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Abstract

Subdivision is a powerful paradigm for the generation of curves and surfaces. Itis easy to implement, compu-
tationally efficient, and useful in a variety of applications because of its intimate connection with multiresolution
analysis. An important task in computer graphics and geometric modeling is the construction of curves that inter-
polate a given set of points and minimize a fairness functional (variational design). In the context of subdivision,
fairing leads to special schemes requiring the solution of a banded linear system at every subdivision step. We
present several examples of such schemes including one that reproduces non-uniform interpolating cubic splines.
Expressing the construction in terms of certain elementary operations we are able to embed variational subdivision
in the lifting framework, a powerful technique to construct wavelet filter banks given a subdivision scheme. This
allows us to extend the traditional lifting scheme for FIR filters to a certain class of IIR filters. Consequently we
show how to build variationally optimal curvesid associated, stable wavelets in a straightforward fashion. The
algorithms to perform the corresponding decomposition and reconstruction transformations are easy to implement
and efficient enough for interactive applications.

Introduction

A basic component of many algorithms in shape design is the efficient construction of interpolating curves, given
some set of data points. Many techniques have been developed for this purpose [18, 13], the most widely used
ones being based on piecewise polynomials. However, to obtain high quality curves differentiability is usually not
sufficient but optimality with respect to some fairness measure is required as well [3, 26].

Applications such as level of detail rendering [25], data compression, progressive transmission, hierarchical edit-
ing [14], and adaptive numerical solvers [16, 24] require widely varying levels of detail. This makes it desirable
to have multiresolution representations and associated wavelets for parametric curves. In the particular case of
splines, this can be realized through iterative knot insertion and the use of bi-orthogonal spline wavelets, for exam-
ple. However, we are interested in more general subdivision schemes which do not necessarily lead to piecewise
polynomial curves. Specifically, we consider subdivision schemes which minimize a fairness functional under point
interpolation constraints [19].

In this paper we describe a framework which unifies a number of earlier, independent approaches. The resulting
algorithms are based entirely on combining a small set of primitive operations. These can be expressed conveniently
in Wiring Diagrams which posses immediate and straighforward implementations leading to very efficient com-
putations. Specifically we construct interpolating curves with minimal second and third divided difference energy
using a simple subdivision scheme. This extends earlier work [19] from the uniform to the non-uniform param-
eter setting. In special cases of our construction, interpolating cubic splines and Butterworth half-band filters are
generated. Since the traditional Fourier approach does not apply in the non-uniform parameter setting we require a
general banded system solver. A particularly suitable choice for this purpose is cyclic reduction. A novel aspect of
our approach is the interpretation of cyclic reduction as the repeated splitting of the high-band in a lifting factoriza-
tion of the subdivision algorithm. This observation effectively extends the classical Lifting Scheme from the FIR
filter setting to a class of filters whose inverse is FIR. We exploit this connection to derive and implement a novel set
of stable, bi-orthogonal wavelet bases for variationally optimal subdivision schemes.
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Our emphasis in this paper is on the framework and fundamental algorithms for variationally optimal, non-
uniform, subdivision curve construction in a multiresolution setting. The importance of ideas such as variational
modeling [26, 33, 21], non-uniform parameterizations [13], hierarchical curves [14], and wavelets [16] in computer
graphics applications, has been amply demonstrated by others. So far the previous work has considered these as-
pects individually. Our goal in this paper is to exhibit the simplicity and uniformity of the underlying structures
in all these previous approaches. We argue that they all fit neatly into a common framework in which they can be
exploited synergistically.

The paper is structured in 2 parts. In the first part we begin by fixing our notation and review interpolatory
subdivision schemes both in the uniform and non-uniform setting. Section 1.1 reviews the variational subdivision
setting introduced earlier in [19] and gives a set of examples. Wedhkmdthese schemes to the non-uniform
setting and conclude the first part with some examples comparing different variational curves with and without
uniform parameterizations.

The goal for the second part of the paper is to build a multiresolution framework for variational subdivision,
i.e., we introduce detail spaces between subdivision levels. We proceed in a number of stages. First we define
a convenient formalismyiring Diagrams to speak about the Lifting Scheme [28] and manipulate lifting steps.
Next we discus€yclic Reductioras the most appropriate technique for solving the linear systems which appear in
variational subdivision. We show how CR can be expressed as a sequence of subband splits and merges applied to the
high-band of a high-pass/low-pass wavelet filter. Using this observation we are able to use the Lifting Scheme, a well
known approach to the construction of finitely supported bi-orthogonal wavelet transforms, in the globally supported
setting demanded by variational subdivision. Thus we can apply additional lifting steps to stabilize, or improve the
condition, of the variational wavelet bases. The result is a multiresolution setting for variational subdivision schemes
in the non-uniform parameterization setting. Because everything is expressed in terms of the small set of primitives
needed in the Lifting Scheme simple and efficient implementation is straightforward. We conclude with non-uniform
Butterworth filtering as an application example and an outlook towards future research.

Part 1: Interpolatory Subdivision Schemes

In this section we review some basic examples of interpolatory subdivision schemes and fix our notation before
moving on to the setting of interpolatowariational subdivision.

Definition:  An interpolatory subdivision schemse formally described by an operatdr which maps a given
sequence of points (a polygoR}, = [p] to a refined sequend&y,, 1 = [p"] with pg;+1 =p", i.e., the pointp"

at levelm are the even numbered points at lexel 1, while the odd numbered poinusgi‘ﬁ, are newly inserted
inbetween old points (see Figure 1). Iteratibgthe vertices become more and more dense. In the limit, a €ugve

is generated which interpolates the initially given control vertRgs= [p?].

Origina New vertices New positions

Figure 1: Interpolatory refinement: Inserting new vertices and smoothing the original shape.

