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Abstrat

Triangle meshes are a faile and e�etive rep-

resentation for many kinds of surfaes. In or-

der to rate the quality of a surfae, the al-

ulation of geometri urvatures as there are

de�ned for smooth surfaes is useful and ne-

essary for a variety of appliations. We in-

vestigate an approah to loally approximate

the �rst and seond fundamental forms at ev-

ery (inner) vertex of a triangle mesh. We use

loally isometri divided di�erene operators,

where we ompare two variants of parameter-

izations (tangent plane and exponential map)

by testing on elementary analyti surfaes.

We further desribe a tehnique for visual-

izing the resulting urvature data. A simple

median �lter is used to e�etively �lter noise

from the input data. Aording to applia-

tion dependent requirements a global or a per-

vertex loal olor oding an be provided. The

user may interatively modify the olor trans-

fer funtion, enabling him or her to visually

evaluate the quality of triangulated surfaes.

1 Introdution

Triangle meshes are beoming a more and

more popular representation for surfaes of ar-

bitrary shape and topology. For many appli-

ations the approximation of geometri enti-

ties suh as normals and priniple urvatures

is very useful. Typial appliations inlude

(visual) evaluation of the surfae quality, fair-

ing [5, 9℄ and issues in reverse engineering, like

surfae segmentation and reonstrution [6℄.

A triangle mesh is a pieewise linear rather

than a smooth surfae, so it is not lear how

to alulate any derivatives on suh a mesh.

There are several approahes: In numerial

analysis divided di�erenes operators [8℄ are

a ommon way of estimating disrete deriva-

tives. They often have no immediate geomet-

ri meaning sine they are de�ned for a global

parameterization. Considering the onepts

from di�erential geometry of smooth surfaes

on the other hand diretly leads to a variety

of methods where geometri primitives are lo-

ally �tted to the triangle mesh. The di�eren-

tial parameters an then be obtained from dif-

fereniating those well known primitives. In

[4℄ e.g. irular ars are �tted to the edges of

a triangle mesh, approximating normal urva-

ture and eventually priniple urvatures. In-

stead of using urves, one an loally �t an

analyti surfae to a vertex and its neigh-

bors. Often seond order surfaes (quadris)

are used, in [7℄ e.g. a paraboloid. The poly-

nomal oeÆients of this paraboloid are ob-

tained by solving a linear system.

In the �rst part of this paper we present a

method for alulating disrete urvature on

triangle meshes. Our approah uses loally

isometri divided di�erene operators whih

are derived by �tting a seond order Tay-

lor polynomal to a vertex and its neighbors.

Therefore it is some kind of ompromise be-

tween the tehniques illustrated above. A lo-

ally isometri parameterization allows us to

utilize suh a linear operator sine derivatives



with respet to suh parameterization do have

a geometri interpretation. Two di�erent pa-

rameterizations are tested on simple analyti

surfaes.

The seond part shows a tehnique of how

to visualize the alulated data e.g. the dis-

rete urvature on a triangle mesh. Aord-

ing to the intention of the user a global or a

per-vertex loal olor table is appropriate for

olor oding. Appliations that require abso-

lute measuring of urvature on the mesh e.g.

for identifying regions with a given urvature

use a global table. If one is mainly interested

in loal hanges of urvature, a loal olor ta-

ble should be used. The user may intera-

tively hoose and adapt suh a olor table. In

addition, noise is redued from the input data.

2 Approximation of fun-

damental forms

We loally estimate the �rst and seond fun-

damental form of the surfae F (u; v) in ev-

ery vertex of its triangulation. Deriving sur-

fae urvatures like Gaussian or mean urva-

ture from the fundamental forms is straight-

forward. An introdution to the basi on-

epts of di�erential geometry an be found e.g.

in [3℄.

In this setion V denotes the vertex for

whih the fundamental forms are to be ap-

proximated, V

i

(1 � i � n, and for onve-

niene V

n+1

:= V

1

) are its neighbors. Q and

Q

i

denote the positions of V and V

i

in 3D

spae. Without loss of generality the origin is

shifted suh that Q := (0; 0; 0). For now, we

do not handle verties on the boundary of the

mesh.

We want to estimate geometri urvature.

