OpenMesh
Sqrt3InterpolatingSubdividerLabsikGreinerT.hh
Go to the documentation of this file.
1 /* ========================================================================= *
2  * *
3  * OpenMesh *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openmesh.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenMesh. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40  * ========================================================================= */
41 
42 /*==========================================================================*\
43 * *
44 * $Revision: 410 $ *
45 * $Date: 2010-06-17 12:45:58 +0200 (Do, 17. Jun 2010) $ *
46 * *
47 \*==========================================================================*/
48 
58 //=============================================================================
59 //
60 // CLASS InterpolatingSqrt3LGT
61 //
62 //=============================================================================
63 
64 #ifndef OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH
65 #define OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH
66 
67 
68 //== INCLUDES =================================================================
69 
70 #include <OpenMesh/Core/Mesh/Handles.hh>
71 #include <OpenMesh/Core/System/config.hh>
73 
74 #if defined(_DEBUG) || defined(DEBUG)
75 // Makes life lot easier, when playing/messing around with low-level topology
76 // changing methods of OpenMesh
77 # include <OpenMesh/Tools/Utils/MeshCheckerT.hh>
78 # define ASSERT_CONSISTENCY( T, m ) \
79  assert(OpenMesh::Utils::MeshCheckerT<T>(m).check())
80 #else
81 # define ASSERT_CONSISTENCY( T, m )
82 #endif
83 // -------------------- STL
84 #include <vector>
85 #if defined(OM_CC_MIPS)
86 # include <math.h>
87 #else
88 # include <cmath>
89 #endif
90 
91 //#define MIRROR_TRIANGLES
92 //#define MIN_NORM
93 
94 //== NAMESPACE ================================================================
95 
96 namespace OpenMesh { // BEGIN_NS_OPENMESH
97 namespace Subdivider { // BEGIN_NS_DECIMATER
98 namespace Uniform { // BEGIN_NS_UNIFORM
99 
100 
101 //== CLASS DEFINITION =========================================================
102 
103 
112 template <typename MeshType, typename RealType = double>
113 class InterpolatingSqrt3LGT : public SubdividerT< MeshType, RealType >
114 {
115 public:
116 
117  typedef RealType real_t;
118  typedef MeshType mesh_t;
120 
121  typedef std::vector< std::vector<real_t> > weights_t;
122 
123 public:
124 
125 
126  InterpolatingSqrt3LGT(void) : parent_t()
127  { init_weights(); }
128 
129  InterpolatingSqrt3LGT(MeshType &_m) : parent_t(_m)
130  { init_weights(); }
131 
132  virtual ~InterpolatingSqrt3LGT() {}
133 
134 
135 public:
136 
137 
138  const char *name() const { return "Uniform Interpolating Sqrt3"; }
139 
141  void init_weights(size_t _max_valence=50)
142  {
143  weights_.resize(_max_valence);
144 
145  weights_[3].resize(4);
146  weights_[3][0] = real_t(+4.0/27);
147  weights_[3][1] = real_t(-5.0/27);
148  weights_[3][2] = real_t(+4.0/27);
149  weights_[3][3] = real_t(+8.0/9);
150 
151  weights_[4].resize(5);
152  weights_[4][0] = real_t(+2.0/9);
153  weights_[4][1] = real_t(-1.0/9);
154  weights_[4][2] = real_t(-1.0/9);
155  weights_[4][3] = real_t(+2.0/9);
156  weights_[4][4] = real_t(+7.0/9);
157 
158  for(unsigned int K=5; K<_max_valence; ++K)
159  {
160  weights_[K].resize(K+1);
161  double aH = 2.0*cos(M_PI/static_cast<double>(K))/3.0;
162  weights_[K][K] = static_cast<real_t>(1.0 - aH*aH);
163  for(unsigned int i=0; i<K; ++i)
164  {
165 
166  weights_[K][i] = static_cast<real_t>((aH*aH + 2.0*aH*cos(2.0*static_cast<double>(i)*M_PI/static_cast<double>(K) + M_PI/static_cast<double>(K)) +
167  2.0*aH*aH*cos(4.0*static_cast<double>(i)*M_PI/static_cast<double>(K) + 2.0*M_PI/static_cast<double>(K)))/static_cast<double>(K));
168  }
