OpenMesh
ModifiedButterFlyT.hh
Go to the documentation of this file.
1 /* ========================================================================= *
2  * *
3  * OpenMesh *
4  * Copyright (c) 2001-2022, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openmesh.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenMesh. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40  * ========================================================================= */
41 
51 //=============================================================================
52 //
53 // CLASS ModifiedButterflyT
54 //
55 //=============================================================================
56 
57 
58 #ifndef SP_MODIFIED_BUTTERFLY_H
59 #define SP_MODIFIED_BUTTERFLY_H
60 
62 #include <OpenMesh/Core/Utils/vector_cast.hh>
63 #include <OpenMesh/Core/Utils/Property.hh>
64 // -------------------- STL
65 #include <vector>
66 #if defined(OM_CC_MIPS)
67 # include <math.h>
68 #else
69 # include <cmath>
70 #endif
71 
72 
73 //== NAMESPACE ================================================================
74 
75 namespace OpenMesh { // BEGIN_NS_OPENMESH
76 namespace Subdivider { // BEGIN_NS_DECIMATER
77 namespace Uniform { // BEGIN_NS_UNIFORM
78 
79 
80 //== CLASS DEFINITION =========================================================
81 
82 
91 template <typename MeshType, typename RealType = double>
92 class ModifiedButterflyT : public SubdividerT<MeshType, RealType>
93 {
94 public:
95 
96  typedef RealType real_t;
97  typedef MeshType mesh_t;
99 
100  typedef std::vector< std::vector<real_t> > weights_t;
101  typedef std::vector<real_t> weight_t;
102 
103 public:
104 
105 
107  { init_weights(); }
108 
109 
110  explicit ModifiedButterflyT( mesh_t& _m) : parent_t(_m)
111  { init_weights(); }
112 
113 
114  ~ModifiedButterflyT() {}
115 
116 
117 public:
118 
119 
120  const char *name() const override { return "Uniform Spectral"; }
121 
122 
124  void init_weights(size_t _max_valence=30)
125  {
126  weights.resize(_max_valence);
127 
128  //special case: K==3, K==4
129  weights[3].resize(4);
130  weights[3][0] = real_t(5.0)/12;
131  weights[3][1] = real_t(-1.0)/12;
132  weights[3][2] = real_t(-1.0)/12;
133  weights[3][3] = real_t(3.0)/4;
134 
135  weights[4].resize(5);
136  weights[4][0] = real_t(3.0)/8;
137  weights[4][1] = 0;
138  weights[4][2] = real_t(-1.0)/8;
139  weights[4][3] = 0;
140  weights[4][4] = real_t(3.0)/4;
141 
142  for(unsigned int K = 5; K<_max_valence; ++K)
143  {
144  weights[K].resize(K+1);
145  // s(j) = ( 1/4 + cos(2*pi*j/K) + 1/2 * cos(4*pi*j/K) )/K
146  double invK = 1.0/static_cast<double>(K);
147  real_t sum = 0;
148  for(unsigned int j=0; j<K; ++j)
149  {
150  weights[K][j] = static_cast<real_t>((0.25 + cos(2.0*M_PI*static_cast<double>(j)*invK) + 0.5*cos(4.0*M_PI*static_cast<double>(j)*invK))*invK);
151  sum += weights[K][j];
152  }
153  weights[K][K] = static_cast<real_t>(1.0) - sum;
154  }
155  }
156 
157 
158 protected:
159 
160 
161  bool prepare( mesh_t& _m ) override
162  {
163  _m.add_property( vp_pos_ );
164  _m.add_property( ep_pos_ );
165  return true;
166  }
167 
168 
169  bool cleanup( mesh_t& _m ) override
170  {
171  _m.remove_property( vp_pos_ );
172  _m.remove_property( ep_pos_ );
173  return true;
174  }
175 
176 
177  bool subdivide( MeshType& _m, size_t _n , const bool _update_points = true) override
178  {
179 
181 
182  // Compute the maximal vertex valence in the mesh
183  unsigned int maxValence = 0;
184  for ( auto vertex : _m.vertices() ) {
185  maxValence = std::max(maxValence,_m.valence(vertex));
186  }
187 
188  // We pre initialized with 30. If it's larger, we update the weights
189  if (maxValence >= 30) {
190  init_weights( maxValence + 1 );
191  }
192 
193  // Do _n subdivisions
194  for (size_t i=0; i < _n; ++i)
195  {
196 
197  // This is an interpolating scheme, old vertices remain the same.