The linear divided di�erene operator supplies

derivatives that enable us to get the funda-

mental forms, if the underlying parameteriza-

tion is isometri.

2.1 Parameterization

As we are interested in urvatures, it is enough

to estimate partial derivatives up to seond

order. In order to approximate the deriva-

tives F

u

, F

v

, F

uu

, F

uv

and F

vv

in a spei�

vertex V we need a loally isometri parame-

terization F (u

i

; v

i

) = Q

i

of its neighborhood

with F (0; 0) := (0; 0; 0) = Q. A parameteri-

zation is isometri if kF

u

k � 1, kF

v

k � 1 and

F

u

F

v

� 0.

The oeÆients of the fundamental forms

are ompletely de�ned by those derivatives.

We tested two di�erent approahes:

Projetion into tangent plane

The �rst way of getting a parameterization is

to projet the neighborhood of the vertex into

a tangent plane at this vertex. The projetion

plane P is given by averaging the triangle nor-

mals around V resulting in the normal ve-

tor N

P

. By transforming the projeted points

into an orthonormal basis fU

P

; V

P

; N

P

g we

get a parameterization F (u

P;i

; v

P;i

) = Q

i

.

This projetion method su�ers from the fat

that the ordering of neighbors around V is not

neessarily preserved. The ordering an be de-

stroyed if the triangle mesh is not suÆiently

at [9℄.

Exponential map

The seond parameterization onsiders the

lengths and the angles between adjaent edges

of the triangulated surfae. The ordering of

neighbors is preserved when using the expo-

nential map [2℄

exp(Q

i

) 7! kQ

i

k

�

os(

i�1

X

j=1

~�

j

); sin(

i�1

X

j=1

~�

j

)

�

where ~�

i

= at(∠(Q
i

; Q

i+1

)) with

P

i

~�

i

=

2�. Therefore at sales the angles between

two edges in 3D so that they sum to 2� in 2D.

We give two possible de�nitions for at:

� at(�

i

) = �

i

2�

P

i

�

i

uniformly sales the

3D angle in a straightforward way. This

will work with any on�guration of 3D

angles. [9℄



� at(�

i

) = �

i

+

"

n

with " = 2� �

P

i

�

i

uniformly distributes the angular de�it

in 3D among all 2D angles. This de�ni-

tion is optimal in a sense of projeting the

vetor (�

i

)

i

2 R
n

of 3D angles onto the

hyper plane fx 2 R
n

jhx�

2�

p

n

j(

1

p

n

)

i

i = 0g

(least squares approximation of 3D angles

in 2D), where angles sum up to 2�. For

rather asymmetri on�gurations it may

result in negative angles, though.

2.2 Surfae �tting

The surfae F (u; v) an loally be approxi-

mated by a biquadrati Taylor polynomal

F (u; v) = uF

u

+ vF

v

+

u

2

2

F

uu

+ uvF

uv

+

v

2

2

F

vv

Reall that we shifted the origin and hose

our parameterization so that Q = (0; 0; 0) =

F (0; 0). Fitting a seond order surfae to a

vertex V and its neighbors is straightforward:

By utilizing the parameterization F (u

i

; v

i

) =

Q

i

we get a system of n linear equations

VF = Q

with V = (u

i

; v

i

;

u

2

i

2

; u

i

v

i

;

v

2

i

2

)

i

, F =

(F

u

; F

v

; F

uu

; F

uv

; F

vv

)

>

and Q = (Q

i

)

>

i

. The

(least squares resp. least norm) solution of

this linear system is

F =

8

<

:

V

>

(VV

>

)

�1

Q : n < 5

V

�1

Q : n = 5

(V

>

V)

�1

V

>

Q : n > 5

An alternative approah proposed in [9℄ is to

swith to another set of basis funtions if the

V matrix is ill-onditioned or n < 5.

The resulting vetor F ontains approxima-

tions of the Taylor oeÆients F

u

, F

v

, F

uu

,

F

uv

, F

vv

of the surfae. This enables us to es-

timate further di�erential parameters at the

vertex V of the triangulation as needed.

Tests with a variety of triangle meshes

showed that this method yields fF

u

; F

v

g ?

fF

uu

; F

uv

; F

vv

g as expeted for an isometri

parameterization.

