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Abstract
Using surface splats as a rendering primitive has gained increasing attention recently due to its potential for
high-performance and high-quality rendering of complex geometric models. However, as with any other rendering
primitive, the processing costs are still proportional to the number of primitives that we use to represent a given
object. This is why complexity reduction for point-sampled geometry is as important as it is, e.g., for triangle
meshes. In this paper we present a new sub-sampling technique for dense point clouds which is specifically ad-
justed to the particular geometric properties of circular or elliptical surface splats. A global optimization scheme
computes an approximately minimal set of splats that covers the entire surface while staying below a globally
prescribed maximum error tolerance ε. Since our algorithm converts pure point sample data into surface splats
with normal vectors and spatial extent, it can also be considered as a surface reconstruction technique which
generates a hole-free piecewise linear C−1 continuous approximation of the input data. Here we can exploit the
higher flexibility of surface splats compared to triangle meshes. Compared to previous work in this area we are
able to obtain significantly lower splat numbers for a given error tolerance.

1. Introduction

Point-based geometry representations have gained quite
some attention recently due to their conceptual simplic-
ity [GPA∗03]. Individual point samples can be computed
or measured on any kind of surface description and a suf-
ficiently dense set of samples already provides an effec-
tive surface approximation that is suitable, e.g., for high-
quality rendering [PZBG00, RL00]. The major advantage
over "classical" geometry representations is that point sets
do not require any connectivity information. This signifi-
cantly simplifies their processing since no topological con-
sistency conditions have to be satisfied.

In order to guarantee a visually continuous appearance
of the displayed objects, the concept of purely point-based
representations is usually generalized to splat-based repre-
sentations [ZPBG01], i.e., infinitesimal points are replaced
by ellipses or rectangles, either in object space or in image
space. Due to their intuitive geometric interpretation, espe-
cially object space techniques, like surface splatting, have
been used widely in applications ranging from high-quality
rendering and level-of-detail handling of complex models to
interactive shape design [ZPBG01, ZPKG02, PKKG03].

Although surface splats require the derivation of attributes
such as orientation and spatial extent for each splat, the con-
ceptual simplicity of point-based representations is largely
preserved. However, in a strict sense, we are dealing with
a piecewise linear surface representation just like triangle

Figure 1: Optimized sub-sampling of the Iphigenie (left,
352K points) using 30181 circular splats. The error toler-
ance is set to 0.05% of the bounding box diagonal. The cen-
ter figure is rendered with EWA-filtered splats and the right
zoom-in figures show the sample density and distribution.

meshes with the important difference that the linear pieces
join in a C−1 fashion rather than C0.
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On the other hand, in most approaches the generation of
surface splat models still has the flavor of a sampling proce-
dure since the position and normal information is considered
to be associated with the center of each splat while the spa-
tial extent (radius for circular splats and minor/major axes
for elliptical ones) is just needed to bridge the gap between
two neighboring samples. Our approach in this paper, in con-
trast, takes the full geometry of the circular or elliptical ob-
ject space splats into account when carefully placing sam-
ples on a given surface such that the collection of all splats
forms a hole-free representation of the input geometry.

Even if surface splats can be processed extremely fast
by exploiting the programmable features of current graph-
ics hardware [DVS03, BK03], we would like to minimize
the number of splats that are needed to represent a given ob-
ject since the processing time is nevertheless proportional
to the number of geometric primitives. This is why geome-
try simplification techniques have been developed for splat-
based representations, most of them being derived from
well-established mesh decimation or hierarchical clustering
schemes [GGK02].

In this paper, we present a sub-sampling algorithm which
is especially designed for splat-based representations and
which makes use of their flexibility. Since no topological
consistency conditions between neighboring splats have to
be observed, we can apply an unconstrained global optimiza-
tion technique. By this we can considerably reduce the splat
count for a given model while still observing a prescribed er-
ror tolerance. In contrast to previous approaches we are not
focussing merely on the relation between splat centers but
rather consider each splat as a linear surface segment with
finite spatial extent.

