OpenMesh
Sqrt3InterpolatingSubdividerLabsikGreinerT.hh
Go to the documentation of this file.
1 /* ========================================================================= *
2  * *
3  * OpenMesh *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openmesh.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenMesh. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40  * ========================================================================= */
41 
42 /*==========================================================================*\
43 * *
44 * $Revision: 410 $ *
45 * $Date: 2010-06-17 12:45:58 +0200 (Do, 17. Jun 2010) $ *
46 * *
47 \*==========================================================================*/
48 
58 //=============================================================================
59 //
60 // CLASS InterpolatingSqrt3LGT
61 //
62 //=============================================================================
63 
64 #ifndef OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH
65 #define OPENMESH_SUBDIVIDER_UNIFORM_INTERP_SQRT3T_LABSIK_GREINER_HH
66 
67 
68 //== INCLUDES =================================================================
69 
70 #include <OpenMesh/Core/Mesh/Handles.hh>
71 #include <OpenMesh/Core/System/config.hh>
73 
74 #if defined(_DEBUG) || defined(DEBUG)
75 // Makes life lot easier, when playing/messing around with low-level topology
76 // changing methods of OpenMesh
77 # include <OpenMesh/Tools/Utils/MeshCheckerT.hh>
78 # define ASSERT_CONSISTENCY( T, m ) \
79  assert(OpenMesh::Utils::MeshCheckerT<T>(m).check())
80 #else
81 # define ASSERT_CONSISTENCY( T, m )
82 #endif
83 // -------------------- STL
84 #include <vector>
85 #if defined(OM_CC_MIPS)
86 # include <math.h>
87 #else
88 # include <cmath>
89 #endif
90 
91 //#define MIRROR_TRIANGLES
92 //#define MIN_NORM
93 
94 //== NAMESPACE ================================================================
95 
96 namespace OpenMesh { // BEGIN_NS_OPENMESH
97 namespace Subdivider { // BEGIN_NS_DECIMATER
98 namespace Uniform { // BEGIN_NS_UNIFORM
99 
100 
101 //== CLASS DEFINITION =========================================================
102 
103 
112 template <typename MeshType, typename RealType = float>
113 class InterpolatingSqrt3LGT : public SubdividerT< MeshType, RealType >
114 {
115 public:
116 
117  typedef RealType real_t;
118  typedef MeshType mesh_t;
120 
121  typedef std::vector< std::vector<real_t> > weights_t;
122 
123 public:
124 
125 
126  InterpolatingSqrt3LGT(void) : parent_t()
127  { init_weights(); }
128 
129  InterpolatingSqrt3LGT(MeshType &_m) : parent_t(_m)
130  { init_weights(); }
131 
132  virtual ~InterpolatingSqrt3LGT() {}
133 
134 
135 public:
136 
137 
138  const char *name() const { return "Uniform Interpolating Sqrt3"; }
139 
141  void init_weights(size_t _max_valence=50)
142  {
143  weights_.resize(_max_valence);
144 
145  weights_[3].resize(4);
146  weights_[3][0] = real_t(+4.0/27);
147  weights_[3][1] = real_t(-5.0/27);
148  weights_[3][2] = real_t(+4.0/27);
149  weights_[3][3] = real_t(+8.0/9);
150 
151  weights_[4].resize(5);
152  weights_[4][0] = real_t(+2.0/9);
153  weights_[4][1] = real_t(-1.0/9);
154  weights_[4][2] = real_t(-1.0/9);
155  weights_[4][3] = real_t(+2.0/9);
156  weights_[4][4] = real_t(+7.0/9);
157 
158  for(unsigned int K=5; K<_max_valence; ++K)
