Developer Documentation
Spherical_test.cc
1 /*===========================================================================*\
2  * *
3  * OpenFlipper *
4  * Copyright (c) 2001-2015, RWTH-Aachen University *
5  * Department of Computer Graphics and Multimedia *
6  * All rights reserved. *
7  * www.openflipper.org *
8  * *
9  *---------------------------------------------------------------------------*
10  * This file is part of OpenFlipper. *
11  *---------------------------------------------------------------------------*
12  * *
13  * Redistribution and use in source and binary forms, with or without *
14  * modification, are permitted provided that the following conditions *
15  * are met: *
16  * *
17  * 1. Redistributions of source code must retain the above copyright notice, *
18  * this list of conditions and the following disclaimer. *
19  * *
20  * 2. Redistributions in binary form must reproduce the above copyright *
21  * notice, this list of conditions and the following disclaimer in the *
22  * documentation and/or other materials provided with the distribution. *
23  * *
24  * 3. Neither the name of the copyright holder nor the names of its *
25  * contributors may be used to endorse or promote products derived from *
26  * this software without specific prior written permission. *
27  * *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *
30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *
31  * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER *
32  * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, *
33  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, *
34  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR *
35  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF *
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING *
37  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS *
38  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *
39  * *
40 \*===========================================================================*/
41 
42 
43 #include <gtest/gtest.h>
44 
45 #include <ACG/Math/VectorT.hh>
46 #include <ACG/Math/GLMatrixT.hh>
47 #include <ACG/Geometry/Spherical.hh>
48 
49 namespace {
50 
51 using ACG::Vec3d;
52 
53 inline Vec3d rot(const Vec3d &ref, const Vec3d &normal, double angle) {
55  rmat.identity();
56  rmat.rotate(angle * M_1_PI * 180.0, normal, ACG::MULT_FROM_LEFT);
57  return rmat.transform_vector(ref);
58 }
59 
60 class Spherical : public testing::Test {
61 
62  protected:
63 
64  virtual void SetUp() {
65  }
66 
67  virtual void TearDown() {
68  }
69 
70 };
71 
72 TEST_F(Spherical, sphericalInnerAngleSum_zeroTriangle) {
73  {
74  const Vec3d n1(1, 0, 0);
75  EXPECT_NEAR(M_PI, ACG::Geometry::sphericalInnerAngleSum(n1, n1, n1), 1e-6);
76  }
77 
78  /*
79  * Jitter along one axis.
80  */
81  {
82  const Vec3d n1(1, 0, 0);
83  const Vec3d axis = (n1 % Vec3d(3, 1, 2).normalized()).normalized();
84  EXPECT_NEAR(M_PI, ACG::Geometry::sphericalInnerAngleSum(
85  rot(n1, axis, .1), n1, n1), 1e-6);
86  EXPECT_NEAR(M_PI, ACG::Geometry::sphericalInnerAngleSum(
87  n1, rot(n1, axis, .1), n1), 1e-6);
88  EXPECT_NEAR(M_PI, ACG::Geometry::sphericalInnerAngleSum(
89  n1, n1, rot(n1, axis, .1)), 1e-6);
90  EXPECT_NEAR(M_PI, ACG::Geometry::sphericalInnerAngleSum(
91  rot(n1, axis, .1), rot(n1, axis, -.05), rot(n1, axis, .07)), 1e-6);
92  }
93 
94  {
95  const Vec3d n1 = Vec3d(4, 5, 6).normalized();
96  const Vec3d axis = (n1 % Vec3d(3, 1, 2).normalized()).normalized();
97  EXPECT_NEAR(M_PI, ACG::Geometry::sphericalInnerAngleSum(
98  rot(n1, axis, .1), rot(n1, axis, -.05), rot(n1, axis, .07)), 1e-6);
99  }
100 }
101 
102 TEST_F(Spherical, sphericalPolyhedralGaussCurv_pointPolyhedral) {
103  std::vector<Vec3d> normals;
104  normals.push_back(Vec3d(1, 0, 0));
105  normals.push_back(Vec3d(1, 0, 0));
106  normals.push_back(Vec3d(1, 0, 0));
107  normals.push_back(Vec3d(1, 0, 0));
108 
109  EXPECT_NEAR(0, ACG::Geometry::sphericalPolyhedralGaussCurv<Vec3d>(normals.begin(), normals.end()), 1e-6);
110 
111  const Vec3d v = Vec3d(3, 2, 7).normalized();
112  normals.clear();
113  for (int i = 0; i < 7; ++i) normals.push_back(v);
114 
115  EXPECT_NEAR(0, ACG::Geometry::sphericalPolyhedralGaussCurv<Vec3d>(normals.begin(), normals.end()), 1e-6);
116 }
117 
118 TEST_F(Spherical, sphericalPolyhedralGaussCurv_linePolyhedral) {
119  /*
120  * Jitter along one axis.
121  */
122  const Vec3d n1 = Vec3d(4, 5, 6).normalized();
123  const Vec3d axis = (n1 % Vec3d(3, 1, 2)).normalized();
124 
125  std::vector<Vec3d> normals;
126  normals.push_back(rot(n1, axis, .1));
127  normals.push_back(rot(n1, axis, .2));
128  normals.push_back(rot(n1, axis, .05));
129  normals.push_back(rot(n1, axis, .09));
130  normals.push_back(rot(n1, axis, -.2));
131  normals.push_back(rot(n1, axis, .01));
132  normals.push_back(rot(n1, axis, -.1));
133  normals.push_back(rot(n1, axis, -.2));
134 
135  EXPECT_NEAR(0, ACG::Geometry::sphericalPolyhedralGaussCurv<Vec3d>(normals.begin(), normals.end()), 1e-6);
136 }
137 
138 TEST_F(Spherical, sphericalPolyhedralGaussCurv_cubeCorner) {
139  {
140  std::vector<Vec3d> normals;
141  normals.push_back(Vec3d(1, 0, 0));
142  normals.push_back(Vec3d(0, 1, 0));
143  normals.push_back(Vec3d(0, 0, 1));
144 
145  EXPECT_NEAR(M_PI_2, ACG::Geometry::sphericalPolyhedralGaussCurv<Vec3d>(normals.begin(), normals.end()), 1e-6);
146  }
147 }
148 
149 
150 TEST_F(Spherical, sphericalPolyhedralGaussCurv_houseCorner) {
151  std::vector<Vec3d> normals;
152  normals.push_back(Vec3d(0, 0, 1));
153  normals.push_back(Vec3d(0, 1, 0));
154  normals.push_back(Vec3d(0, 1, 0));
155  normals.push_back(Vec3d(0, 1, 0));
156  normals.push_back(Vec3d(1, 0, 0));
157 
158  EXPECT_NEAR(-M_PI_2, ACG::Geometry::sphericalPolyhedralGaussCurv<Vec3d>(normals.begin(), normals.end()), 1e-6);
159 }
160 
161 } /* namespace */
auto normalized() const -> decltype(*this/std::declval< VectorT< S, DIM >>().norm())
Definition: Vector11T.hh:440
VectorT< double, 3 > Vec3d
Definition: VectorT.hh:121
void identity()
setup an identity matrix
void rotate(Scalar angle, Scalar x, Scalar y, Scalar z, MultiplyFrom _mult_from=MULT_FROM_RIGHT)
VectorT< T, 3 > transform_vector(const VectorT< T, 3 > &_v) const
transform vector (x&#39;,y&#39;,z&#39;,0) = A * (x,y,z,0)