1.1. Related Work

Using points as rendering primitives was first introduced
by Levoy et al. [LW85] and later followed and improved
by [GD98, PZBG00, RL00, ZPBG01, WFP∗01, BWK02]
aiming at efficient and high-quality rendering of complex
models. Most recently, various applications dealing with
point-based geometry have been intensively discussed
including shape acquisition and authoring [MPN∗02],
high quality rendering [ZPBG01, RPZ02, BSK04], (re-)
sampling and simplification [SD01, PGK02], as well as as
shape editing [ZPKG02, PKKG03]. See [GPA∗03] for a
complete survey.

Pure point representations are discrete samplings of
the input geometry and hence proper reconstruction fil-
ters have to be applied in order to enable hole-free ren-
dering. Approaches applied in image space simply render
”large” points as squares or circles [GD98, SD01, KV03b].
Object space approaches use (disk-shaped or elliptical)
surface splats [ZPBG01, RPZ02, BWK02, Paj03], quadratic
[KV03a], or even higher-order [ABF∗03, OBA∗03] patches
to reconstruct the surface geometry. In this paper we

are using circular or elliptical object space splats, since
they seem to provide the best quality/performance trade-
off when implemented on programmable graphics hardware
[RPZ02, BK03, ZRB∗04].

Many existing sub-sampling methods focus only on the
relation between splat centers and hence require extra effort
to estimate the actual spatial extent of splats to fill the gap
between samples. Linsen [Lin01] and Alexa et al. [ABF∗03]
adopted greedy schemes to iteratively remove samples from
the input point cloud. The greedy nature of these algo-
rithms cannot guarantee a globally uniform point distribu-
tion. Moenning et al. [MD03] use fast marching farthest
point sampling for point set simplification. While it is simple
and efficient, reliable error control is not supplied and seems
not trivial to embed. In [PGK02], Pauly et al. adapted various
mesh simplification techniques to simplify point-sampled
geometry which, however, cannot take an a-priori approxi-
mation error tolerance into account. Their pure greedy sim-
plification produces results with small a-posteriori error but
also with non-uniform sampling density. This is why they
post-optimize the result with a particle simulation scheme
which, alas, increases the approximation error. Our scheme
uses a relaxation scheme that takes approximation error into
account and uses the complete anisotropic geometry of the
elliptical splats – not just their centers. In this sense it differs
significantly from previous isotropic sampling approaches
like [PGK02] or [SAG03].

Other approaches [RL00, BWK02, Paj03, KV03b] to
splat simplification are based on hierarchical clustering
schemes. The input points are rearranged in a hierarchical
spatial partitioning data structure and splats are created for
every node by analyzing the local surface properties. This
technique is simple and fast but since there is no optimiza-
tion strategy involved, the results are usually overly conser-
vative and tend to contain lots of redundant splats.

2. Overview

Let a surface S be given by a set of sample points P = {pi}
which are sufficiently dense in the sense that they form an
r-sample of S for some value r < 1 [ABK98]. If r is chosen
small enough then there exists a constant k such that fitting
a least squares plane to any point pi and its k nearest neigh-
bors yields a reliable estimate of the surface normal direc-
tion at pi. A consistent normal orientation can be propagated
via a minimum spanning tree for the point set P [HDD∗92].
We denote by Nk(pi) the set of k nearest neighbors to pi
measured by Euclidian distance and the graph N = (P,E)
represents this non-symmetric neighborhood relation where
the edge (i, j) belongs to E iff p j ∈ Nk(pi). The actual dis-
tance di = ‖pi−pk‖ to the k-th neighbor can be used as an
estimate for the local sampling density and we associate a
surface area element ωi = πd2

i with each sample point pi.
The graph structure of N can be computed most efficiently
by using a hierarchical binary space partition [Sam94].
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Our goal is to find a minimum set of surface splats T =
{t j} that approximates P with an error below some pre-
scribed tolerance ε. Depending on the application, the user
can choose if circular or elliptical splats should be used. El-
liptical splats can adapt to the local curvature of the surface
usually leading to sparser sets T but they need more storage
space per splat. A circular splat t j is given by its center c j ,
its normal vector n j , and its radius r j . For elliptical splats we
replace the radius r j by two additional vectors u j and v j to
define the major and minor axes.