169  }
170 
171  //just to be sure:
172  weights_[6].resize(0);
173 
174  }
175 
176 
177 protected:
178 
179 
180  bool prepare( MeshType& _m )
181  {
182  _m.request_edge_status();
183  _m.add_property( fp_pos_ );
184  _m.add_property( ep_nv_ );
185  _m.add_property( mp_gen_ );
186  _m.property( mp_gen_ ) = 0;
187 
188  return _m.has_edge_status()
189  && ep_nv_.is_valid() && mp_gen_.is_valid();
190  }
191 
192 
193  bool cleanup( MeshType& _m )
194  {
195  _m.release_edge_status();
196  _m.remove_property( fp_pos_ );
197  _m.remove_property( ep_nv_ );
198  _m.remove_property( mp_gen_ );
199  return true;
200  }
201 
202 
203  bool subdivide( MeshType& _m, size_t _n , const bool _update_points = true)
204  {
205 
207 
208  typename MeshType::VertexIter vit;
209  typename MeshType::VertexVertexIter vvit;
210  typename MeshType::EdgeIter eit;
211  typename MeshType::FaceIter fit;
212  typename MeshType::FaceVertexIter fvit;
213  typename MeshType::FaceHalfedgeIter fheit;
214  typename MeshType::VertexHandle vh;
215  typename MeshType::HalfedgeHandle heh;
216  typename MeshType::Point pos(0,0,0), zero(0,0,0);
217  size_t &gen = _m.property( mp_gen_ );
218 
219  for (size_t l=0; l<_n; ++l)
220  {
221  // tag existing edges
222  for (eit=_m.edges_begin(); eit != _m.edges_end();++eit)
223  {
224  _m.status( *eit ).set_tagged( true );
225  if ( (gen%2) && _m.is_boundary(*eit) )
226  compute_new_boundary_points( _m, *eit ); // *) creates new vertices
227  }
228 
229  // insert new vertices, and store pos in vp_pos_
230  typename MeshType::FaceIter fend = _m.faces_end();
231  for (fit = _m.faces_begin();fit != fend; ++fit)
232  {
233  if (_m.is_boundary(*fit))
234  {
235  if(gen%2)
236  _m.property(fp_pos_, *fit).invalidate();
237  else
238  {
239  //find the interior boundary halfedge
240  for( heh = _m.halfedge_handle(*fit); !_m.is_boundary( _m.opposite_halfedge_handle(heh) ); heh = _m.next_halfedge_handle(heh) )
241  ;
242  assert(_m.is_boundary( _m.opposite_halfedge_handle(heh) ));
243  pos = zero;
244  //check for two boundaries case:
245  if( _m.is_boundary(_m.next_halfedge_handle(heh)) || _m.is_boundary(_m.prev_halfedge_handle(heh)) )
246  {
247  if(_m.is_boundary(_m.prev_halfedge_handle(heh)))
248  heh = _m.prev_halfedge_handle(heh); //ensure that the boundary halfedges are heh and heh->next
249  //check for three boundaries case:
250  if(_m.is_boundary(_m.next_halfedge_handle(_m.next_halfedge_handle(heh))))
251  {
252  //three boundaries, use COG of triangle
253  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
254  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
255  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
256  }
257  else
258  {
259 #ifdef MIRROR_TRIANGLES
260  //two boundaries, mirror two triangles
261  pos += real_t(2.0/9) * _m.point(_m.to_vertex_handle(heh));
262  pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
263  pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
264  pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
265 #else
266  pos += real_t(7.0/24) * _m.point(_m.to_vertex_handle(heh));
267  pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
268  pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
269  pos += real_t(-1.0/24) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
270 #endif
271  }
272  }
273  else
274  {
275  vh = _m.to_vertex_handle(_m.next_halfedge_handle(heh));
276  //check last vertex regularity
277  if((_m.valence(vh) == 6) || _m.is_boundary(vh))
278  {
279 #ifdef MIRROR_TRIANGLES
280  //use regular rule and mirror one triangle
281  pos += real_t(5.0/9) * _m.point(vh);
282  pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(heh));
283  pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
284  pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