Example The simplest interpolatory schemepecewise linear subdivisionn this case the new points are the
midpoints of the old polygon’s edges. This corresponds to the construction of a linear interpolating polynomial



between two successive vertigg8andp" ,, i.e., the edge itself, and sampling this interpolant halfway between the
old vertices. The resulting subdivision rule is

P31 = 3 (P +pla) = 3(P3 PR3-
The middle of Figure 1 shows one step of this subdivision scheme. Repeating linear subdivision ad infinitum simply
reproduces the original polygon.

Piecewise linear subdivision is merely a split operation. In general, we want to place the new vertices such
thatP .1 is smoother tha® , (right of Figure 1). One way to do this is to increase the order of the polynomial
interpolant in the above example. Consider cubic interpolation which is defined by four interpolatory constraints. To
compute the new verthgi‘ﬂ we construct the cubic polynomial interpolating the pojits;, ..., p}" , and sample
it halfway betweerp{" andp(" ;. Assuming a uniform parameterization, the resulting subdivision rule is

Pt = L (—pMy+9pM+9pT, — pl). 1)

The coefficientsl—le(—l, 9,9,—1) are well known as the 4-point subdivision mask for the generation of smooth
interpolating curves [9, 11] (see Figure 2 for several steps in this procedure). The boundaries can be handled by a
simple extrapolation procedure. Initially the left boundary, for example, is extended with two extranlfbliraad

p°, based on the cubic polynomial which interpolapds...,p3. Then, when going fron® m to P 1 the vertex

prl can be computed by (1@[‘;1 =p™;, andp™, is simply chopped off the sequence.

Figure 2: Refinement through cubic interpolatory subdivision, the so-called “4-point rule.”

General Setting The above schemes are instances of a general construction introduced by Deslauriers and
Dubuc [8]. The &+ 2 verticesp{",,...p{" ., define a polynomial of degreen2- 1 and the new vertepgi‘jj is

found by evaluating this polynomial halfway betwegh andp/’ ;. These schemes astationarysince the same
refinement rule is used at every level (the rules do not deper) @md they ardocal since the influence of one

initial vertex p® on the shape oP., is restricted to some local neighborhood. More formally, these schemes are
defined by using a finite sequence of weight coefficit{aun}ﬁil_r with 3 ; aj = 1 (affine invariance) to compute new
vertices as

1 r+1
Pair = Y ajply, )

==

Note that such schemes are alsuform since thea; do not depend om. Neglecting the special cases at the
boundaries, both schemes above are uniform. Uniform stationary schemes are thoroughly investigated in [2, 10].

Non-Uniform Subdivision While the curves resulting from uniform stationary schemes are smooth, they are
not as fair as one might wish. The left of Figure 3 shows the curve resulting from applying the 4-point scheme (1) to a
set of points in the plane. It suffers from severe overshoot. Remember that this scheme is derived froniftooal
interpolation. It is well known that the extra degrees of freedom afforded by allowing non-uniform parameterizations
can be used to improve the shape of interpolating curves. Schemes which are derived from a local polynomial



Figure 3: Interpolating curves for the same initial data (hollow dots) using the uniform (left) and a non-uniform
(right) 4-point scheme.

interpolant can easily be generalized to non-uniform parameterizations. Simply associate a paramefénwtilue
every pointp{" and solve the interpolation problem.

The weights of theon-uniform4-point scheme can be found by evaluating the cubic Lagrange polyndmigls
which are defined over the knot sequefifs,. .. t0 ]

= 1M 4tm))
potT = Py Lioodt5is) + P Lozod(t5i7) ®3)
+pM; Looo(t517) + PN, Loooa(t57).

HereLy,u,u,u; IS the unique cubic polynomial which takes on the va]yattI+J 1 for j=0,...,3. Asin the uniform
case the new verteplg?ﬂ depends on four neighboring old vertices. In the special ¢ase|2—m the weights
£ (—1,9,9,—1) are reproduced.
A curve generated by (3) is shown on the right of Figure 3 where we usezkttigpetalparameterization [23],

et —t0:=/|Ip% , — p°||. This technique remedies the overshoot problem. The resulting curve however, while

being analytically smoothQ) [31], still lacks fairness. To generate curves which are not only differentiable up to
some order but also fair, we now turn our attention to variational subdivision schemes.

1.1 Variational Subdivision Schemes

In many applications continuity of some order is not sufficient to obtain high quality curves. Additionally one also
wants the curve to be “pleasing.” This is often expressed in terms minimizing some physical measure such as strain
energy. In the context of subdivision schemes this approach was considered by Kobbelt [19], who proposed the new
class ofvariational subdivision schemed'he goal of these schemes is to place the new verp%é% such that

a fairness functional is minimized. As a consequence, the new vertices are not given by explicit rules of the type
described in Equation (2), but instead as the solution of a linear system.

Definition: ~ [19] Variational approaches start with a quadratic fairness (energy) functional
Pm+]_ : z K m+1

where

z BJ pl—H

is an affinely invarianty ; Bj = 0) measure of local strain energy. Here, the indicassd j are understood to range
over all integers for which the associated varialp®s® are defined. SincK is a local measure, only finitely many



B; do not vanish. The requirement to place new (odd) vertices such that this functional takes on a minimum, leads
to the corresponding discrete Euler-Lagrange equation

vii Y vipaii =0 4
]
wherey; = y_; are the coefficients of the Laurent polynomyét) = 3(2) B(z 1) with B(2) = YiBj Z. Defining the
matrixC := [y;_oi—1]i j, we rewrite Equation (4) as
Clp™* = 0. (5)

Using the even and odd upsampling operators

100 00 0 .
000 100
010 000

Ug:=| 0 0 o Ug:=| 0o 10 : (6)
00 1 000
000 00 1

we split a given vector into even and odd componépfS™!] = Ue[p5i*] + U, [pJt71], i.e, into the known and
unknown vertices at leveh+ 1. Substituting this expression into Equation (5) the mairile decomposed into
A:=CU, andB := CUg such that
Alpzii) = —B[pf. (7)

Notice thatA is always square and symmetric. Its regularity follows from mild sufficient conditions on the charac-
teristic Laurent polynomiaB(z) of K. In [19] it is shown thatA has full rank if3(z) does not have diametric roots
B(£w) = 0 on the complex unit circley = ™,

As shown above, a variational refinement scheme is related to its corresponding Euler-Lagrange-equation by

¥(2) = B(2) B(z'1). On the other hand, using the characteristic Laurent polynomials each (symmetric) linear system
of the type (4) can be factored to find a corresponding variational scheme [19].