For every input sample pi we measure its distance to T by
orthogonal projection onto the splats t j , i.e.,

dist(pi,T ) = dist(pi, t j) = |nT
j (pi− c j)|

if
∥

∥

∥
(pi− c j)−nT

j (pi− c j)n j

∥

∥

∥

2
≤ r j

2 (1)

for circular splats or
(

uT
j (pi− c j)

)2
+

(

vT
j (pi− c j)

)2
≤ 1 (2)

for elliptical splats. If pi projects into the interior of several
splats, we choose the minimum distance. If (1) or (2) do not
hold for any t j we set dist(pi,T ) =∞.

For a given set of splats T and an error tolerance ε, con-
ditions (1) and (2) imply a coverage relation Cε ⊂ P× T
which includes all pairs (pi, t j) for which (1) or (2) holds and
dist(pi, t j) ≤ ε. We define the surface patch Q j = Cε(∗, t j)
corresponding to a splat t j as the set of all samples pi for
which the relation (pi, t j) ∈ Cε holds. The area of the patch
Q j is given by

Ω j := ∑
pi∈Q j

ωi.

The optimized sub-sampling task can now be formulated as
the minimum dominating set problem [CLRS01] for the 2-
colorable graph (P∪T,Cε) whose connectivity is defined by
the coverage relation Cε. Since the dominating set problem
is known to be NP-hard, we have to find an approximate
optimization algorithm.

Our algorithm proceeds in three steps which we explain in
the following subsections. First, a maximum splat ti is com-
puted for each input sample pi whose size is limited by the
prescribed error tolerance ε. These splats are centered at pi
in the sense that pi projects to the center ci but we do not
require pi = ci. This relaxed condition turns out to be crucial
for the effective reduction of the splat count. Notice that for
extremely complex input data P we can apply simple pre-
decimation [PGK02] before generating the initial splats to
speed up the computation. This does not have significant im-
pact on the final result.

From the initial set of splats, we select a subset which
savely covers the whole surface. This is done by a greedy
procedure where the selection criterion guarantees that

neighboring splats have sufficient overlap to provide a hole-
free approximation of the input surface S. Since the error
tolerance ε has been taken into account in the splat gener-
ation step, any selection of splats t j such that the union of
their corresponding patches Q j completely covers P auto-
matically satisfies the approximation tolerance.

In the third step, the greedy solution is further improved
by a global relaxation procedure. The idea is to iteratively re-
place subsets of splats by new sets that have fewer elements
or at least a better splat distribution. Notice that for circu-
lar splats, isotropic distribution is optimal while for ellipti-
cal splats anisotropic distribution according to minimum and
maximum curvature is optimal. Since our algorithm takes
minimum and maximum curvature into account when cre-
ating elliptical splats and since the relaxation is controlled
by mutual overlap of the splats, we can guarantee to always
produce a near-optimal splat distribution.

3. Initial Splat Generation

Initially we generate a circular splat ti = (ci,ni,ri) for each
sample pi in the (possibly pre-decimated) input set P. Op-
tionally this initial splat can then be extended into an ellipti-
cal splat ti = (ci,ni,ui,vi) in the next step (cf. Sec. 3.1).

Starting with a seed point pi we first estimate the local
normal direction ni by fitting a least squares plane to pi and
its k nearest neighbors [Jol86]. Then we grow the splat by
adding neighboring sample points in the order of their pro-
jected distances (1) to pi. For each new point p j we compute
the signed distance

h j = nT
i (p j−pi)

and the growing stops as soon as the interval [hmin,hmax]
becomes larger than 2ε. The center of the splat is then set to

ci = pi +
hmin +hmax

2
ni

and the radius is set to

ri =
∥

∥

∥
(p j− ci)−nT

i (p j− ci)ni

∥

∥

∥

where p j has the largest projected distance (1) before the
prescribed error tolerance is violated (cf. Fig. 2).
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Figure 2: Growing a splat ti initially centered at pi. Sym-
bols 3, 2 and ◦ stand for conquered, front and un-covered
samples respectively. The left figure shows a view in tangent
direction and the right figure is viewed in normal direction.
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The splat growing procedure can be implemented quite ef-
ficiently by breadth first traversal of the neighborhood graph
N in a ”fast marching” manner. Since we do not update the
normal direction ni while the splat is growing, there is no
need to update the ordering of the neighbor samples or to
recompute the signed distance interval [hmin,hmax]. Notice
that re-fitting a least squares plane to the conquered sample
points after the splat growing reduces the ‖ · ‖2-error but it
might actually increase the ‖ · ‖∞-error and hence could vi-
olate the prescribed error tolerance ε.