198  for ( auto vh : _m.vertices())
199  _m.property( vp_pos_, vh ) = _m.point(vh);
200 
201  // Compute position for new vertices and store them in the edge property
202  for (auto eh : _m.edges())
203  compute_midpoint( _m, eh);
204 
205 
206  // Split each edge at midpoint and store precomputed positions (stored in
207  // edge property ep_pos_) in the vertex property vp_pos_;
208 
209  // Attention! Creating new edges, hence make sure the loop ends correctly.
210  for (auto eh : _m.edges())
211  split_edge(_m, eh );
212 
213 
214  // Commit changes in topology and reconsitute consistency
215 
216  // Attention! Creating new faces, hence make sure the loop ends correctly.
217  for (auto fh : _m.faces())
218  split_face(_m, fh );
219 
220 
221  // Commit changes in geometry
222  for ( auto vh : _m.vertices())
223  _m.set_point(vh, _m.property( vp_pos_, vh ) );
224 
225 #if defined(_DEBUG) || defined(DEBUG)
226  // Now we have an consistent mesh!
227  assert( OpenMesh::Utils::MeshCheckerT<mesh_t>(_m).check() );
228 #endif
229  }
230 
231  return true;
232  }
233 
234 private: // topological modifiers
235 
236  void split_face(mesh_t& _m, const typename mesh_t::FaceHandle& _fh)
237  {
238  typename mesh_t::HalfedgeHandle
239  heh1(_m.halfedge_handle(_fh)),
240  heh2(_m.next_halfedge_handle(_m.next_halfedge_handle(heh1))),
241  heh3(_m.next_halfedge_handle(_m.next_halfedge_handle(heh2)));
242 
243  // Cutting off every corner of the 6_gon
244  corner_cutting( _m, heh1 );
245  corner_cutting( _m, heh2 );
246  corner_cutting( _m, heh3 );
247  }
248 
249 
250  void corner_cutting(mesh_t& _m, const typename mesh_t::HalfedgeHandle& _he)
251  {
252  // Define Halfedge Handles
253  typename mesh_t::HalfedgeHandle
254  heh1(_he),
255  heh5(heh1),
256  heh6(_m.next_halfedge_handle(heh1));
257 
258  // Cycle around the polygon to find correct Halfedge
259  for (; _m.next_halfedge_handle(_m.next_halfedge_handle(heh5)) != heh1;
260  heh5 = _m.next_halfedge_handle(heh5))
261  {}
262 
263  typename mesh_t::VertexHandle
264  vh1 = _m.to_vertex_handle(heh1),
265  vh2 = _m.to_vertex_handle(heh5);
266 
267  typename mesh_t::HalfedgeHandle
268  heh2(_m.next_halfedge_handle(heh5)),
269  heh3(_m.new_edge( vh1, vh2)),
270  heh4(_m.opposite_halfedge_handle(heh3));
271 
272  /* Intermediate result
273  *
274  * *
275  * 5 /|\
276  * /_ \
277  * vh2> * *
278  * /|\3 |\
279  * /_ \|4 \
280  * *----\*----\*
281  * 1 ^ 6
282  * vh1 (adjust_outgoing halfedge!)