Examples of Variational Subdivision Four important examples of variational schemes are the minimization
of

e Second forward differences

Ka(p™?) == AZpML = pMtt_2pmily pmet

with the Euler-Lagrange equation
Wil pyil—A4PGiz+6pG s —4pa s +pais = 0
—
- 1
Physically speaking this generates curves which minimize the change in stretch or velocity. Geometrically
the curves have minimal total curvature. In terms of digital filters this scheme is equivalent t8 tdet

Butterworth halfband filter. Butterworth filters are well known in signal processing for their optimal filter
shape [17].



e Third forward differences
Ka(pf™™) == A%p™?!

with the Euler-Lagrange equation
vi:  AfpPl=o0

These curves minimize the change in bending or acceleration. From the geometric point of view this means
minimal variation of curvature or equal distribution of curvature. This scheme implements the diderete 6
order Butterworth halfband filter.

e The weighted average
Kspi(p™) = (14 v3)Ka(p™) + (24 v/3) Ka(p]™H),
with the Euler-Lagrange equation
Vi : 2/ pIH — APpIt = 0. (8)

This scheme reproduces the uniformly interpolating cubic splines, i.e., the resulting curves are piecewise cubic
polynomials. See the Appendix for a proof of (8).

e The weighted average
Kapt(P™h) = (3+ V3)Ka(p™™) +Ka(p™™?)

with the Euler-Lagrange equation

i —16pGig = gt - 905~ 9PGia+Phie
<~
Vii  6AtpITI+ASPTH = 0.

This scheme coincides with the 4-point rule (Equation (1)), examplifying the fact that interpolatory stationary
subdivision schemes are a proper sub-class of variational schemes.

In the first three cases, the new vertices are obtained by solving a tridiagonal gy&demEquation (7)). In the
last case, the scheme turns out to be stationaryA.e.]. Using the formalism developed in [20] one can derive
a lower bound for the smoothness of the limit curfas generated by these schemes. TheyGfrandC* for the
minimization ofK; andKj3 respectively. The cubic splines resulting from the minimizatioKgyf areC?. Since the
minimization ofKap reduces to the 4-point scheme, the resulting limit curve€ia2].

Non-Uniform Subdivision In the above definition oE(P 1), @ uniform parameterization of bi-infinite or
closed polygons is assumed (no boundaries). Generalizing to non-uniform parameterizations of finite open polygons
leads to local fairness measuﬂé,e{p{“*l) depending on the indeix Similarly the associated non-uniform Euler-
Lagrange equations
Clp™* =0 9)

reflect the parameterization. Each row of the banded but no longer Toeplitz iBatoxresponds to the partial
derivative of E(P m.1) with respect to a newly inserted vertp}! Jj. Hence, the variational refinement schemes
automatically treat the special cases at the boundaries of open polygons since partial derivatives are well-defined for
all odd-indexed verticepgi‘ﬁ (natural boundary conditions).

The schemes based on the minimizatiolKgf{see next paragraph) aid are easily generalized to non-uniform
parameterizations by going from forward differenceslitodeddifferences. The generalization f: was already
given by Equation (3). Generalizirgsp to the reproduction of non-uniform cubic splines is slightly more involved
since a piecewise polynomial basis has to be constructed explicitly. The @gjn derived in Appendix A.
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Figure 4. Comparison of the curves which minimiggy, Ko, Ksp, andKs (left to right) with uniform (top) and
centripetal (bottom) parameterizations.

Here we limit ourselves to the case of the second divided difference energy. The third divided difference case is
entirely similarly albeit more tedious. Let us assume that each vpftékis associated with the parameter value
tim“. The divided difference operators are recursively defined by

1 1 1 1 1 1
6T R P — 6T

1 1 1 [Jrl""’ +k yeeea Y14k
[tim+ e ’tiTIZ ] pier = = : Ml mil —
i+k i
and the second divided difference energy is
m-1 m+-1 1
Kz(p-erl) _ pi+2 B pi+1 + plm+ )
! AMH AT A AT A (AT AT A

The partial derivative of(z(p?‘“)2 with respect t37 is haii Kz(pT‘“) wherehyi 1 is the linear coefficient of
P51 in Ka(p)2. Summing thehyi 1 Ko(p™?) for j = 2i —1,2i,2i + 1 gives thei-th row of the Euler-Lagrange
matrix C. The matrix is penta-diagonal and separating the knpgiirn'L from the unknowrpgi‘ﬁ yields a tridiagonal
system with non-constant entries along the diagonals (main, upper, and lower).

Visual Evaluation of the Fairness Figure 4 shows a comparison of the curves resulting from variational
subdivision. Going from left to right the curves minimikgy, Ko, Kspi, andKs. The top row uses a uniform param-
eterization while the bottom uses the centripetal parameterization. Note that the computational cost of minimizing
Kspi @andK3 is the same, yet the latter appears noticeably fairer. This is verified by looking at the curvature plots of
both curves in Figure 5.

1.2 Summary

In this section we reviewed classic interpolatory subdivision and the recently introduced variational subdivision set-
ting. We extended the latter to the non-uniform parameterization setting. It is well known in the CAGD community



Figure 5: Curvature distribution of the cubic splines (left) compared tozrfﬁg(pi)z — curves (right).

(see for example [18]) that both variational settings and non-uniform settings are very important in practice, giv-
ing a much richer foundation on which to build smooth curves. We gave a simple example hinting at some of the
differences between the different variational energy measures and the effects of non-uniform parameterization.

