
Definition: SubdividerT.hh:89
bool operator()(MeshType &_m, size_t _n, const bool _update_points=true)
Subdivide the mesh _m _n times.
Definition: SubdividerT.hh:122