283  */
284 
285  // Old and new Face
286  typename mesh_t::FaceHandle fh_old(_m.face_handle(heh6));
287  typename mesh_t::FaceHandle fh_new(_m.new_face());
288 
289 
290  // Re-Set Handles around old Face
291  _m.set_next_halfedge_handle(heh4, heh6);
292  _m.set_next_halfedge_handle(heh5, heh4);
293 
294  _m.set_face_handle(heh4, fh_old);
295  _m.set_face_handle(heh5, fh_old);
296  _m.set_face_handle(heh6, fh_old);
297  _m.set_halfedge_handle(fh_old, heh4);
298 
299  // Re-Set Handles around new Face
300  _m.set_next_halfedge_handle(heh1, heh3);
301  _m.set_next_halfedge_handle(heh3, heh2);
302 
303  _m.set_face_handle(heh1, fh_new);
304  _m.set_face_handle(heh2, fh_new);
305  _m.set_face_handle(heh3, fh_new);
306 
307  _m.set_halfedge_handle(fh_new, heh1);
308  }
309 
310 
311  void split_edge(mesh_t& _m, const typename mesh_t::EdgeHandle& _eh)
312  {
313  typename mesh_t::HalfedgeHandle
314  heh = _m.halfedge_handle(_eh, 0),
315  opp_heh = _m.halfedge_handle(_eh, 1);
316 
317  typename mesh_t::HalfedgeHandle new_heh, opp_new_heh, t_heh;
318  typename mesh_t::VertexHandle vh;
319  typename mesh_t::VertexHandle vh1(_m.to_vertex_handle(heh));
320  typename mesh_t::Point zero(0,0,0);
321 
322  // new vertex
323  vh = _m.new_vertex( zero );
324 
325  // memorize position, will be set later
326  _m.property( vp_pos_, vh ) = _m.property( ep_pos_, _eh );
327 
328 
329  // Re-link mesh entities
330  if (_m.is_boundary(_eh))
331  {
332  for (t_heh = heh;
333  _m.next_halfedge_handle(t_heh) != opp_heh;
334  t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh)))
335  {}
336  }
337  else
338  {
339  for (t_heh = _m.next_halfedge_handle(opp_heh);
340  _m.next_halfedge_handle(t_heh) != opp_heh;
341  t_heh = _m.next_halfedge_handle(t_heh) )
342  {}
343  }
344 
345  new_heh = _m.new_edge(vh, vh1);
346  opp_new_heh = _m.opposite_halfedge_handle(new_heh);
347  _m.set_vertex_handle( heh, vh );
348 
349  _m.set_next_halfedge_handle(t_heh, opp_new_heh);
350  _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh));
351  _m.set_next_halfedge_handle(heh, new_heh);
352  _m.set_next_halfedge_handle(opp_new_heh, opp_heh);
353 
354  if (_m.face_handle(opp_heh).is_valid())
355  {
356  _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh));
357  _m.set_halfedge_handle(_m.face_handle(opp_new_heh), opp_new_heh);
358  }
359 
360  _m.set_face_handle( new_heh, _m.face_handle(heh) );
361  _m.set_halfedge_handle( vh, new_heh);
362 
363  // We cant reconnect a non existing face, so we skip this here if necessary
364  if ( !_m.is_boundary(heh) )
365  _m.set_halfedge_handle( _m.face_handle(heh), heh );
366 
367  _m.set_halfedge_handle( vh1, opp_new_heh );
368 
369  // Never forget this, when playing with the topology
370  _m.adjust_outgoing_halfedge( vh );
371  _m.adjust_outgoing_halfedge( vh1 );
372  }
373 
374 private: // geometry helper
375 
376  void compute_midpoint(mesh_t& _m, const typename mesh_t::EdgeHandle& _eh)
377  {
378  typename mesh_t::HalfedgeHandle heh, opp_heh;
379 
380  heh = _m.halfedge_handle( _eh, 0);
381  opp_heh = _m.halfedge_handle( _eh, 1);
382 
383  typename mesh_t::Point pos(0,0,0);
384 
385  typename mesh_t::VertexHandle a_0(_m.to_vertex_handle(heh));
386  typename mesh_t::VertexHandle a_1(_m.to_vertex_handle(opp_heh));
387 
388  // boundary edge: 4-point scheme
389  if (_m.is_boundary(_eh) )
390  {
391  pos = _m.point(a_0);
392  pos += _m.point(a_1);