285  pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
286 #else
287 #ifdef MIN_NORM
288  pos += real_t(1.0/9) * _m.point(vh);
289  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
290  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
291  pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
292  pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
293 #else
294  pos += real_t(1.0/2) * _m.point(vh);
295  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
296  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
297  pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
298  pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
299 #endif
300 #endif
301  }
302  else
303  {
304  //irregular setting, use usual irregular rule
305  unsigned int K = _m.valence(vh);
306  pos += weights_[K][K]*_m.point(vh);
307  heh = _m.opposite_halfedge_handle( _m.next_halfedge_handle(heh) );
308  for(unsigned int i = 0; i<K; ++i, heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)) )
309  {
310  pos += weights_[K][i]*_m.point(_m.to_vertex_handle(heh));
311  }
312  }
313  }
314  vh = _m.add_vertex( pos );
315  _m.property(fp_pos_, *fit) = vh;
316  }
317  }
318  else
319  {
320  pos = zero;
321  int nOrdinary = 0;
322 
323  //check number of extraordinary vertices
324  for(fvit = _m.fv_iter( *fit ); fvit.is_valid(); ++fvit)
325  if( (_m.valence(*fvit)) == 6 || _m.is_boundary(*fvit) )
326  ++nOrdinary;
327 
328  if(nOrdinary==3)
329  {
330  for(fheit = _m.fh_iter( *fit ); fheit.is_valid(); ++fheit)
331  {
332  //one ring vertex has weight 32/81
333  heh = *fheit;
334  assert(_m.to_vertex_handle(heh).is_valid());
335  pos += real_t(32.0/81) * _m.point(_m.to_vertex_handle(heh));
336  //tip vertex has weight -1/81
337  heh = _m.opposite_halfedge_handle(heh);
338  assert(heh.is_valid());
339  assert(_m.next_halfedge_handle(heh).is_valid());
340  assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
341  pos -= real_t(1.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
342  //outer vertices have weight -2/81
343  heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
344  assert(heh.is_valid());
345  assert(_m.next_halfedge_handle(heh).is_valid());
346  assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
347  pos -= real_t(2.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
348  heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
349  assert(heh.is_valid());
350  assert(_m.next_halfedge_handle(heh).is_valid());
351  assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
352  pos -= real_t(2.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
353  }
354  }
355  else
356  {
357  //only use irregular vertices:
358  for(fheit = _m.fh_iter( *fit ); fheit.is_valid(); ++fheit)
359  {
360  vh = _m.to_vertex_handle(*fheit);
361  if( (_m.valence(vh) != 6) && (!_m.is_boundary(vh)) )
362  {
363  unsigned int K = _m.valence(vh);
364  pos += weights_[K][K]*_m.point(vh);
365  heh = _m.opposite_halfedge_handle( *fheit );
366  for(unsigned int i = 0; i<K; ++i, heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)) )
367  {
368  pos += weights_[K][i]*_m.point(_m.to_vertex_handle(heh));
369  }
370  }
371  }
372  pos *= real_t(1.0/(3-nOrdinary));
373  }
374 
375  vh = _m.add_vertex( pos );
376  _m.property(fp_pos_, *fit) = vh;
377  }
378  }
379 
380  //split faces
381  for (fit = _m.faces_begin();fit != fend; ++fit)
382  {
383  if ( _m.is_boundary(*fit) && (gen%2))
384  {
385  boundary_split( _m, *fit );
386  }
387  else
388  {
389  assert(_m.property(fp_pos_, *fit).is_valid());
390  _m.split( *fit, _m.property(fp_pos_, *fit) );
391  }
392  }
393 
394  // flip old edges
395  for (eit=_m.edges_begin(); eit != _m.edges_end(); ++eit)
396  if ( _m.status( *eit ).tagged() && !_m.is_boundary( *eit ) )
397  _m.flip(*eit);
398 
399  // Now we have an consistent mesh!