159  {
160  weights_[K].resize(K+1);
161  real_t aH = 2.0*cos(M_PI/K)/3.0;
162  weights_[K][K] = 1.0 - aH*aH;
163  for(unsigned int i=0; i<K; ++i)
164  {
165  weights_[K][i] = (aH*aH + 2.0*aH*cos(2.0*i*M_PI/K + M_PI/K) + 2.0*aH*aH*cos(4.0*i*M_PI/K + 2.0*M_PI/K))/K;
166  }
167  }
168 
169  //just to be sure:
170  weights_[6].resize(0);
171 
172  }
173 
174 
175 protected:
176 
177 
178  bool prepare( MeshType& _m )
179  {
180  _m.request_edge_status();
181  _m.add_property( fp_pos_ );
182  _m.add_property( ep_nv_ );
183  _m.add_property( mp_gen_ );
184  _m.property( mp_gen_ ) = 0;
185 
186  return _m.has_edge_status()
187  && ep_nv_.is_valid() && mp_gen_.is_valid();
188  }
189 
190 
191  bool cleanup( MeshType& _m )
192  {
193  _m.release_edge_status();
194  _m.remove_property( fp_pos_ );
195  _m.remove_property( ep_nv_ );
196  _m.remove_property( mp_gen_ );
197  return true;
198  }
199 
200 
201  bool subdivide( MeshType& _m, size_t _n , const bool _update_points = true)
202  {
203 
205 
206  typename MeshType::VertexIter vit;
207  typename MeshType::VertexVertexIter vvit;
208  typename MeshType::EdgeIter eit;
209  typename MeshType::FaceIter fit;
210  typename MeshType::FaceVertexIter fvit;
211  typename MeshType::FaceHalfedgeIter fheit;
212  typename MeshType::VertexHandle vh;
213  typename MeshType::HalfedgeHandle heh;
214  typename MeshType::Point pos(0,0,0), zero(0,0,0);
215  size_t &gen = _m.property( mp_gen_ );
216 
217  for (size_t l=0; l<_n; ++l)
218  {
219  // tag existing edges
220  for (eit=_m.edges_begin(); eit != _m.edges_end();++eit)
221  {
222  _m.status( *eit ).set_tagged( true );
223  if ( (gen%2) && _m.is_boundary(*eit) )
224  compute_new_boundary_points( _m, *eit ); // *) creates new vertices
225  }
226 
227  // insert new vertices, and store pos in vp_pos_
228  typename MeshType::FaceIter fend = _m.faces_end();
229  for (fit = _m.faces_begin();fit != fend; ++fit)
230  {
231  if (_m.is_boundary(*fit))
232  {
233  if(gen%2)
234  _m.property(fp_pos_, *fit).invalidate();
235  else
236  {
237  //find the interior boundary halfedge
238  for( heh = _m.halfedge_handle(*fit); !_m.is_boundary( _m.opposite_halfedge_handle(heh) ); heh = _m.next_halfedge_handle(heh) )
239  ;
240  assert(_m.is_boundary( _m.opposite_halfedge_handle(heh) ));
241  pos = zero;
242  //check for two boundaries case:
243  if( _m.is_boundary(_m.next_halfedge_handle(heh)) || _m.is_boundary(_m.prev_halfedge_handle(heh)) )
244  {
245  if(_m.is_boundary(_m.prev_halfedge_handle(heh)))
246  heh = _m.prev_halfedge_handle(heh); //ensure that the boundary halfedges are heh and heh->next
247  //check for three boundaries case:
248  if(_m.is_boundary(_m.next_halfedge_handle(_m.next_halfedge_handle(heh))))
249  {
250  //three boundaries, use COG of triangle
251  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
252  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
253  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
254  }
255  else
256  {
257 #ifdef MIRROR_TRIANGLES
258  //two boundaries, mirror two triangles
259  pos += real_t(2.0/9) * _m.point(_m.to_vertex_handle(heh));
260  pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
261  pos += real_t(4.0/9) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
262  pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