393  pos *= static_cast<RealType>(9.0/16.0);
394  typename mesh_t::Point tpos;
395  if(_m.is_boundary(heh))
396  {
397  tpos = _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
398  tpos += _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh))));
399  }
400  else
401  {
402  assert(_m.is_boundary(opp_heh));
403  tpos = _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(opp_heh)));
404  tpos += _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(opp_heh))));
405  }
406  tpos *= static_cast<RealType>(-1.0/16.0);
407  pos += tpos;
408  }
409  else
410  {
411  int valence_a_0 = _m.valence(a_0);
412  int valence_a_1 = _m.valence(a_1);
413  assert(valence_a_0>2);
414  assert(valence_a_1>2);
415 
416  if( (valence_a_0==6 && valence_a_1==6) || (_m.is_boundary(a_0) && valence_a_1==6) || (_m.is_boundary(a_1) && valence_a_0==6) || (_m.is_boundary(a_0) && _m.is_boundary(a_1)) )// use 8-point scheme
417  {
418  real_t alpha = real_t(1.0/2);
419  real_t beta = real_t(1.0/8);
420  real_t gamma = real_t(-1.0/16);
421 
422  //get points
423  typename mesh_t::VertexHandle b_0, b_1, c_0, c_1, c_2, c_3;
424  typename mesh_t::HalfedgeHandle t_he;
425 
426  t_he = _m.next_halfedge_handle(_m.opposite_halfedge_handle(heh));
427  b_0 = _m.to_vertex_handle(t_he);
428  if(!_m.is_boundary(_m.opposite_halfedge_handle(t_he)))
429  {
430  t_he = _m.next_halfedge_handle(_m.opposite_halfedge_handle(t_he));
431  c_0 = _m.to_vertex_handle(t_he);
432  }
433 
434  t_he = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
435  b_1 = _m.to_vertex_handle(t_he);
436  if(!_m.is_boundary(t_he))
437  {
438  t_he = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(t_he));
439  c_1 = _m.to_vertex_handle(t_he);
440  }
441 
442  t_he = _m.next_halfedge_handle(_m.opposite_halfedge_handle(opp_heh));
443  assert(b_1.idx()==_m.to_vertex_handle(t_he).idx());
444  if(!_m.is_boundary(_m.opposite_halfedge_handle(t_he)))
445  {
446  t_he = _m.next_halfedge_handle(_m.opposite_halfedge_handle(t_he));
447  c_2 = _m.to_vertex_handle(t_he);
448  }
449 
450  t_he = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(opp_heh));
451  assert(b_0==_m.to_vertex_handle(t_he));
452  if(!_m.is_boundary(t_he))
453  {
454  t_he = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(t_he));
455  c_3 = _m.to_vertex_handle(t_he);
456  }
457 
458  //compute position.
459  //a0,a1,b0,b1 must exist.
460  assert(a_0.is_valid());
461  assert(a_1.is_valid());
462  assert(b_0.is_valid());
463  assert(b_1.is_valid());
464  //The other vertices may be created from symmetry is they are on the other side of the boundary.
465 
466  pos = _m.point(a_0);
467  pos += _m.point(a_1);
468  pos *= alpha;
469 
470  typename mesh_t::Point tpos ( _m.point(b_0) );
471  tpos += _m.point(b_1);
472  tpos *= beta;
473  pos += tpos;
474 
475  typename mesh_t::Point pc_0, pc_1, pc_2, pc_3;
476  if(c_0.is_valid())
477  pc_0 = _m.point(c_0);
478  else //create the point by symmetry
479  {
480  pc_0 = _m.point(a_1) + _m.point(b_0) - _m.point(a_0);
481  }
482  if(c_1.is_valid())
483  pc_1 = _m.point(c_1);
484  else //create the point by symmetry
485  {
486  pc_1 = _m.point(a_1) + _m.point(b_1) - _m.point(a_0);
487  }
488  if(c_2.is_valid())
489  pc_2 = _m.point(c_2);
490  else //create the point by symmetry
491  {
492  pc_2 = _m.point(a_0) + _m.point(b_1) - _m.point(a_1);
493  }
494  if(c_3.is_valid())
495  pc_3 = _m.point(c_3);
