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Abstract

The representation of freeform surfaces by sufficiently refined
polygonal meshes has become common in many geometric mod-
eling applications where complicated objects have to be handled.
While working with triangle meshes is flexible and efficient,there
are difficulties arising prominently from the lack of infinitesimal
smoothness and the prohibitive complexity of highly detailed 3D-
models. In this paper we discuss the generation of fair triangle
meshes which are optimal with respect to some discretized curva-
ture energy functional. The key issues are the proper definition of
discrete curvature, the smoothing of high resolution meshes by filter
operators, and the efficient generation of optimal meshes bysolv-
ing a sparse linear system that characterizes the global minimum of
an energy functional. Results and techniques from differential ge-
ometry, variational surface design (fairing), and numerical analysis
are combined to find efficient and robust algorithms that generate
smooth meshes of arbitrary topology which interpolate or approxi-
mate a given set of data points.

1 Introduction

There are several standard representations for surface geometry
each of which is appropriate for specific tasks and operations. The
most widespread representation in geometric modeling applications
areparameteric surfaces F: Ω 2 IR2

! S 2 IR3 which enable effi-
cient point sampling by evaluating the functionF at arbitrary loca-
tions (u;v) 2 Ω. Spline representationsare particularly useful due
to their intuitive shape control mechanism based on controlvertices
which locally attract the surface and hence enable the designer to
generate and modify geometric models by roughly sketching the
intended surface [18, 8].

Point location and ray intersection computations are more easily
performed if a surface is given as a level set

Sc =

n

[x;y;z℄ 2 IR3
j f (x;y;z) = c

o

of some spatial scalar fieldf : IR3
! IR (implicit surfaces). However

in this representation, shape control and evaluation is rather difficult
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since slightly changing the functionf can have drastic effects on the
shape ofSc — including changes in the topology.

In engineering applications it is often desirable to represent sur-
faces as the outer skin of a solid object. Such objects are typically
constructed by combinations of simple basic shapes like spheres,
cones and boxes (Constructive Solid Geometry). However, the lack-
ing shape flexibility of CSG objects makes this technique inappro-
priate for sophisticated freeform modeling applications.

Fig. 1 shows typical examples for the different surface represen-
tations. What is common to all of them is the fact that — at some
stage of their processing — they are all converted into a triangle
mesh representation: the samples on parameteric surfaces are con-
nected by edges and triangles [19], implicit surfaces are extracted
by the marching cubes algorithm [27], and CSG objects are han-
dled by uniformly tesselating the basic objects up to a prescribed
resolution.

The reason why thisdiscretizationis done, is the efficient way
how triangle meshes can be displayed by today’s computer graph-
ics hardware. Moreover for the sake of efficiency and robustness
many algorithms like milling path generation and FE simulation
are preferrably performed on polygonal meshes. Hence, polygonal
meshes orexplicit surfaces1 can be identified as the most versa-
tile general purpose surface representation. Meshes provide maxi-
mum flexibility since arbitrarily complex objects can be constructed
by simply putting together the triangles without having to observe
complicated mathematical continuity conditions.

The two major difficulties with discrete and explicit surface rep-
resentations are the lacking infinitesimal smoothness and the high
complexity. Polygonal models with several millions of triangles
have become commonplace since moderately priced 3D scanning
devices are available. In order to be able to handle the complexity
of such meshes on standard PCs and workstations we have to ap-
ply mesh decimation algorithms which reduce the number of trian-
gles in a given model while minimally changing its geometricshape
[4, 11, 17, 23, 33, 35]. As a byproduct such algorithms also gen-
eratehierarchical representationsfor highly detailed meshes and
thus enable to dynamically adapt thelevel of detailto the available
hardware resources and the application-dependent qualityrequire-
ments.

In this paper we are concerned with the other central prob-
lem, namely thesmoothnessof triangle meshes. Although triangle
meshes can never be smooth in the narrower sense ofC1 continuity,
there is an intuitive notion of approximate smoothness ordiscrete
smoothness. Fig. 2 shows two meshes which are bothC0 but the
right one obviously is smoother than the left one.