3.1. Elliptical Splats

After a maximum circular splat ti seeded at the point sam-
ple pi is generated, it is optionally possible to continue the
growing procedure into the minimum curvature direction to
obtain an elliptical splat which better adapts to the local
anisotropic surface curvature while still keeping the error
tolerance (cf. Fig. 4). In addition to the center ci and nor-
mal ni we need two non-normalized tangent vectors ui and
vi to define the major and minor axis of the elliptical splat
according to (2).

In order to find a robust estimate of the (normalized) prin-
cipal directions γmin and γmax, we use the shape operator of
[CSM03]. Since this operator is defined for triangle meshes,
we triangulate the surface patch Qi by projecting the corre-
sponding sample points into the supporting plane of the splat
and computing a 2D Delaunay triangulation.

With ri being the radius of the initial circular splat ti, we
define the minor axis of the elliptical splat by vi = γmax/ri.
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Figure 3: A circular splat with center ci and radius ri is
extended into an elliptical splat with semi-axes ui and vi.

Let
√

λ be the (unknown) aspect ratio of the resulting el-
liptical splat then we can order the neighboring samples p j
by increasing aspect ratio, i.e., by

λ j :=
(γT

min (p j− ci))2

r2
i − (γT

max (p j− ci))2

where we do only consider samples for which the denomina-
tor is positive. We continue the splat growing procedure de-
scribed in the last section but this time we add the neighbor-
ing samples p j ordered by increasing λ j . Again, the grow-
ing procedure stops when the interval [hmin,hmax] becomes
larger than 2ε and if p j is the last added neighbor before

the error tolerance is violated, the major axis of the elliptical
splat becomes

ui =
1

ri
√

λ j
γmin.

Figure 4: A torus approximated with error tolerance 0.2%
by 510 elliptical splats (left and center) and by 734 circular
splats (right).

3.2. Hole-free Approximation

In the selection and optimization steps we will choose a sub-
set of active splats from the initially generated set of can-
didate splats. During the process, we have to verify if the
current subset of splats actually covers the whole surface S.
This is difficult in general since we only have a discrete set of
sample points. A much simpler condition is to check if each
sample point pi ∈ P is covered by at least one splat. Testing
the latter simply requires to iterate over all active splats, tag
all covered samples based on the relation Cε, and eventually
check if there are un-tagged sample points left.

However, as shown in Fig. 5, covering all sample points
pi by active splats is not sufficient to guarantee a hole-free
approximation since holes can appear inbetween the sample
points. Hence we have to modify the definition of the patch
which is savely covered by a splat ti.

After the growing procedure for a splat ti stops, the set
of conquered sample points defines a local surface patch Qi
which projects into the interior of the splat defined by the
splat center ci and its radius ri or by its minor and major
axes ui and vi respectively. As a by-product of the 2D De-
launay triangulation within the supporting plane of the splat
(cf. Sec. 3.1) we can compute the convex hull of the pro-
jected sample points which also lies completely in the inte-
rior of the splat due to convexity. Now we define the interior
patch Q̄i as the subset of Qi which excludes all the boundary
vertices, i.e., all samples that lie on the convex hull.

If we restrict our coverage relation Cε to the interior cover-
age C̄ε then the test if all sample points pi are covered by the
current selection of active splats is a conservative estimate
for the condition that the whole surface S is approximated in
a hole-free manner. Here we assume that the initial sampling
is sufficiently dense. Severely undersampled regions should
be considered as intentional holes in the surface S.

Since the hole-detection as well as all the following op-
erations are only based on the coverage relation C̄ε, we can

c© The Eurographics Association and Blackwell Publishing 2004.
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simply consider splats as sets of samples and we do not have
to distinguish between circular and elliptical splats in the rest
of the algorithm.

Figure 5: The left figure shows that all sample points are
covered but the small blue region between the samples re-
mains as a hole. The middle and right figures show splat-
based models with and without holes for the same error
threshold. The green points on the left indicate the bound-
ary points Q j \ Q̄ j of that splat.

