Since the OpenMesh iterators are (almost) conformant to STL iterators, one can apply the STL algorithms on meshes.
The following example shows how to use the STL for_each
construct, since it is easier to read and may be more efficient than hand-written loops.
We will define a class which provides the smoothing algorithm, hence define a reusable component. The class must be template class because there is no such thing as a class OpenMesh, but many different types of OpenMesh:
template <class Mesh> class SmootherT
The class SmootherT has two functors, one that computes the barycenter for a given vertex, and a second that sets the vertex position to the corresponding barycenter. A functor is simply a class with a function operator()(...)
. The first functor ComputeCOG
computes the barycenter and stores it in a custom vertex property cog_:
void operator()(const typename Mesh::VertexHandle& _vh)
{
typename Mesh::VertexVertexIter vv_it;
typename Mesh::Scalar valence(0.0);
mesh_.property(cog_, _vh) = typename Mesh::Point(0.0, 0.0, 0.0);
for (vv_it=mesh_.vv_iter(_vh); vv_it.is_valid(); ++vv_it)
{
mesh_.property(cog_, _vh) += mesh_.point( *vv_it );
++valence;
}
mesh_.property(cog_, _vh ) /= valence;
}
Note, that ComputeCOG
needs to have access to the mesh object and the property handle. Here, both are references to member variables of the smoother object.
The second functor class
SetCOG
, which sets the vertex position, is constructed analogical.
Using these functors and std::for_each
from the STL the smoothing algorithm can be realized in a member function of SmootherT:
void smooth(unsigned int _iterations)
{
for (unsigned int i=0; i < _iterations; ++i)
{
std::for_each(mesh_.vertices_begin(),
mesh_.vertices_end(),
ComputeCOG(mesh_, cog_));
std::for_each(mesh_.vertices_begin(),
mesh_.vertices_end(),
SetCOG(mesh_, cog_));
}
}
The complete example looks like this:
#include <algorithm>
#include <OpenMesh/Core/Utils/Property.hh>
#ifndef DOXY_IGNORE_THIS
template <class Mesh> class SmootherT
{
public:
typedef typename Mesh::Point cog_t;
public:
explicit SmootherT(Mesh& _mesh)
: mesh_(_mesh)
{
mesh_.add_property( cog_ );
}
~SmootherT()
{
mesh_.remove_property( cog_ );
}
void smooth(unsigned int _iterations)
{
for (unsigned int i=0; i < _iterations; ++i)
{
std::for_each(mesh_.vertices_begin(),
mesh_.vertices_end(),
ComputeCOG(mesh_, cog_));
std::for_each(mesh_.vertices_begin(),
mesh_.vertices_end(),
SetCOG(mesh_, cog_));
}
}
private:
class ComputeCOG
{
public:
ComputeCOG(Mesh& _mesh, Property_cog& _cog)
: mesh_(_mesh), cog_(_cog)
{}
void operator()(const typename Mesh::VertexHandle& _vh)
{
typename Mesh::VertexVertexIter vv_it;
typename Mesh::Scalar valence(0.0);
mesh_.property(cog_, _vh) = typename Mesh::Point(0.0, 0.0, 0.0);
for (vv_it=mesh_.vv_iter(_vh); vv_it.is_valid(); ++vv_it)
{
mesh_.property(cog_, _vh) += mesh_.point( *vv_it );
++valence;
}
mesh_.property(cog_, _vh ) /= valence;
}
private:
Mesh& mesh_;
Property_cog& cog_;
};
class SetCOG
{
public:
SetCOG(Mesh& _mesh, Property_cog& _cog)
: mesh_(_mesh), cog_(_cog)
{}
void operator()(const typename Mesh::VertexHandle& _vh)
{
if (!mesh_.is_boundary(_vh))
mesh_.set_point( _vh, mesh_.property(cog_, _vh) );
}
private:
Mesh& mesh_;
Property_cog& cog_;
};
Mesh& mesh_;
Property_cog cog_;
};
#endif
and
#include <iostream>
#include <vector>
#include <OpenMesh/Core/IO/MeshIO.hh>
#include <OpenMesh/Core/Mesh/TriMesh_ArrayKernelT.hh>
#include "smooth_algo.hh"
#ifndef DOXY_IGNORE_THIS
{
};
#endif
int main(int argc, char **argv)
{
MyMesh mesh;
if (argc != 4)
{
std::cerr << "Usage: " << argv[0] << " #iterations infile outfile\n";
return 1;
}
{
std::cerr << "Error: Cannot read mesh from " << argv[2] << std::endl;
return 1;
}
SmootherT<MyMesh> smoother(mesh);
smoother.smooth(atoi(argv[1]));
{
std::cerr << "Error: cannot write mesh to " << argv[3] << std::endl;
return 1;
}
return 0;
}