Clearly the design of particular variational schemes together with the various ways of introducing non-uniform
parameterization is a whole subject worthy of investigation all by itself. Instead of pursuing this direction we con-
tinue with the construction of a multiresolution setting, i.e., the introduction of details into the subdivision process.
Such multiresolution respresentations have already proven themselves to be important for applications (e.g. [14])
and we will show how to build them in a simple and straightforward way in the case of non-uniform variational
subdivision schemes.

Part 2: Wavelets for Variational Subdivision

Overview At this point all we need is a banded linear system solver, for example LU decomposition, and we are
ready to construct variationally optimal interpolating curves. However, we also aim to construct wavelets which are
appropriate for these subdivision curves, i.e., for the underlying scaling functions. Since Fourier techniques cannot
be used in the non-uniform setting we need to use an alternative construction technique which is situated in the
spatial rather than frequency domain. This can be done either through direct inversion of large, sparse linear systems
or, equivalently, but much more elegantly and with more insight through the use of the Lifting Scheme [28].

To have a convenient means to discuss the lifting scheme and exhibit its essential simplicity we begin by de-
scribing thewiring diagramformalism, which is commonly used to describe the manipulation of FIR filter based
bi-orthogonal wavelet transforms [29]. In the lifting scheme each block of the wiring diagram corresponds to an in-
dividual lifting step. These steps can be composedsetiuenceso obtain more complex filters. In the notation of
linear algebra each building block is represented by a very simple, special matrix and the composition corresponds to
matrix multiplication. An added benefit of the use of lifting steps and wiring diagrams is that they can be transcribed
literally into very simple and efficient C++ class objects.

Finally, for the banded linear system solver we cho@gelic Reductionrather than, for example, LU decom-
position. Cyclic Reduction has the decisive advantage of being expressible entirely in terms of lifting steps as we
will show in Section 2.4. This observation seamlessly integrates variational subdivision into the classical lifting
framework,extendingt from the FIR setting to certain IIR settings. Because of this connection between lifting and
cyclic reduction, we are able to give a straightforward construction ohiéial completion i.e., functions which
span the space of details between two scales of a multiresolution analysis based on a variational subdivision scheme.
Applying additional lifting steps we show in Section 2.5 how the resulting decompositions can be stabilized.

By way of motiviation we begin with a very simple example of a wiring diagram [29] and its inverse:



Example Figure 6 shows a wiring diagram implementing an interpolatory refinement scheme through lifting. The
points at levem enter the diagram on the left side. After upsampling, i.e., inserting zeros between the elements, they
are split into even (upper wire) and odd (lower wire). This is done by a splitting T-node. We think of this part as
the input stage to the subdivision scheme. Note that the even wire carries all the vertices frmn(téyé =p"

and the odd wire only carries zeros so far. The even values flow unmodified through the subdivision diagram to the
T-node at the right end. This node implements a merge operation, the inverse of splitting. The odd vertices result
from the even values flowing through tReedict Oddbox, P,. It represents the action of computing odd elements

as a weighted average of even elements (ugingf (2)). The term predict is chosen since interpolation “predicts”
intermediate values between given samples.

Input Subdivision
© even
Level m split 3 ‘ merge
Upsample 1 B=116(-199-1) | ——
‘ /J\ Level m+1
odd d—_/

Figure 6: Example of a wiring diagram. Points at lewe} 1 are generated by upsampling levefollowed by a
split into even and odd. The odd locations are then filled in through the actioR,df'Bredict Odd”) box using the
weightsa; (for example, the weights of the 4-point scheme). Finally, even and odd locations are merged.

Wavelet Transforms  Given a subdivision wiring diagram there is an immediate way to describe a “wavelet-like”

transform. Recall that a wavelet transform starts at a finer levelisayt, and computes a coarser approximation

at levelm, as well as a set of detail, ovavelet coefficients. These coefficients encode the difference between the

signal at the finer leveh+ 1 and its approximation at the coarser lewelThe wiring diagram on the left of Figure 7

has this structure. It is obtained by inverting the diagram on the right which is the subdivision diagram of Figure 6.
In the case of the inverse diagram, coefficients at Isvell enter on the left and are split into even and odd. Now

the P, box uses the even values to predict a value at the odd location. Subtracting this prediction we get a wavelet

coefficient, i.e., the difference of the approximation at lawgleven wire) and the original data from levaH+ 1.

Using the output of the wavelet diagram as input to the subdivision diagram, the original sequence is rebuilt. This

time the odd wire does not carry the zeros of upsampling, but rather the wavelet coefficients.

| |

lit merge
P R, R g

Level m+1]

odd N\ wavelet coefficients d—_/

Inverse Forward

Figure 7: Wiring diagrams are easy to invert. Simply flip left to right and exchange signs. On the left is the inverse
(wavelet) diagram of the (subdivision) wiring diagram on the right.

Discussion  As simple as the above example is, it illustrates the basic ideas for the rest of the paper well. Build
the subdivision scheme as a wiring diagram consisting of lifting steps, then invert the diagram to get a corresponding



wavelet transform. Merely flipping the subdivision diagram does not yield a particularly good wavelet trahsform,
but it has the correct formal structure. We will see later how to improve the numerical properties of these transforms
(see Section 2.5).

In the above example we could have also used Fourier analysis, or generating functions, to make the same argu-
ment. However, these techniques only work in the uniform, bi-infinite setting, which is much too restrictive for the
settings that appear in graphics applications.

Alternatively, everything in the above example could have been written as the application of a matrix and its
inverse respectively. However, writing it in terms of wiring diagrams it becomes easy to see that in the above
example both the subdivision matrix and its inverse are banded. That the inverse is banded is far from obvious
when considering subdivision as the application of a matrix. In the non-uniform setting this will be even less
obvious. Using wiring diagrams and the lifting scheme, which is the formal basis for their use, finding inverses for
example will be a trivial exercise and properties such as bandedness will be evident. In the next section we put these
observations on a formal basis.

2.3 A Complete Wiring Diagram Toolbox

So far we have only use@, boxes and split or merge T-nodes in our diagrams. To complete the set of tools we need
to introduce “Predict Even” and “Scale” boxes.