496  else //create the point by symmetry
497  {
498  pc_3 = _m.point(a_0) + _m.point(b_0) - _m.point(a_1);
499  }
500  tpos = pc_0;
501  tpos += pc_1;
502  tpos += pc_2;
503  tpos += pc_3;
504  tpos *= gamma;
505  pos += tpos;
506  }
507  else //at least one endpoint is [irregular and not in boundary]
508  {
509  RealType normFactor = static_cast<RealType>(0.0);
510 
511  if(valence_a_0!=6 && !_m.is_boundary(a_0))
512  {
513  assert((int)weights[valence_a_0].size()==valence_a_0+1);
514  typename mesh_t::HalfedgeHandle t_he = opp_heh;
515  for(int i = 0; i < valence_a_0 ; t_he=_m.next_halfedge_handle(_m.opposite_halfedge_handle(t_he)), ++i)
516  {
517  pos += weights[valence_a_0][i] * _m.point(_m.to_vertex_handle(t_he));
518  }
519  assert(t_he==opp_heh);
520 
521  //add irregular vertex:
522  pos += weights[valence_a_0][valence_a_0] * _m.point(a_0);
523  ++normFactor;
524  }
525 
526  if(valence_a_1!=6 && !_m.is_boundary(a_1))
527  {
528  assert((int)weights[valence_a_1].size()==valence_a_1+1);
529  typename mesh_t::HalfedgeHandle t_he = heh;
530  for(int i = 0; i < valence_a_1 ; t_he=_m.next_halfedge_handle(_m.opposite_halfedge_handle(t_he)), ++i)
531  {
532  pos += weights[valence_a_1][i] * _m.point(_m.to_vertex_handle(t_he));
533  }
534  assert(t_he==heh);
535  //add irregular vertex:
536  pos += weights[valence_a_1][valence_a_1] * _m.point(a_1);
537  ++normFactor;
538  }
539 
540  assert(normFactor>0.1); //normFactor should be 1 or 2
541 
542  //if both vertices are irregular, average positions:
543  pos /= normFactor;
544  }
545  }
546  _m.property( ep_pos_, _eh ) = pos;
547  }
548 
549 private: // data
550 
553 
554  weights_t weights;
555 
556 };
557 
558 } // END_NS_UNIFORM
559 } // END_NS_SUBDIVIDER
560 } // END_NS_OPENMESH
561 #endif
562 
Contains all the mesh ingredients like the polygonal mesh, the triangle mesh, different mesh kernels ...
Definition: MeshItems.hh:59
Triangle mesh based on the ArrayKernel.
Definition: TriMesh_ArrayKernelT.hh:96
Kernel::VertexHandle VertexHandle
Handle for referencing the corresponding item.
Definition: PolyMeshT.hh:136
Kernel::EdgeHandle EdgeHandle
Scalar type.
Definition: PolyMeshT.hh:138
SmartVertexHandle new_vertex()
Uses default copy and assignment operator.
Definition: PolyMeshT.hh:201
Kernel::FaceHandle FaceHandle
Scalar type.
Definition: PolyMeshT.hh:139
Kernel::HalfedgeHandle HalfedgeHandle
Scalar type.
Definition: PolyMeshT.hh:137
Kernel::Point Point
Coordinate type.
Definition: PolyMeshT.hh:112
Modified Butterfly subdivision algorithm.
Definition: ModifiedButterFlyT.hh:93
bool subdivide(MeshType &_m, size_t _n, const bool _update_points=true) override
Subdivide mesh _m _n times.
Definition: ModifiedButterFlyT.hh:177
void init_weights(size_t _max_valence=30)
Pre-compute weights.
Definition: ModifiedButterFlyT.hh:124
bool cleanup(mesh_t &_m) override
Cleanup mesh after usage, e.g. remove added properties.
Definition: ModifiedButterFlyT.hh:169
const char * name() const override
Return name of subdivision algorithm.
Definition: ModifiedButterFlyT.hh:120
bool prepare(mesh_t &_m) override
Prepare mesh, e.g. add properties.
Definition: ModifiedButterFlyT.hh:161
Abstract base class for uniform subdivision algorithms.
Definition: SubdividerT.hh:89
Check integrity of mesh.
Definition: MeshCheckerT.hh:74

Project OpenMesh, ©  Visual Computing Institute, RWTH Aachen. Documentation generated using doxygen .