4. Greedy Selection

From the set of candidate splats T we select an active subset
T ′ that covers the whole surface S, i.e., which satisfies

P =
[

ti∈T ′

Q̄i.

according to our above discussion of hole-free approx-
imation. Since finding the minimum subset T ′ is NP-
hard [CLRS01] we have to find an approximate solution. As
with most geometrical optimization problems, we find that a
greedy selection strategy provides a suitable solution.

Similar to [DDSD03] we rank the splats according to their
incremental surface area contribution. For every candidate
splat t j ∈ T we sum the area elements ωi associated with
those sample points pi ∈ Q̄ j that are not already covered by
previously selected splats. Then in each step we select the
splat which adds the maximum surface area to the active set
and update the area contribution of the remaining candidates.

To implement the area contribution update, we explicitly
store the relation C̄ε two times. Once organized by patches
Q̄ j and once organized by sample points pi. When a splat t j
is selected, we iterate over all samples pi ∈ Q̄ j and subtract
the area ωi from each patch that overlaps pi. By this, the
computation costs for the update only depend on the size
of the splats and the degree of overlap but not on the total
number of splats in T .

5. Global Relaxation

Even if it can be proven theoretically that the greedy se-
lection produces a splat set T ′ which is close to the opti-
mum [Hoc95, Hro01], there are still situations where some
splats are redundant (cf. Fig. 6). Moreover, the local decision
about which splat to select usually causes a disturbing non-
uniformity of the splat distribution (cf. Fig. 7). This has to

be overcome by some global optimization scheme where we
can exploit the fact that splat-based surface representations
do not have to respect any consistency requirements. Hence
we can add and remove splats in arbitrary order as long as
we preserve a full hole-free coverage of the input samples.

�

�

�

� �

�

�

Figure 6: Greedy selection produces redundant splats.
Splats a, b, c and d are selected consecutively based on their
incremental area contribution (left). Eventually a’s area is
fully covered by the remaining splats and could be removed
(right). A greedy scheme cannot detect such situations since
no backtracking beyond earlier decisions is possible.

Our global relaxation procedure mimics the behavior of
repulsing particles on the surface [Tur91]. Since we do not
have a continuous surface representation we have to use the
neighborhood structure which is encoded in the connectivity
of the neighborhood graph N . This neighborhood relation
between sample points can be transferred to splats since each
splat ti is uniquely associated with the sample point pi which
has been used as a seed when growing ti. In this sense we
misuse the notation Nk(ti) to refer to those splats t j whose
seed points p j are in Nk(pi).

The local movement of a splat-particle ti is achieved by
removing ti from the active set and replacing it with an-
other splat t j ∈ Nk(ti). The choice of the new splat t j is con-
trolled by a local relaxation force. In contrast to previous
approaches [Tur91, PGK02], we derive this force by taking
the complete splat geometry into account and do not simply
consider the relation between splat centers.

We use two operations to improve the splat distribution
and to remove redundant splats. In the first operation we it-
erate over all active splats and check if there is another splat
in the vicinity that has less overlap with its neighbors. In
the second operation, we check for each splat if it can be
removed, i.e., if the hole resulting from its removal can be
re-covered by locally ”moving” the neighboring splats. The
overall optimization procedure alternates between relaxation
phases and redundant splat removal phases. Since the con-
vergence in our experiments turned out to be quite fast, we
are usually applying each phase just once. More iterations
can still improve the result slightly but the effect per compu-
tation time is decreasing.

We introduce the kernel of a splat ti ∈ T ′ as the set

Ki := Q̄i \
[

t j∈T ′, j 6=i

Q̄ j (3)

c© The Eurographics Association and Blackwell Publishing 2004.
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Figure 7: A Female-torso model (left, 171K sample points) is approximated by 422 circular splats after greedy selection
(middle two). Global relaxation further reduces the number of splats to 333 (right two). The figures show both, EWA-filtered
splats for approximation quality and smaller splats for distribution quality. The error tolerance is ε = 0.47% of the bounding
box diagonal. Notice the improved splat distribution after the global relaxation step.

which consists of all sample points that are only covered by
ti and not by any other active splat t j . The kernel is critical
to preserve the hole-free property of the active splat set T ′

during global relaxation: if we remove ti we have to make
sure that Ki is covered again after the relaxation.