Example Leaving our framework of interpolatory subdivision schemes for a moment, we use cubic splines as
an example of subdivision requiring the additional elements. Figure 8 shows a diagram which implements the well
known algorithm for uniform subdivision of cubic splines [22]

pott = %(pinl1+6pim+pir11)
PRI = (P +pMy).
merge
Bl R R l=| R l=12(1,1)
odd d_/

Figure 8: In this example a predict odd bxfollowed by a predict even bd®,, and finally a scale on the even wire
generates (non-interpolating) cubic splines. Due to the Predict Even box, the scheme is no longer interpolatory.

The Toolbox  Figure 9 shows the complete set of wiring diagram elements corresponding to elementary lifting
steps. The merging T-node is an implementatiob of= (Ue |U,) with the upsampling matrices of (6). Accordingly,

the splitting T-node implements its inversel = UT. Note that the split operatdd T effectively puts all even
elements into the top half and all odd elements into the bottom half of its output vector (lazy wavelet transform [28]).

IThe condition number of the associated transform is not uniformly bounded independent of the number of levels over which we perform
it.



With this convention, all other operators correspond to matrices in an obvious way

(40 e
w o (34) me (47)
s (31) =

o= (38) - (b3

Each of these operators is &2 block matrix, withA being banded an diagonal. Putting several wiring diagram
elements together corresponds to multiplying the associated matrices in the same order. Since each wiring diagram
element, or matrix, is trivial to invert or transpose it is easy to invert or transpose whole diagrams: Simply reverse
the order of stages and invert or transpose each stage.

Split Merge Predict Odd Predict Even ScaleEven Scale Odd
P Fe

Figure 9: All the elements needed to build wiring diagrams for subdivision schemes and wavelet transforms.

As an example, we can write the diagrams of Figures 6 and 8 in matrix notation

s =V (1) (on) e
s =0 (2 0) (1) (4 9) (&)

respectively. Her€) ,, denotes the coefficients entering the diagram on the odd wire. In pure subdivision these are
all zero. In wavelet transforms they denote the wavelet coefficients. The mdtes coefficients on the main and
upper diagonal an® = 31. The inverses of these expressions are easy to write down as well

(g::) = (_'A ?)UTPmH and

(an) = (Za ) (o ) (% 7)urems

This scheme of factoring subdivision [5] as well as wavelet transforms [1] is quite general and it can be shown that
anyfinitely supported wavelet transform can be written as a sequence of lifting steps [7]. Consequently writing a
given subdivision scheme as a wiring diagram immediately gives us accabsasociated bi-orthogonal wavelet
transforms [30]. In Section 2.4 we will show that these ideas also apply to the variational schemes of Section 1.1. In
this way we extend the traditional lifting scheme setting from FIR filters, or banded matrices with banded inverses,
to the setting of IIR filters, which are dense inverses of banded matrices.



Non-uniform Setting So far all wiring diagram boxes represent Toeplitz, or convolution operators, i.e., they
apply the same mask of coefficients at every location. However, there is nothing in the wiring diagram which requires
this [29]. For example, we could implement the non-uniform 4-point scheme just as well with the subdivision
diagram shown in Figure 6 by appropriately varying coefficients in the predict odd box. In that case the wiring
diagram boxes will represent general banded matrices with varying entries along the diagonals and off-diagonals.

2.4 Cyclic Reduction

The machinery we have assembled so far can be used to eapsesavelet transform whose primahddual filters

are finitely supported. Or, in the language of linear algebra, any wavelet transform whose matrix is banded and whose
inverse is banded as well. For variational subdivision this is not yet enough. Recall that in the variational setting
subdivision requires the inversion of a banded system, whose inverse is not banded, but dense. We now require
a general purpose banded linear system solver. There are a number of possible choices for banded linear solvers
whose complexity is linear in the number of unknowns, for example, LU decomposition. Our goal is to choose

a linear solver which can be expressed using only lifting steps, i.e., as the combination of elementary matrices as
given in the previous section. Such a solver has four distinct advantages: (1) all statements made above about easy
inversion and transposition continue to hold in the same straighforward manner; (2) it will extend the lifting scheme

to wavelet transforms with finite filters for the dual basis functions without requiring the primal basis functions to
also have finite support; (3) implementation of multiresolution transforms is greatly aided by using only a small set

of primitives; (4) the simplicity and uniformity common to all these constructions is exhibited using this mechanism,
rather than lost in opaque black box linear system soRers.

A method for solving banded linear systems which satisfies the goals formulated above is cyclic reduction [15].

In this section we will show how CR can be expressed in terms of the wiring diagrams defined in Section 1.2.

CR solves banded linear systefas= b. We refer to the elements gby their index and distinguish odd and even
components. This should not be confused with the fact that our systems are Euler-Lagrange systems (Equation (7))
where all the components gfare odd indexed verticgs;; ﬁ of a refined polygor® 1.

CR works fork-banded systems, but we restrict our exposition to the special case of tridiagonal systems. This
covers all the linear systems which arise in the variational schemes of Section 1.1 and simplifies the exposition. As
before, we start with a simple example and proceed to the general situation afterwards.

Example For finite polygons m.1 = [pg™, ..., p5 %], the second forward differencés(p™) = A2p™ are
defined only fori =0,1,...,2n—2. The minimization ofy; Kz(p{““)2 leads to a linear system containing the partial
derivatives with respect to the unknowﬁ'ﬁ

5
1
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S

1

6 1

P51l = [p. (10)

16 1 4 4
15 4 2

The basic idea of CR is to eliminate all odd elements of the unknown vigjot] to obtain a new system with half

the size. Assuming that we can solve the reduced system for the elelplghis the [pj+3] can be found through

back substitution. Consider three inner rows of the system in Equation (10)

1 1 1
pai1+6pa s +P5ts = 4pMy+4p,
1 1 1
Pai3+6py s +Pat; = 4pl,+4pis
1 1 1
Pais+6P5 7 tPas = 4p[is+4pl,

2This last point is admittedly more of an aesthetic nature, rather than strictly required.