3 Test Results

We use a sphere and a torus as test surfaes.

For eah surfae we onstrut a set of regu-

lar triangle meshes with inreasing resolution

of the parameter grid. In addition to those

regular meshes, two variations are ompared

also: �rst, edges in the regular mesh are ran-

domly ipped. Therefore verties may have

less or more than six neighbors. Seond, pa-

rameter points are randomly displaed in ad-

dition. This results in di�erently shaped tri-

angles inluding obtuse angled ones. The test

surfaes are de�ned as follows:

� Sphere:

F (u; v) =

0

�

sinu os v

sinu sin v

os u

1

A

,

�

4

� u; v �

3�

4

� Torus:

F (u; v) =

0

�

(os u+ 2) os v

(os u+ 2) sin v

sinu

1

A

,

0 � u; v � 2�

The parameter intervals for u and v are eah

uniformly divided so that 10, 13, 15, : : : , 80,

100 sample points were taken from eah inter-

val. Setting up a regular triangle mesh and

the randomly ipped one is straightforward.

For the seond variant the parameter points

were displaed in eah oordinate by

�u

8

,

�v

8

times a uniformly distributed random num-

ber from the interval [�1; 1℄. Fig. 1 shows a

hidden line view the same part of the trian-

gulated torus with regular grid, ipped edges

and additional noise.

For the sphere the viinity of the poles is

ignored. For the random displaement 10

on�gurations were evaluated and averaged.

Fig. 2 shows the standard deviation of the ap-

proximated values from the values alulated

for a smooth surfae (y-axis) over the spaing

of the parameter grid in u and v diretion (x-

axis). Both parameterizations perform well.

For the sphere the projetion into the tangent

plane is slightly better, for the torus the ex-

ponential map shows better results.



Figure 1: Triangulated torus with 50�50 parameter points. From left: regular mesh, randomly

ipped edges, ipped edges and random displaement of parameter points

For both parameterizations the resulting

urves show niely the quadrati onvergene

of the approximation errors (error= O(h

2

),

where h is the step width) as known from the

univariate ase with entral di�erenes.

4 Visualization of urva-

ture data

For visualization of urvature data suh as

Gaussian urvature or mean urvature on tri-

angulated surfaes a RGB olor value is as-

signed to every vertex. The graphis subsys-

tem then does the interpolation of olor values

over the triangles. Our aim in this setion is

to provide a suitable and intuitive olor od-

ing of salar urvature values.

4.1 Global olor table

Assume a salar value d

i

is given for every

vertex V

i

, e.g. d

i

may denote any type of ur-

vature. Now let d

max

:= maxfd

i

g and d

min

:=

minfd

i

g. Data values are saled by the fol-

lowing funtion sale : [d

min

; d

max

℄ ! [�1; 1℄

with

sale : d 7!

�

�d=d

min

: d < 0

d=d

max

: d � 0

Positive and negative values are saled sep-

arately suh that the zero level is preserved.

Notie that the value 0 is usually of speial in-

terest. So d

min

� 0 � d

max

is assumed. If not

so, the origin ("green line", see below) should

be shifted appropriately.

The red and blue olor omponents are

used to indiate positive resp. negative data

values. All verties and all displayed pixels

shall have equal intensity (r+g+b=1). So the

green omponent is used to "�ll up" inten-

sity. Assume olor omponents range from

0 to 

max

, e.g. 

max

= 255. The funtion

rgb : [�1; 1℄! [0; 

max

℄

3

assigns to eah value

a RGB triple with intensity 

max

.

rgb : d 7!

�

(0; (1 + d)

max

;�d

max

) : d < 0

(d

max

; (1� d)

max

; 0) : d � 0

Fig. 3 shows the RGB mapping on the right

side. Zero values are displayed pure green,

d

min

and d

max

result in blue and red respe-

tively.

Data values d 2 [d

min

; d

max

℄ an now be

mapped to RGB values rgb(sale(d)). Many

appliations need enhaned ontrast in the

viinity of zero and less near d

min

resp. d

max

.