263 #else
264  pos += real_t(7.0/24) * _m.point(_m.to_vertex_handle(heh));
265  pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
266  pos += real_t(3.0/8) * _m.point(_m.to_vertex_handle(_m.prev_halfedge_handle(heh)));
267  pos += real_t(-1.0/24) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
268 #endif
269  }
270  }
271  else
272  {
273  vh = _m.to_vertex_handle(_m.next_halfedge_handle(heh));
274  //check last vertex regularity
275  if((_m.valence(vh) == 6) || _m.is_boundary(vh))
276  {
277 #ifdef MIRROR_TRIANGLES
278  //use regular rule and mirror one triangle
279  pos += real_t(5.0/9) * _m.point(vh);
280  pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(heh));
281  pos += real_t(3.0/9) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
282  pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
283  pos += real_t(-1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
284 #else
285 #ifdef MIN_NORM
286  pos += real_t(1.0/9) * _m.point(vh);
287  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
288  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
289  pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
290  pos += real_t(1.0/9) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
291 #else
292  pos += real_t(1.0/2) * _m.point(vh);
293  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(heh));
294  pos += real_t(1.0/3) * _m.point(_m.to_vertex_handle(_m.opposite_halfedge_handle(heh)));
295  pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.next_halfedge_handle(heh)))));
296  pos += real_t(-1.0/12) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(_m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)))));
297 #endif
298 #endif
299  }
300  else
301  {
302  //irregular setting, use usual irregular rule
303  unsigned int K = _m.valence(vh);
304  pos += weights_[K][K]*_m.point(vh);
305  heh = _m.opposite_halfedge_handle( _m.next_halfedge_handle(heh) );
306  for(unsigned int i = 0; i<K; ++i, heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)) )
307  {
308  pos += weights_[K][i]*_m.point(_m.to_vertex_handle(heh));
309  }
310  }
311  }
312  vh = _m.add_vertex( pos );
313  _m.property(fp_pos_, *fit) = vh;
314  }
315  }
316  else
317  {
318  pos = zero;
319  int nOrdinary = 0;
320 
321  //check number of extraordinary vertices
322  for(fvit = _m.fv_iter( *fit ); fvit.is_valid(); ++fvit)
323  if( (_m.valence(*fvit)) == 6 || _m.is_boundary(*fvit) )
324  ++nOrdinary;
325 
326  if(nOrdinary==3)
327  {
328  for(fheit = _m.fh_iter( *fit ); fheit.is_valid(); ++fheit)
329  {
330  //one ring vertex has weight 32/81
331  heh = *fheit;
332  assert(_m.to_vertex_handle(heh).is_valid());
333  pos += real_t(32.0/81) * _m.point(_m.to_vertex_handle(heh));
334  //tip vertex has weight -1/81
335  heh = _m.opposite_halfedge_handle(heh);
336  assert(heh.is_valid());
337  assert(_m.next_halfedge_handle(heh).is_valid());
338  assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
339  pos -= real_t(1.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
340  //outer vertices have weight -2/81
341  heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
342  assert(heh.is_valid());
343  assert(_m.next_halfedge_handle(heh).is_valid());
344  assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