400  ASSERT_CONSISTENCY( MeshType, _m );
401 
402  // increase generation by one
403  ++gen;
404  }
405  return true;
406  }
407 
408 private:
409 
410  // Pre-compute location of new boundary points for odd generations
411  // and store them in the edge property ep_nv_;
412  void compute_new_boundary_points( MeshType& _m,
413  const typename MeshType::EdgeHandle& _eh)
414  {
415  assert( _m.is_boundary(_eh) );
416 
417  typename MeshType::HalfedgeHandle heh;
418  typename MeshType::VertexHandle vh1, vh2, vh3, vh4, vhl, vhr;
419  typename MeshType::Point zero(0,0,0), P1, P2, P3, P4;
420 
421  /*
422  // *---------*---------*
423  // / \ / \ / \
424  // / \ / \ / \
425  // / \ / \ / \
426  // / \ / \ / \
427  // *---------*--#---#--*---------*
428  //
429  // ^ ^ ^ ^ ^ ^
430  // P1 P2 pl pr P3 P4
431  */
432  // get halfedge pointing from P3 to P2 (outer boundary halfedge)
433 
434  heh = _m.halfedge_handle(_eh,
435  _m.is_boundary(_m.halfedge_handle(_eh,1)));
436 
437  assert( _m.is_boundary( _m.next_halfedge_handle( heh ) ) );
438  assert( _m.is_boundary( _m.prev_halfedge_handle( heh ) ) );
439 
440  vh1 = _m.to_vertex_handle( _m.next_halfedge_handle( heh ) );
441  vh2 = _m.to_vertex_handle( heh );
442  vh3 = _m.from_vertex_handle( heh );
443  vh4 = _m.from_vertex_handle( _m.prev_halfedge_handle( heh ));
444 
445  P1 = _m.point(vh1);
446  P2 = _m.point(vh2);
447  P3 = _m.point(vh3);
448  P4 = _m.point(vh4);
449 
450  vhl = _m.add_vertex(real_t(-5.0/81)*P1 + real_t(20.0/27)*P2 + real_t(10.0/27)*P3 + real_t(-4.0/81)*P4);
451  vhr = _m.add_vertex(real_t(-5.0/81)*P4 + real_t(20.0/27)*P3 + real_t(10.0/27)*P2 + real_t(-4.0/81)*P1);
452 
453  _m.property(ep_nv_, _eh).first = vhl;
454  _m.property(ep_nv_, _eh).second = vhr;
455  }
456 
457 
458  void boundary_split( MeshType& _m, const typename MeshType::FaceHandle& _fh )
459  {
460  assert( _m.is_boundary(_fh) );
461 
462  typename MeshType::VertexHandle vhl, vhr;
463  typename MeshType::FaceEdgeIter fe_it;
464  typename MeshType::HalfedgeHandle heh;
465 
466  // find boundary edge
467  for( fe_it=_m.fe_iter( _fh ); fe_it.is_valid() && !_m.is_boundary( *fe_it ); ++fe_it ) {};
468 
469  // use precomputed, already inserted but not linked vertices
470  vhl = _m.property(ep_nv_, *fe_it).first;
471  vhr = _m.property(ep_nv_, *fe_it).second;
472 
473  /*
474  // *---------*---------*
475  // / \ / \ / \
476  // / \ / \ / \
477  // / \ / \ / \
478  // / \ / \ / \
479  // *---------*--#---#--*---------*
480  //
481  // ^ ^ ^ ^ ^ ^
482  // P1 P2 pl pr P3 P4
483  */
484  // get halfedge pointing from P2 to P3 (inner boundary halfedge)
485 
486  heh = _m.halfedge_handle(*fe_it, _m.is_boundary(_m.halfedge_handle(*fe_it,0)));
487 
488  typename MeshType::HalfedgeHandle pl_P3;
489 
490  // split P2->P3 (heh) in P2->pl (heh) and pl->P3
491  boundary_split( _m, heh, vhl ); // split edge
492  pl_P3 = _m.next_halfedge_handle( heh ); // store next halfedge handle
493  boundary_split( _m, heh ); // split face
494 
495  // split pl->P3 in pl->pr and pr->P3
496  boundary_split( _m, pl_P3, vhr );
497  boundary_split( _m, pl_P3 );
498 
499  assert( _m.is_boundary( vhl ) && _m.halfedge_handle(vhl).is_valid() );
500  assert( _m.is_boundary( vhr ) && _m.halfedge_handle(vhr).is_valid() );
501  }
502 
503  void boundary_split(MeshType& _m,
504  const typename MeshType::HalfedgeHandle& _heh,
505  const typename MeshType::VertexHandle& _vh)
506  {
507  assert( _m.is_boundary( _m.edge_handle(_heh) ) );
508 
509  typename MeshType::HalfedgeHandle
510  heh(_heh),
511  opp_heh( _m.opposite_halfedge_handle(_heh) ),
512  new_heh, opp_new_heh;
513  typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh));
514  typename MeshType::HalfedgeHandle t_heh;
515 
516  /*
517  * P5
518  * *
519  * /|\
520  * / \
521  * / \
522  * / \
523  * / \
524  * /_ heh new \
525  * *-----\*-----\*\-----*
526  * ^ ^ t_heh
527  * _vh to_vh
528  *
529  * P1 P2 P3 P4
530  */
531  // Re-Setting Handles
532 
533  // find halfedge point from P4 to P3
534  for(t_heh = heh;
535  _m.next_halfedge_handle(t_heh) != opp_heh;
536  t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh)))