Therefore a new parameter  2 (0; 1℄ is in-

trodued that adjusts the "ontrast" of the

visualized data. Then value d is mapped to a

RGB triple by

rgb(sale(d)



)

For  = 1 we obtain the original mapping.

With dereasing , resolution inreases for

values near 0, i.e. a greater range in the olor

table is used for those values. Fig. 3 illus-

trates the olor oding for  = 1 and  < 1

(left side).
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Figure 2: Approximization errors. First row: Sphere. Gaussian (large) and mean urvature

(small); seond row: Torus. Gaussian (large) and mean urvature (small)
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Figure 3: Color oding. d is mapped to [�1; 1℄
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by using  < 1 (left), the transformed value

is then oded as (r; g; b) (right).

4.2 Filtering

Filtering addresses two problems: reduing

high frequeny noise and deteting outliers

that disturb the olor table.

If the input data are point samples from

a real objet, we have to deal with high

frequeny noise. Operating diretly on the

values obtained from urvature approxima-

tion might give undesirable results. There-

fore some �ltering should be applied. Fig. 4.2

shows suh a sampled surfae with and with-

out �ltering. Notie how artifats on surfae

are suppressed by the �lter.

A simple median �lter that onsiders a ver-

tex and its neighbors gives good results. Also

this task is eÆiently performed, beause enu-

merating the neighbors of a vertex is a simple

operation, if appropriate data strutures are

used [1℄.

Outliers on the input data may entail an

unusable olor table by signi�antly enlarging

the [d

min

; d

max

℄ interval. Suh values should

be ignored when alulating d

min

and d

max

. So

we disregard the 5% highest and lowest values

eah when setting up the olor table. For the

olor mapping all d > d

max

are lamped to

d

max

, analog for d

min

.

Figure 4: Maximal urvature on the bust

model with ontrast  =

1

2

, without (left) and

with (right) median �ltering.

4.3 Loal olor table

If a user is not interested in absolute urva-

ture values but more in the loal hanges of

urvature it might be better to inrease the

ontrast in the olor oding sheme. If the lo-

al data values lie in a small interval ompared

to [d

min

; d

max

℄, the only way of getting a usable

view is to shift the "green-line" as needed and

to derease the ontrast parameter .

It is more onvenient to provide a loally

adapted olor table for every vertex. There-

fore the onsidered interval of urvature values

should not be globally de�ned but determined

loally for every vertex.

Let [d

n

min;i

; d

n

max;i

℄ be that interval for ev-

ery vertex V

i

. Then d

n

min;i

is the minimal d

j

in a n-neighborhood of V

i

, analog d

n

max;i

. A

n-neighborhood of V

i

is de�ned as nhd

n

fV

i

g,

where

nhdfV

i

g = fV

i

g [ fV

j

j9 edge(V

i

; V

j

)g

nhdfV

i;1

; : : : ; V

i;k

g =

S

1���k

nhdfV

i;�

g

nhd

n+1

fV

i

g = nhd(nhd

n

fV

i

g)

Given a triangle mesh with N verties and

six neighbors per vertex on average, it is

rather expensive (O(6

n

N)) to ompute a n-



neighborhood for every vertex using the above

de�nition. Finding a minimum and/or max-

imum value in nhd

n

fV

i

g is fortunately muh

heaper: one an get all extrema by iterat-

ing n times over all verties (O(nN)). The

following algorithm ollets d

n

min;i

and d

n

max;i

from d

i

(1 � i � N):

1. for all verties V

i

, i = 1; : : : ; n:

(a) initialize d

n

min;i

:= d

i

; d

n

max;i

:= d

i

2. for k = 1; : : : ; n:

(a) for i = 1; : : : ; N : opy

i. t

min

:= d

n

min;i

, t

max

:= d

n

max;i

(b) for i = 1; : : : ; N :

i. for j = 1; : : : ;#neighbors(V

i

):

A. t

min

= minft

min

; d

n

min;j

g

B. t

max

= maxft

max

; d

n

max;j

g

() for i = 1; : : : ; N : opy

i. d

n

min;i

:= t

min

, d

n

max;i

:= t

max

It is easy to realize that the algorithm

works if you reall that maxfA [ Bg =

maxfmaxA;maxBg. Initially all verties

take d

n

min;i

= d

n

max;i

= d

i

. In the �rst round

(k = 1) every vertex V

i

ollets the extrema

of nhdfV

i

g and sets its d

n

min;i

and d

n

max;i

a-

ordingly. Therefore V

i

ollets the extrema

of nhd(nhdfV

i

g) in the seond iteration (k =

2), and so on.