345  pos -= real_t(2.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
346  heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh));
347  assert(heh.is_valid());
348  assert(_m.next_halfedge_handle(heh).is_valid());
349  assert(_m.to_vertex_handle(_m.next_halfedge_handle(heh)).is_valid());
350  pos -= real_t(2.0/81) * _m.point(_m.to_vertex_handle(_m.next_halfedge_handle(heh)));
351  }
352  }
353  else
354  {
355  //only use irregular vertices:
356  for(fheit = _m.fh_iter( *fit ); fheit.is_valid(); ++fheit)
357  {
358  vh = _m.to_vertex_handle(*fheit);
359  if( (_m.valence(vh) != 6) && (!_m.is_boundary(vh)) )
360  {
361  unsigned int K = _m.valence(vh);
362  pos += weights_[K][K]*_m.point(vh);
363  heh = _m.opposite_halfedge_handle( *fheit );
364  for(unsigned int i = 0; i<K; ++i, heh = _m.opposite_halfedge_handle(_m.prev_halfedge_handle(heh)) )
365  {
366  pos += weights_[K][i]*_m.point(_m.to_vertex_handle(heh));
367  }
368  }
369  }
370  pos *= real_t(1.0/(3-nOrdinary));
371  }
372 
373  vh = _m.add_vertex( pos );
374  _m.property(fp_pos_, *fit) = vh;
375  }
376  }
377 
378  //split faces
379  for (fit = _m.faces_begin();fit != fend; ++fit)
380  {
381  if ( _m.is_boundary(*fit) && (gen%2))
382  {
383  boundary_split( _m, *fit );
384  }
385  else
386  {
387  assert(_m.property(fp_pos_, *fit).is_valid());
388  _m.split( *fit, _m.property(fp_pos_, *fit) );
389  }
390  }
391 
392  // flip old edges
393  for (eit=_m.edges_begin(); eit != _m.edges_end(); ++eit)
394  if ( _m.status( *eit ).tagged() && !_m.is_boundary( *eit ) )
395  _m.flip(*eit);
396 
397  // Now we have an consistent mesh!
398  ASSERT_CONSISTENCY( MeshType, _m );
399 
400  // increase generation by one
401  ++gen;
402  }
403  return true;
404  }
405 
406 private:
407 
408  // Pre-compute location of new boundary points for odd generations
409  // and store them in the edge property ep_nv_;
410  void compute_new_boundary_points( MeshType& _m,
411  const typename MeshType::EdgeHandle& _eh)
412  {
413  assert( _m.is_boundary(_eh) );
414 
415  typename MeshType::HalfedgeHandle heh;
416  typename MeshType::VertexHandle vh1, vh2, vh3, vh4, vhl, vhr;
417  typename MeshType::Point zero(0,0,0), P1, P2, P3, P4;
418 
419  /*
420  // *---------*---------*
421  // / \ / \ / \
422  // / \ / \ / \
423  // / \ / \ / \
424  // / \ / \ / \
425  // *---------*--#---#--*---------*
426  //
427  // ^ ^ ^ ^ ^ ^
428  // P1 P2 pl pr P3 P4
429  */
430  // get halfedge pointing from P3 to P2 (outer boundary halfedge)
431 
432  heh = _m.halfedge_handle(_eh,
433  _m.is_boundary(_m.halfedge_handle(_eh,1)));
434 
435  assert( _m.is_boundary( _m.next_halfedge_handle( heh ) ) );
436  assert( _m.is_boundary( _m.prev_halfedge_handle( heh ) ) );
437 
438  vh1 = _m.to_vertex_handle( _m.next_halfedge_handle( heh ) );
439  vh2 = _m.to_vertex_handle( heh );
440  vh3 = _m.from_vertex_handle( heh );
441  vh4 = _m.from_vertex_handle( _m.prev_halfedge_handle( heh ));
442 
443  P1 = _m.point(vh1);
444  P2 = _m.point(vh2);
445  P3 = _m.point(vh3);
446  P4 = _m.point(vh4);
447 
448  vhl = _m.add_vertex(real_t(-5.0/81)*P1 + real_t(20.0/27)*P2 + real_t(10.0/27)*P3 + real_t(-4.0/81)*P4);
449  vhr = _m.add_vertex(real_t(-5.0/81)*P4 + real_t(20.0/27)*P3 + real_t(10.0/27)*P2 + real_t(-4.0/81)*P1);
450 
451  _m.property(ep_nv_, _eh).first = vhl;