537  {}
538 
539  assert( _m.is_boundary( t_heh ) );
540 
541  new_heh = _m.new_edge( _vh, to_vh );
542  opp_new_heh = _m.opposite_halfedge_handle(new_heh);
543 
544  // update halfedge connectivity
545  _m.set_next_halfedge_handle(t_heh, opp_new_heh); // P4-P3 -> P3-P2
546  _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh)); // P2-P3 -> P3-P5
547  _m.set_next_halfedge_handle(heh, new_heh); // P1-P2 -> P2-P3
548  _m.set_next_halfedge_handle(opp_new_heh, opp_heh); // P3-P2 -> P2-P1
549 
550  // both opposite halfedges point to same face
551  _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh));
552 
553  // let heh finally point to new inserted vertex
554  _m.set_vertex_handle(heh, _vh);
555 
556  // let heh and new_heh point to same face
557  _m.set_face_handle(new_heh, _m.face_handle(heh));
558 
559  // let opp_new_heh be the new outgoing halfedge for to_vh
560  // (replaces for opp_heh)
561  _m.set_halfedge_handle( to_vh, opp_new_heh );
562 
563  // let opp_heh be the outgoing halfedge for _vh
564  _m.set_halfedge_handle( _vh, opp_heh );
565  }
566 
567  void boundary_split( MeshType& _m,
568  const typename MeshType::HalfedgeHandle& _heh)
569  {
570  assert( _m.is_boundary( _m.opposite_halfedge_handle( _heh ) ) );
571 
572  typename MeshType::HalfedgeHandle
573  heh(_heh),
574  n_heh(_m.next_halfedge_handle(heh));
575 
576  typename MeshType::VertexHandle
577  to_vh(_m.to_vertex_handle(heh));
578 
579  typename MeshType::HalfedgeHandle
580  heh2(_m.new_edge(to_vh,
581  _m.to_vertex_handle(_m.next_halfedge_handle(n_heh)))),
582  heh3(_m.opposite_halfedge_handle(heh2));
583 
584  typename MeshType::FaceHandle
585  new_fh(_m.new_face()),
586  fh(_m.face_handle(heh));
587 
588  // Relink (half)edges
589  _m.set_face_handle(heh, new_fh);
590  _m.set_face_handle(heh2, new_fh);
591  _m.set_next_halfedge_handle(heh2, _m.next_halfedge_handle(_m.next_halfedge_handle(n_heh)));
592  _m.set_next_halfedge_handle(heh, heh2);
593  _m.set_face_handle( _m.next_halfedge_handle(heh2), new_fh);
594 
595  _m.set_next_halfedge_handle(heh3, n_heh);
596  _m.set_next_halfedge_handle(_m.next_halfedge_handle(n_heh), heh3);
597  _m.set_face_handle(heh3, fh);
598 
599  _m.set_halfedge_handle( fh, n_heh);
600  _m.set_halfedge_handle(new_fh, heh);
601 
602 
603  }
604 
605 private:
606 
607  weights_t weights_;
609  OpenMesh::EPropHandleT< std::pair< typename MeshType::VertexHandle,
610  typename MeshType::VertexHandle> > ep_nv_;
612 };
613 
614 
615 //=============================================================================
616 } // END_NS_UNIFORM
617 } // END_NS_SUBDIVIDER
618 } // END_NS_OPENMESH
619 //=============================================================================
620 #endif // OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH
621 //=============================================================================
bool subdivide(MeshType &_m, size_t _n, const bool _update_points=true)
Subdivide mesh _m _n times.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:203
Contains all the mesh ingredients like the polygonal mesh, the triangle mesh, different mesh kernels ...
Definition: MeshItems.hh:64
bool cleanup(MeshType &_m)
Cleanup mesh after usage, e.g. remove added properties.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:193
const char * name() const
Return name of subdivision algorithm.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:138
Abstract base class for uniform subdivision algorithms.
Definition: SubdividerT.hh:93
Uniform Interpolating Sqrt3 subdivision algorithm
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:113
Handle representing an edge property.
Definition: Property.hh:515
bool is_valid() const
The handle is valid iff the index is not negative.
Definition: Handles.hh:77
bool prepare(MeshType &_m)
Prepare mesh, e.g. add properties.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:180
void init_weights(size_t _max_valence=50)
Pre-compute weights.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:141

Project OpenMesh, ©  Computer Graphics Group, RWTH Aachen. Documentation generated using doxygen .