Let V j = C̄ε(p j,∗)∩T ′ be the set of currently active splats
that cover a given sample point p j . Then the kernel Ki for a
splat ti consists of all points p j ∈ Q̄i such that V j contains
just one element {ti}. In practice it turns out that it is more
efficient to pre-compute the kernels Ki once in the beginning
and then to update them after each relaxation step. The same
holds for the coverage sets V j .

5.1. Relaxation

With this operation we are improving the regularity of the
splat distribution. Since local non-uniformity in the sparse
set T ′ is indicated by large overlap of neighboring splats,
we iterate over all active splats and try to replace each splat
ti ∈ T ′ by another candidate splat t j ∈ T \ T ′ such that the
hole-free property is preserved.

Using the kernel notation for splats, we find that the set

Ui :=
{

t j ∈ Nk(ti) |Ki ⊂ Q̄ j
}

⊂ T \ T ′ (4)

defines the set of choices for hole-free relaxation. Notice that
Ui cannot contain an active splat t j ∈ T ′ due to the definition
(3) of the kernel.

The overlap area between two splats is measured by sum-
ming the surface area elements of all samples that are cov-
ered by both splats

overlap(ti, t j) := ∑
pl∈Q̄i∩Q̄ j

ωl .

Hence in each step, the relaxation replaces a splat ti ∈ T ′ by
another splat t j ∈Ui which minimizes the maximum overlap
to any other active splat. Notice that it can turn out that ti

already is a local optimum. In this case we simply keep ti
active.

The relaxation loop over all active splats is performed sev-
eral times until convergence (no more splat replacements
take place) or until a maximum number of iterations is
reached (10 to 15 in all our experiments).

To obtain the set Ui we check for each t j ∈ Nk(ti) if it is
not active and if Ki ⊂ Q̄ j . Then for each element t j ∈Ui, we
find its maximum overlap to any other active splat tl from
the set

W j :=
[

pm∈Q̄ j

Vm,

where overlap(t j, tl) is computed by accumulating the area
elements ωm for all sample points pm ∈ Q̄ j whose coverage
set Vm contains tl .

By using hash-tables to associate splats ti with their in-
dices i, the complexity of these local operations depends
only on the number of samples per splat and not on the total
number of splats.

Since the relaxation force is defined in terms of mutual
overlap area, it turns out that the density of splats depends
on their sizes. Hence, for circular splats, the relaxation gen-
erates a uniform and isotropic splat distribution and for el-
liptical splats the distribution is anisotropic according to the
orientation and aspect ratio of the splats (cf. Fig 4).

5.2. Removing Redundant Splats

If the kernel Ki of an active splat ti is empty then this splat
can be removed without creating a hole in the splat-based
surface approximation. If the kernel is not empty we can still
try to replace neighboring splats in a relaxation procedure
such that the hole Ki which is caused by removing ti is cov-
ered by those splats. Here we can exploit the full flexibility
of splat-based representations since no topological restric-
tions have to be taken into account.

c© The Eurographics Association and Blackwell Publishing 2004.
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We iterate over all active splats in T ′ and in each step
we tentatively remove one splat ti. In order to fill the result-
ing hole Ki, we apply a relaxation operator to all currently
active splats t j ∈Wi that have a non-empty overlap with ti.
The restriction to this set Wi is not necessary but it acceler-
ates the implementation since we can use the quick overlap
computation procedure sketched in the last section. If after
the relaxation the hole Ki could not be closed, we backup to
the splat configuration before the tentative removal of ti and
continue with the next splat.

The relaxation force in this case favours splats that cover
a maximum portion of the hole K = Ki. Just like in (4),
we define for each splat t j ∈Wi the set of possible choices
U j . Among those choices, we pick the splat tl that maxi-
mizes overlap(tl ,K). After each relaxation step we have to
update the remaining hole K ← K \ Q̄l to account for the
local change. Notice that the definition of U j automatically
guarantees that no other holes can appear during relaxation.

6. Results and Comparisons

We have applied our sub-sampling technique to a wide range
of different unstructured point-set models obtained from
laser scanning to demonstrate the quality and performance.
In all experiments we set the k-neighborhood to 10 such that
the only user-defined input parameter is the error tolerance ε.
The optimized splat sub-sampling so works fully automatic.