The algorithm terminates with d

n

min;i

and

d

n

max;i

as the extreme values of all verties in

nhd

n

fV

i

g. Color oding for vertex V

i

is then

done with the RGB triple

rgb(sale

n

i

(d)



)

where

sale

n

i

: d 7!

�

d=d

n

min;i

: d < 0

d=d

n

max;i

: d � 0

Fig. 5 shows the maximal urvature on a teh-

nial model with about 18000 verties. For

the global olor table two di�erent ontrast

levels are displayed. The loal olor table uses

a 3- and and a 6-neighborhood. The median

�lter is applied to all images of the tehnial

model.

We implemented a software tool that allows

the user to view a histogram of the data val-

ues d

i

. This histogram is olor oded in the

Figure 5: Median �ltered maximal urvature

on a tehnial model. From upper left to lower

right: global olor table with  = 1,  =

1

2

; lo-

al olor table with  = 1 and 3-neighborhood

resp. 6-neighborhood.



same way as the surfae. The user may inter-

atively hose a data set and global or n-loal

olor table, apply noise �ltering, ontrol the

ontrast parameter , shift the green origin-

line in the histogram as well as restrit the

[d

�

min

; d

�

max

℄ interval. Fig. 6 shows a snapshot

of a histogram window.

Figure 6: Snapshot of a histogram window.

Median �ltered mean urvature is seleted,

ontrast is set to about 0:3, the interesting

interval has been re�ned to about [�0:3; 0:3℄,

and the zero/green level has slightly been

moved to about �0:02.

5 Conlusion

We presented a method for approximating

disrete urvature on triangle meshes. Two

di�erent loally isometri parameterizations

were tested. Both produe good result with

the approximation error dereasing quadrati-

ally for higher grid resolution in the param-

eter domain.

The alulated urvature data an be visu-

alized on the surfae by the desribed meth-

ods. Aording to the appliation one an use

a global or a loally adapted olor table. Noise

is e�etively redued by a simple median �l-

ter. The user is allowed to interatively vary

the olor oding funtion. With this kind of

visualization tehnique a very helpful tool for

investigation and exploration of triangulated

surfaes is available.

Referenes

[1℄ S. Campagna, L. Kobbelt, H.-P. Seidel.

\Direted Edges | A Salable Represen-

tation for Triangle Meshes", to appear in

The Visual Computer Journal

[2℄ M. P. Do Carmo. \Di�erential Geometry

of Curves and Surfaes", Prentie Hall,

1976

[3℄ G. Farin. \Curves and Surfaes for Com-

puter Aided Geometri Design. A Prati-

al Guide", Aademi Press, 3. ed., 1992

[4℄ G. H�ausler, and S. Karbaher. \Reon-

strution of Smoothed Polyhedral Sur-

faes from Multiple Range Images", 3D

Image Analysis and Synthesis '97 (Pro-

eedings), November 1997, pp. 192-198

[5℄ L. Kobbelt. \Disrete Fairing", Proeed-

ings of the Seventh IMA Conferene on

the Mathematis of Surfaes, Information

Geometers, 1997, pp. 101-131

[6℄ L. Kobbelt. \Variational Design with

Parametri Meshes of Arbitrary Topol-

ogy", Creating fair and shape preserving

urves and surfaes, Teubner, 1998, pp.

189-198

[7℄ P. Krsek, G. Luk�as, and R.R. Martin.

\Algorithms for Computing Curvatures

from Range Data", The Mathematis of

Surfaes VIII, 1998, pp. 1-16

[8℄ Josef Stoer. \Numerishe Mathe-

matik 1", Springer, 6. ed., 1993

[9℄ W. Welh, and A. Witkin. \Free-Form

Shape Design Using Triangulated Sur-

faes", Computer Graphis (SIGGRAPH

'94 Proeedings), July 1994, pp. 247-256