If we combine these using the weiglits1,6, —1), we obtain
—P3 i1+ 34p5T5 — Pols =
—4p" 1 +20p", +20p" 5 — 4pT 4,

eliminating pg?i:l3 and pg?i% By applying a similar combination to all even rows<2j,) we end up with a linear

system in the even unknow iﬁ fori=0,..., L”;zlj. To solve the reduced system, we apply CR recursively until

the systemis kX 1. Once thepgi‘ﬁ are known, thepﬂi‘jr:l,, can be computed from
1 1 1
Paits = 4P2ii1+4P% 2~ Pht1—Pais:

In matrix notation the CR step is described as the multiplication of Equation (10) on the left wifthen
projection operator
6 —1
-16 -1
R:= -16 -1 , (11)

"1 6 {-¢

the last eIemenP% existing only ifnis even.
Wiring diagrams as defined above are flexible enough to implement CR. Figure 10 shows a single step of the
algorithm for the system (10). The box denotedL, 34, —1)~* needs to be recursively replaced by a CR diagram

with suitable weights.
(134-1) 1
@

— (-1-1) (-1-1) —
| @i

Figure 10: A wiring diagram for the first step of CR applied to the system (10).

General Setting  For general tridiagonal systems with arbitrary right hand side, we have the rows

. m+1 . m+1 . m+1
Uit1P5 1 T Vit1Poi3 +Wit1Pois = i
_ m+1 ) m+-1 . m+l
Ui+2P51 3 T Vi+2Poi15 T Wit2P217 = Git2
) m+-1 . m+-1 . m+1
Ui+3Pg 5+ Vit3Pyi 7 +Wit3Pyig = Gita.

To eliminatept3 andp3 % we use the weights

(—Uit2Vit3, Vit1Vits, —Vit1Wit2), (12)

and suppress multiplications by zero to handle all special cases at the boundaries, i.e., the first and last row. With the
up-sampling operatotde andU, of Equation (6), we apply CR to the general tridiagonal system

AX = AUgXe+AUyX, = b. (13)

To eliminate the odd components of the vectpiwe choose a projection matriR according to (12) such that
RAU, = 0 and obtain the reduced system
RAUWx. = Rh (14)



Its solution
Xe = (RAW:) *Rb (15)

is computed by applying CR recursively. SirRés a projection, the solutions of (13) are a subset of the solutions
of (14). Hence, iRAU is regular, Equation (15) uniquely determines the even components of the salofi(t).
Back-substitution into (13),

AUgXs = b—AUgXe

and multiplication on the left by yields

% = (Ud AUo) (Ul b—UJ AUexe). (16)

Wiring Diagram Implementation Formulae (15) and (16) are implemented as a wiring diagram. The matrix
Ris of type (11) but with arbitrary weights and we decompBde= RU.be + RU,b, where the matriR U is
diagonal. SimilarlyU] AU, is diagonal sincé is tridiagonal. Figure 11 shows the corresponding diagram. The
(RAW) ! box is replaced recursively by another copy of the basic CR diagram with a projection Riatdxthat

the odd columns oR AU are eliminated, etc.

Expanding the recursion, we obtain a wiring diagnaetworkwith several branches consisting of only the building
blocks of Section 1.2. The property that inversion and transposition of such diagrams is trivial continues to hold.
Further, since the lifting scheme is also expressed in terms of wiring diagrams, we can integrate the whole CR
implementation as a composite component into a larger diagram and use additional lifting steps to obtain stable
bi-orthogonal wavelet bases (see Section 2.5).

=
b Al X # L RU, 'U}‘Ue X
| O

Figure 11: A wiring diagram implementation of a single step of the general CR algorithm. TH&MBdx%) ~* at the
top contains recursive CR wiring diagrams. Each scaling box requires one multiplication per value and the predict
boxes require two multiplications and one addition.

Finite Precision Arithmetic If all arithmetic operations are performed without rounding error, the CR recursion
will stop when the linear system is reduced to a scalar equation. However, implementations in finite precision
arithmetic can stop the recursion much earlier without affecting the result.

In the example of minimization of second forward differences, CR starts with the tridiagonal fattridiag(1,6,1)
and generates a new matAk= R AU = tridiag(— 1,34, —1). The next CR step generat&$=tridiag(—1,1154 —1)
and, in general, thkth step transforma®) = tridiag(—1, v, —1) into A&+Y = tridiag(—1,vZ — 2, —1). Consequently
the number of significant digits of the ratio between diagonal and off-diagonal elements is doubled in each CR step.
After a few iterations the matriAk) can no longer be distinguished from a diagonal matrix in finite precision arith-
metic. At that point an approximate inverse to within machine epsilo'dfcan be computed by simply neglecting
the off-diagonal elements. If we use a floating point representationrwitantissa bit§log,r| CR steps are suf-
ficient to compute the answer. A similar, but more involved argument, can be made for the general, non-Toeplitz
setting of (12).

Computational Cost  CR not only mimics the binary multi-scale characteristics of subdivision and wavelet
transforms, but it is also very efficient. As seen in Figure 11, the computational complexity of a single CR step is
[®3n@ 2n] multiplications and additions per scalar componentfeertices. Accounting for all recursive calls leads



to an overall operations count ph6n < 4n|, which compares favorably with LU decomposition, for example. In the
uniform case this can be reducedd&®n® 4n] operations by exploiting symmetry.

To obtain the complete wiring diagram for a given variational scheme, we need an initial predict odd box to
compute the right hand side of Equation (7), which is the input for the CR diagram (see Figure 12). The additional
cost is at mosf®4n® 3n] (([®2n @ 3n] for uniform schemes). Thus the total FLOP-count adds U@td® 7] per
output value (@4 & 7] for uniform schemes). By way of comparison we note that the de Boor algorithm for the
evaluation of non-uniform splines requirgs12@ 6] per value in the cubic case.