In Table 1 we report the overall running times of the sub-
sampling algorithm measured on a Pentium4 2.8GHz CPU,
2GB memory system. Note that the additional time used
for elliptical splats compared to the circular ones mainly
results from computing the local surface curvature tensors.
Due to the exact ‖ · ‖∞ error control in the splat generation
phase and the global optimization in the relaxation phase,
the running times are higher than, e.g., [PGK02] where only
approximate error measures and a pure greedy approach
is used. Nevertheless the timings are acceptable as a pre-
processing step. By applying another round of relaxation and
redundant splat removal we can usually reduce the output
complexity by another 1− 2% but this further increases the
computation time.

Table 2 shows the timings and splat counts for the Igea
model (cf. Fig. 13) with different error tolerances ε. The tim-
ings are measured separately for the three phases of the al-
gorithm. As one expects, the computing time for the splat
generation increases for larger error thresholds. This comes
from the fact that while the number of candidate splats de-
pends on the number of input samples, the size of these splats
depends on the tolerance. Conversely, the time for the global
relaxation increases with smaller error threshold since it de-
pends on the number of active splats and not so much on
their size. Adding all timings together, it turns out that the
overall computing costs have a global minimum for some
intermediate error tolerance (cf. Fig 8). If ε becomes larger,

model #points ε(%) type time(s) #splats

Charlemagne 598386 0.1 C 935 17445

Buddha 546730 0.1 C 592 13249
E 1048 9405

Dragon 437645 0.2 C 354 4450

Iphigenie 351750 0.05 C 663 30181
E 1207 20714

Max 199169 0.2 C 189 1271

Female-torso 171094 0.2 C 236 861
E 394 698

Igea 134345 0.2 C 116 1621

Horse 50697 0.3 C 27 1138
E 42 898

Bunny 34835 0.3 C 14 1371

Torus 30000 0.2 C 12 734
E 19 510

Table 1: Running-times of the algorithm on various mod-
els. The ’type’ stands for the splat shape: (C)ircular or
(E)lliptical.

ε (%) times (s) # splats
create greedy relax greedy relax

0.8 352 73 26 242 218
0.4 149 38 24 658 580
0.2 72 12 31 1864 1621
0.1 34 7 46 4856 4285
0.05 20 4 85 11813 10737
0.02 11 3 192 31154 29847

Table 2: Timings and (circular) splat numbers after the
greedy selection and global relaxation for the Igea model
with decreasing error tolerance ε.

the splat generation dominates the computing costs and if ε
becomes smaller, the relaxation will then dominate.

The rate by which the number of splats increases for de-
creasing error threshold ε in Table 2 indicates that our piece-
wise linear C−1 continuous surface reconstruction scheme
in fact has linear precision and hence quadratic approxima-
tion order. This justifies that splat-based geometry represen-
tations and triangle meshes are equally powerful in approxi-
mating freeform geometry. Figures 1, 7, 9, 12 and 13 demon-
strate the visual quality of the splat-based representations.
Whether the models are globally smooth or have many small
features, our sub-sampling algorithm always produces splat-
based approximations that have high visual fidelity, uniform
sample density, no holes, and are guaranteed to stay within
the prescribed error tolerance.
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Figure 8: Overall computing costs vs. error tolerance ε for
the Igea model (cf. Table 2).

6.1. Elliptical vs. Circular Splats

We first compare the approximation power of two types of
splats. Since a torus has a simple geometry with clear curva-
ture changes, we use it as a benchmark object in Fig. 4. Our
results on other less synthetic objects are similar but some-
times overlayed by effects caused by fine geometric detail.

We found that for a given error tolerance ε, the required
number of elliptical splats is usually about 30% less than the
number of circular splats (cf. Fig. 9). Besides the additional
computation time during the splat generation phase, ellipti-
cal splats also require slightly more per-pixel computation
during rendering. However, as demonstrated in Fig. 13, the
improved visual quality when using Phong shading [BSK04]
definitely justifies the use of elliptical splats.