452  _m.property(ep_nv_, _eh).second = vhr;
453  }
454 
455 
456  void boundary_split( MeshType& _m, const typename MeshType::FaceHandle& _fh )
457  {
458  assert( _m.is_boundary(_fh) );
459 
460  typename MeshType::VertexHandle vhl, vhr;
461  typename MeshType::FaceEdgeIter fe_it;
462  typename MeshType::HalfedgeHandle heh;
463 
464  // find boundary edge
465  for( fe_it=_m.fe_iter( _fh ); fe_it.is_valid() && !_m.is_boundary( *fe_it ); ++fe_it ) {};
466 
467  // use precomputed, already inserted but not linked vertices
468  vhl = _m.property(ep_nv_, *fe_it).first;
469  vhr = _m.property(ep_nv_, *fe_it).second;
470 
471  /*
472  // *---------*---------*
473  // / \ / \ / \
474  // / \ / \ / \
475  // / \ / \ / \
476  // / \ / \ / \
477  // *---------*--#---#--*---------*
478  //
479  // ^ ^ ^ ^ ^ ^
480  // P1 P2 pl pr P3 P4
481  */
482  // get halfedge pointing from P2 to P3 (inner boundary halfedge)
483 
484  heh = _m.halfedge_handle(*fe_it, _m.is_boundary(_m.halfedge_handle(*fe_it,0)));
485 
486  typename MeshType::HalfedgeHandle pl_P3;
487 
488  // split P2->P3 (heh) in P2->pl (heh) and pl->P3
489  boundary_split( _m, heh, vhl ); // split edge
490  pl_P3 = _m.next_halfedge_handle( heh ); // store next halfedge handle
491  boundary_split( _m, heh ); // split face
492 
493  // split pl->P3 in pl->pr and pr->P3
494  boundary_split( _m, pl_P3, vhr );
495  boundary_split( _m, pl_P3 );
496 
497  assert( _m.is_boundary( vhl ) && _m.halfedge_handle(vhl).is_valid() );
498  assert( _m.is_boundary( vhr ) && _m.halfedge_handle(vhr).is_valid() );
499  }
500 
501  void boundary_split(MeshType& _m,
502  const typename MeshType::HalfedgeHandle& _heh,
503  const typename MeshType::VertexHandle& _vh)
504  {
505  assert( _m.is_boundary( _m.edge_handle(_heh) ) );
506 
507  typename MeshType::HalfedgeHandle
508  heh(_heh),
509  opp_heh( _m.opposite_halfedge_handle(_heh) ),
510  new_heh, opp_new_heh;
511  typename MeshType::VertexHandle to_vh(_m.to_vertex_handle(heh));
512  typename MeshType::HalfedgeHandle t_heh;
513 
514  /*
515  * P5
516  * *
517  * /|\
518  * / \
519  * / \
520  * / \
521  * / \
522  * /_ heh new \
523  * *-----\*-----\*\-----*
524  * ^ ^ t_heh
525  * _vh to_vh
526  *
527  * P1 P2 P3 P4
528  */
529  // Re-Setting Handles
530 
531  // find halfedge point from P4 to P3
532  for(t_heh = heh;
533  _m.next_halfedge_handle(t_heh) != opp_heh;
534  t_heh = _m.opposite_halfedge_handle(_m.next_halfedge_handle(t_heh)))
535  {}
536 
537  assert( _m.is_boundary( t_heh ) );
538 
539  new_heh = _m.new_edge( _vh, to_vh );
540  opp_new_heh = _m.opposite_halfedge_handle(new_heh);
541 
542  // update halfedge connectivity
543  _m.set_next_halfedge_handle(t_heh, opp_new_heh); // P4-P3 -> P3-P2
544  _m.set_next_halfedge_handle(new_heh, _m.next_halfedge_handle(heh)); // P2-P3 -> P3-P5
545  _m.set_next_halfedge_handle(heh, new_heh); // P1-P2 -> P2-P3
546  _m.set_next_halfedge_handle(opp_new_heh, opp_heh); // P3-P2 -> P2-P1
547 
548  // both opposite halfedges point to same face
549  _m.set_face_handle(opp_new_heh, _m.face_handle(opp_heh));
550 
551  // let heh finally point to new inserted vertex
552  _m.set_vertex_handle(heh, _vh);
553 
554  // let heh and new_heh point to same face
555  _m.set_face_handle(new_heh, _m.face_handle(heh));
556 
557  // let opp_new_heh be the new outgoing halfedge for to_vh