Wavelet Transform Variational Subdivision
— B B —

L

Figure 12: Complete implementation of a variational subdivision scheme as a wiring diagram, together with the
associated wavelet transform. The boResndA~* hide recursive CR subdiagrams.

Discussion In this section we have shown how CR is implemented using only the basic building blocks of
the wiring diagram formalism. In this way we can build wavelet filter banks with the primitives of the lifting
scheme not only in the FIR filter setting, but also in the setting of IIR filters if these arise as inverses of banded
matrices. The latter covers all variational schemes with finitely supported energy measures. Expressing the banded
linear system solver in this way we can immediately leverage the advantages of the lifting scheme for variational
multiresolution settings: (1) easy invertibility in terms of simple elementary steps even in the non-uniform setting;
(2) efficient and straightforward implementation. What we don’t yet have are numerically well behaved wavelet
transforms. However, additional lifting steps can address this issue and are easily incorporated since we are in the
wiring diagram framework. Stabilizing, i.e., improving the condition, of the multiresolution transforms is the subject

of the next section.

2.5 Stable Wavelet Bases

In order to understand the numerical condition of our transforms better we need to examine more closely the under-
lying linear systems. According to Equation (7), the solution of a variational subdivision sebffie!] = 0 can
be computed as

P31 = —A'BIPZ = ~A B[P (17)

whereA = CU, andB = CU,. Hence, the subdivision matri mapping[p™] to [p*"!] is given by
® = Uo—U,A"1B.

In the context of wavelet decompositions this is the basis transform fromrmitescale space to th@n+ 1)-st
scale space. The wavelets enter as a set of functions which describe the additional degrees of freedom when going
from levelmto (m+1). In our subdivision wiring diagrams the wavelets “live” on the odd wires. There are many
possible choices of wavelets for a given set of scaling functions. In the lifting framealldokorthogonal choices
can be described as long as one initial choice is given. This is often referred to as the initial completion [32, 1, 28].
In terms of linear algebra, finding an initial completion is equivalent to asking for a m#taxch that the matrix
(P|W) is invertible. Posed as a linear algebra question it is not immediately obvious how to find Sucim @he
lifting framework it is trivial: simply consider the odd wire of the wiring diagram implementation of the subdivision
scheme. In our case this amounts to

Y = U,A?



(see Figure 12): The detail coefficients entering the diagram on the odd wire flow through the CR block, but not
through the initial predict odd box which compute8 [p"]. The matricesP andW together build a reconstruction,
or synthesis, matrix

S=(P|V¥).
The columns of this matrix give the two-scale relations for the primal scaling functions and wavelets respectively.
The inverse is surprisingly simple. Itis
UT
st=1(7°). 18
(€) (19

This follows immediately by inverting the subdivision diagram (Figure 12) and transcribing it into a matrix equation.

In the wavelet setting the matrix2 " =: (CTJ\ qJ) plays an important role. It is the dual reconstruction matrix and
its columns give the two-scale relation coefficients for the dual scaling functions and dual wavelets respectively. Itis
interesting to notice that although the variational schemes are globally supg®isealfll matrix in general), their
dual scaling functions and wavelets are generated by stationary subdivision schemes.

Just asScontrols the analytic properties of the subdivision limit functions and associated wavelets, s&dbes 2
control the properties of the dual scaling functions and wavelets respectively. For example, if both subdivision
schemesp and @ are convergent we have a complete bi-orthogonal wavelet basis setting. Even though in appli-
cations we may only appear to be working with the primal scaling functions and wavelets, the dual functions enter
in the way we go from a fine function to a coarse function. In this way the properties of the dual functions control
the numerical condition of the transform. Recall that the condition of a linear transform encodes the relationship
between the magnitude of a vector and its transform. If this relationship is not bounded by a constant independent of
the number of levels over which the wavelet transform is applied we say that the transform is not stable. Practically
this means that small errors can get magnified quickly, rendering the transform dsalessficient condition for
stability of the transform is the continuity of the basic solutions of the corresponding two-scale relations [4]. On the
primal side this is satisfied sinee does generate at least continuous functions for all the examples we considered.
The dual subdivision operatd? = 2U, has to be modified to bring its condition under control. If it can be achieved
at all, it can be achieved through additional lifting steps, since all bi-orthogonal transforms for a given subdivision
scheme can be found through repeated lifting.

The most natural approach to consider then is to find the lifting with the least support, which ensures a continuous
dual scaling function.

Stabilizing the Basis In the bi-orthogonal setting, additional lifting steps can be used to improve the smoothness
properties ofd [28]. The primal synthesis matriRis replaced by

T ;:s((') —IV)Z(qaw_qnw, (19)
that is, we add a linear combination of scaling functions to the primal wavelets. Typically one chiciosesrease

the number of vanishing moments of the primal wavelets. This is motivated by the fact that at least 1 vanishing
moment is a necessary condition for stability [6]. Additional vanishing moments on the primal wavelet increase the
approximation order of the dual scaling functions eventually leading to stability. Lifting then ch@nbés

-T
S A ot/ 10O
T ._sr(o |> _s<VTI>,

that is, the dual scaling functions are modified by adding the same linear combination of dual wavelets.

Translated into wiring diagrams, stabilizing the sche&tbrough an additional lifting step is equivalent to in-
cluding a predict even boR:(V) as the first element in the diagram (see Equation (19)). Note that the subdivision
scheme itself is not affected by this modification since for pure subdivision the odd wire carries only zeroes (see
Figure 13).

3Although in some cases the instability is so weak that for all practical purposes no ill effects appear.



Scheme| columns ofV

Ko &[-3,1515 -3

Ks =15[—25,105,105 —25"
Kspl 27,313 -7]"

Kapt 5[-1,9,9,—1]"

Table 1: Lifting weights for variational subdivision schemes leading to stable transforms in the uniform setting.
These weights were computed by considering the first 4 moments of the scaling functions and wavelets and then
combining them in such a way as to ensure 4 vanishing moments on the primal wavelet. Details of this computation
can be found in [27].