Figure 9: The Iphigenie model approximated by 20714 ellip-
tical splats with error tolerance ε = 0.05% (left). The right
figures show its zoomed-in views of 30181 circular splats
(top) and fewer elliptical ones (bottom).

6.2. Comparing to Point Cloud Simplification

We compare the results of our algorithm to the greedy itera-
tive point cloud simplification scheme proposed in [PGK02]
using circular splats as [PGK02] only considers circular
ones. By using the technique of [Paj03], we derive splat radii
for [PGK02]’s output and then compute the ‖ · ‖∞ approxi-
mation error from the input point cloud to the output splats.

Fig. 10 shows the results of the greedy point cloud sim-
plification and of our algorithm on the Torus model. With
about three times the computation time, our algorithm pro-
duces a splat-based model with the same number of splats
but with a significantly smaller approximation error (which
comes from the superior splat distribution). The more uni-
form distribution of the splats in our case also equalizes the
sizes of the splats and hence improves the visual quality. If
we allow for an equally high error tolerance then our global
relaxation scheme can reduce the splat count by one third.
This indicates how far away from the optimal solution the
greedy solution is.

Figure 10: Same number of 734 circular splats generated
by point cloud simplification [PGK02] (left) and by our al-
gorithm (center) with respective running time 4.5 sec and 12
sec and approximation error 0.29% and 0.2%. The right fig-
ure shows our sub-sampling result at 0.29% error using only
493 splats created in 16 seconds.

6.3. Comparing to Mesh Simplification

We also compare our results to the well-established greedy
mesh simplification algorithm [GH97]. Triangle meshes
have the advantage over circular splats that they can adjust
anisotropically to the local minimum and maximum curva-
ture while disk-shaped splats can only adjust isotropically
to the maximum curvature. On the other hand, splat repre-
sentations are more flexible since they do not have to sat-
isfy C0 continuity conditions between the linear pieces. Our
experiments indicate that the two advantages somewhat bal-
ance each other but the flexibility of splat-based representa-
tion (even circular ones) almost always leads to better visual
quality as well as to lower ‖ · ‖∞ approximation error when
using the same number of primitives (cf. Fig. 11).

By comparing Fig. 11 with Fig. 4 we see that elliptical
splats yield the same visual quality while using about 30%
fewer primitives.
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Figure 11: Torus simplified to meshes with 367 vertices and
734 faces (left), 734 vertices and 1468 faces (center) by the
greedy algorithm [GH97] and sub-sampled with 734 circu-
lar splats by our algorithm (right). The approximation errors
are 0.66%, 0.38% and 0.2% respectively. The models are
rendered with Phong-shaded triangles and filtered Phong
splats [BSK04].

7. Conclusions

In this paper we presented a sub-sampling scheme that con-
verts a dense set of point samples into a sparse set of circular
of elliptical object-space splats that provide a hole-free ap-
proximation of the original data up to a prescribed error tol-
erance ε. The scheme achieves comparably low splat counts
and uniform splat distribution by applying a global optimiza-
tion scheme. The scheme is not as fast as pure greedy ap-
proaches but the increased computation costs are paid off by
a considerably improved output quality.

In the future we are planning to improve the algorithm
into various directions: The initial splat candidate genera-
tion could be accelerated significantly by quantizing the least
squares normals and then saving computation time by gen-
erating splats with similar orientation simultaneously. Also,
the splat count could be further reduced by using a less
conservative estimate for the hole-free property. This would
only marginally change our algorithm since all forces are
only defined by set-operations on the coverage relation C̄ε.
Another issue is the proper handling of sharp features to ex-
ploit the full functionality of recent high quality splat ren-
derers such as [ZRB∗04, BSK04].
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Figure 12: The Charlemagne model (left, 598K points) approximated with disk-shaped splats by setting the relative error
threshold to ε = 0.03% (middle two, 66401 splats) and ε = 0.1% (right two, 17445 splats).

Figure 13: From left to right in top row are the sub-sampled Igea models with 218, 1621, 10737, and 29847 filtered circular
splats and decreasing error ε = 0.8%, 0.2%, 0.05%, 0.02% respectively. The bottom row shows approximations with 10737
circular splats (left) and 8556 elliptical splats (middle two) at same error 0.05% and their respective zoom-in views (right two).
Notice the improved visual quality of elliptical splats (far right).
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