558  // (replaces for opp_heh)
559  _m.set_halfedge_handle( to_vh, opp_new_heh );
560 
561  // let opp_heh be the outgoing halfedge for _vh
562  _m.set_halfedge_handle( _vh, opp_heh );
563  }
564 
565  void boundary_split( MeshType& _m,
566  const typename MeshType::HalfedgeHandle& _heh)
567  {
568  assert( _m.is_boundary( _m.opposite_halfedge_handle( _heh ) ) );
569 
570  typename MeshType::HalfedgeHandle
571  heh(_heh),
572  n_heh(_m.next_halfedge_handle(heh));
573 
574  typename MeshType::VertexHandle
575  to_vh(_m.to_vertex_handle(heh));
576 
577  typename MeshType::HalfedgeHandle
578  heh2(_m.new_edge(to_vh,
579  _m.to_vertex_handle(_m.next_halfedge_handle(n_heh)))),
580  heh3(_m.opposite_halfedge_handle(heh2));
581 
582  typename MeshType::FaceHandle
583  new_fh(_m.new_face()),
584  fh(_m.face_handle(heh));
585 
586  // Relink (half)edges
587  _m.set_face_handle(heh, new_fh);
588  _m.set_face_handle(heh2, new_fh);
589  _m.set_next_halfedge_handle(heh2, _m.next_halfedge_handle(_m.next_halfedge_handle(n_heh)));
590  _m.set_next_halfedge_handle(heh, heh2);
591  _m.set_face_handle( _m.next_halfedge_handle(heh2), new_fh);
592 
593  _m.set_next_halfedge_handle(heh3, n_heh);
594  _m.set_next_halfedge_handle(_m.next_halfedge_handle(n_heh), heh3);
595  _m.set_face_handle(heh3, fh);
596 
597  _m.set_halfedge_handle( fh, n_heh);
598  _m.set_halfedge_handle(new_fh, heh);
599 
600 
601  }
602 
603 private:
604 
605  weights_t weights_;
607  OpenMesh::EPropHandleT< std::pair< typename MeshType::VertexHandle,
608  typename MeshType::VertexHandle> > ep_nv_;
610 };
611 
612 
613 //=============================================================================
614 } // END_NS_UNIFORM
615 } // END_NS_SUBDIVIDER
616 } // END_NS_OPENMESH
617 //=============================================================================
618 #endif // OPENMESH_SUBDIVIDER_UNIFORM_SQRT3T_HH
619 //=============================================================================
const char * name() const
Return name of subdivision algorithm.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:138
bool cleanup(MeshType &_m)
Cleanup mesh after usage, e.g. remove added properties.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:191
Handle representing an edge property.
Definition: Property.hh:515
void init_weights(size_t _max_valence=50)
Pre-compute weights.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:141
bool is_valid() const
The handle is valid iff the index is not equal to -1.
Definition: Handles.hh:77
Abstract base class for uniform subdivision algorithms.
Definition: SubdividerT.hh:94
Uniform Interpolating Sqrt3 subdivision algorithm
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:113
bool subdivide(MeshType &_m, size_t _n, const bool _update_points=true)
Subdivide mesh _m _n times.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:201
bool prepare(MeshType &_m)
Prepare mesh, e.g. add properties.
Definition: Sqrt3InterpolatingSubdividerLabsikGreinerT.hh:178
Handle representing a face property.
Definition: Property.hh:529
Contains all the mesh ingredients like the polygonal mesh, the triangle mesh, different mesh kernels ...
Definition: MeshItems.hh:64

Project OpenMesh, ©  Computer Graphics Group, RWTH Aachen. Documentation generated using doxygen .