Wavelet Transform Variational Subdivision

A 1

Figure 13: Implementation of a variational subdivision scheme with an additional lifting step to obtain stability of
the corresponding wavelet decomposition.

The matrixV is usually chosen to be a banded matrix with a minimal number of non-vanishing diagonals. The
coefficients in one column df are the weights to linearly combine a primal wavelet with neighboring scaling
functions such that their moments cancel one another. In general this requires the solution of a linear system.
Table 1 shows the resulting weights for our variational schemes. In the non-uniform setting moments are computed
recursively and the weights iR(V) are based on the solution of a small linear system for egdhtails of these
linear systems are described in [27]).

Remark: The classical theory regarding the stability of the wavelet basis and its connection to vanishing moments
of the wavelets was developed for the uniform setting only [6]. However, numerical experiments performed by the
authors with the correspondingly stabilized non-uniform schemes presented in this paper indicate that the condition
number of the transforms remains bounded just as in the uniform case.
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Figure 14: Scaling functions (solid line) and wavelets (dashed line) in the uniform setiram (the left,K3 on the
right). In both cases the wavelets have 4 vanishing moments.

Examples: Figure 14 shows the wavelets resulting from our constructiorKfoand K3 (uniform setting). In
both cases they have 4 vanishing moments. The scaling functions are the impulse respori8end #order
Butterworth filter respectively. In contrast to the classical, Fourier based filter setting our construction continues
to work in the non-uniform setting. Figure 15 shows an application of this. From left to right we see successively
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Figure 15: Result of applying a wavelet transform to an original finest level curve. Left to right: original curve, and
successively coarser approximations. (Udfagvith centripetal parameterization and lifting.)

coarser levels of approximation to an initial data set. We are effectively using a generalization of a Butterworth,
bi-orthogonal filter bank in a non-uniform setting.

Conclusion

In this paper we showed how the construction of variationally optimal, interpolating curves can be combined with
the subdivision paradigm. The implementation of variational schemes as a network of lifting steps and the implied
matrix decomposition of the corresponding operator allowed us to derive associated wavelets. We used wiring
diagrams as a formalism to reason about these transforms and showed how the CR algorithm provides the necessary
element to include certain IIR filters in a lifting framework. Applying further lifting steps to these initial transforms
we were able to construct stable wavelet bases in the uniform setting. The subdivision rules are finitely supported in
finite precision arithmetic and can be computed with a low FLOP count. Generalization to the non-uniform setting
is straightforward and leads to curves of high quality. The result is a family of curves which includes interpolating
cubic splines as a special case, and is a proper superset of interpolatory, stationary schemes. Our constructions
make variationally optimal curves and associated wavelets available to any algorithm which exploits multiresolution
representations, e.g., hierarchical editing and compression.

Some questions are particularly interesting for future work:

e So far we can only prove the stability of the variationally optimal wavelet transforms in the uniform setting.
Numerical experiments suggest that the transforms remain stable in the non-uniform parameter setting as well.
Since adaptive and non-uniform constructions are important in applications, a stronger theoretical foundation
would be desirable.

e The application of these ideas to the surface setting is the most exciting avenue. Unfortunately, except for the
trivial tensor-product setting, no 2D generalization of CR is known and it appears unlikely. Other techniques
will have to be employed to create fast solvers for the variational surface setting.
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A Euler-Lagrange Equations for non-uniform Interpolating Cubic Splines

We derive the entries of the matiG, for the case of non-uniform interpolating cubic splines. As before we define
the parameter values of new intermediate points tdxgi!j;é = %(tierti’Ql). The resulting parameterization is
piecewise uniform

To go fromP, to P, 1, we have to compute the vertic iﬁ while pg?“ = p" are already given by the
interpolation condition. Leg be the polynomial segments of the cubic spline over the knot seqiigfce [tgp+1]
with s_1(t") = p" = s (t™). We represent each segment with respect to a special basis

3

(1) = 3 byt
S(0) = 3 aisbi(0)

where 5
olt) = (e - -5
bii(t) = ( A:m)Z (t—to ) (t—tord)
D2(0) = ez (- (-
Balt) = ooy (C— 137D (E— 137D (E—137D)

(B



and hence

1 1 1 1 1 1
aip=s(ty ) =p"=pG"  ai1=sF)=p31  Gi2=s(t37) =Pl = P53

The linear system (9) which defines the new vertipg‘ﬁl, is set up by transforming th@&?-condition between
successive polynomial segmests;, s, ands . 1, i.e., the conditions

st = s, LM = s,
StT) = sty §(t1) = $a1tT)
can be used to eliminate the coefficieng and we obtain the resulting system

[ — At
(At +At™M AT

8ALM
(A +ATM AT

ATy 7 5
ATFA ) AT T AT, T AT
8 (o AN, A
At (3 AT AT ANEALT, )0 (20)
ATy 7 5
A A AT AT, T AT
8ALM
(AMHAET ) AT 0
—A" m+1 LT _
BT AT ) AT, ] P23, Paal =0

which we have to solve for the unkno Hi. In the first and the last polynomial segment, we replaceCthe

conditions by appropriate boundary conditions. A natural choice is to require vanishing second order derivatives,
5 (t5") = 0. Again by elimination ofxg 3 the first row of the linear system (9) becomes

4 + 1
(A2 T AG(A+ALTY)?

(.8 8
g2 T AT AgT AT )

4 7
e T AT AT (21)

-8
AU+ AT A

1 1 uT _
(A A A ] [pg - P T = 0.

and the last row analogously.

Since the piecewise polynomial splines build a refinable space of functions, equations (20) and (21) hold for
everym: By construction, the cubic spline which interpolates the vatn{@ﬁ1L over the knot sequenc[qm*l] is
identical to the spline which interpolatgg® over [t™]. Consequently, the resulting limit curve will be the cubic
spline. If we consider the special case of a uniform knot sequé’rteé, equation (20) reduces to (8).