In the next section we will present a more precise definition of
discrete curvature. Smooth meshes are then characterized by low
discrete curvature. The operators by which curvatures can be com-
puted on triangle meshes lead to simple filter algorithms that im-
prove the smoothness of an existing mesh by moving the vertices in
order to minimize the discrete curvature or its variation. Applying

1We use the termexplicit surfacessince all vertices of a triangle mesh
have to be enumerated explicitly and there is in general no global rule how
to compute their position otherwise.



Figure 1: Different representations for surface geometry.From left to right: Parameteric surfaces map a planer domaininto space (patches),
implicit surfaces are iso-surfaces of scalar valued volumedata and CSG objects are defined by joining or intersecting basic shapes. Finally
triangle meshes provide maximum flexibility and maximum efficiency. In fact, all models shown here are actually represented by triangle
meshes since they have been converted for display.

Figure 2: A mesh model obtained by scanning a human head. On
the left the raw data is shown where noise artifacts are clearly vis-
ible. On the right a smoother version of the same model is shown.
Although both models areC0 surfaces, the right one apparently has
an improved distribution of (discrete) curvature.

suchdiscrete fairingalgorithms on different levels of a hierarchical
mesh representation significantly accelerates their convergence.

By combining variational methods from CAGD with the clas-
sical subdivision paradigm where surfaces are computed by iter-
atively generating a sequence of finer and finer meshes, we define
the so-calledvariational subdivision schemeswhich enable the con-
struction of high quality meshes with minimum discrete curvature
and arbitrary topology. Finally we discuss how to integratebound-
ary conditions into the optimization problem and enumeratesome
application areas.

2 Discrete smoothness

Triangle meshes are piecewise linear surfaces and hence cannot be
infinitesimally smooth unless they are planar. However, if the ver-
tices of a triangle mesh are samples from a smooth continuoussur-
face then we can approximate that surface increaslingly tight by
refining the mesh. The sequence of meshes generated during this
process converges to the smooth limit surface and hence it iscalled
asymptotically smooth. This definition is used to rate the smooth-
ness of stationary subdivision schemes and the expected quality of
meshes generated by their iterative application [7, 32, 41].

However, in most applications we are not dealing with infinitely
refined meshes and hence we have to derive a discrete approxima-
tion of the curvature which mimics the properties of the correspond-
ing definitions in differential geometry. Namely, we are interested
in finding discrete versions of the first and second fundamental form
because this enables us to transfer the known concepts from the

continuous to the discrete setting.

In numerical analysis, discrete approximations ofderivativesare
usually obtained by applyingdivided difference operators. If the
values of a function are only known at discrete sample pointsthen
derivatives are estimated by computing a low-degree polynomial
interpolant to the data points and evaluating its derivatives. The idea
behind this construction is that the polynomial interpolant certainly
is a good approximation to any smooth surface passing through the
data points. Hence the leading coefficients of their local Taylor
expansions won’t differ very much.

In geometric modeling we are not dealing with functions but
more generally with surfaces. A triangle mesh typically comes
without canonical parameterization and hence in order to derive di-
vided difference operators we first have to find parameter values
for the mesh vertices. In general, this is a hard problem if certain
quality requirements for the parameterization have to be satisfied
[28]. In our case, however, the problem is not as difficult since we
only needlocal parameterizations for the construction of divided
difference operators.

Assume we want to computesecondorder partial derivatives
then we have to compute aquadraticlocal interpolant. The interpo-
lation problem is well-defined if we have six independent interpo-
lation conditions. This means that in order to compute the second
order derivatives at some vertexp0 in the mesh, we have to assign
parameter values to it and to at least five other vertices in the vicin-
ity. For symmetry reasons we usually take all neighboring vertices
which are directly connected top0. If the valence ofp0 is higher
than five, we compute an optimal quadratic approximant in theleast
squares sense. If the valence is below five, we can either compute a
least norm solution or we can use a larger neighborhood.

Let p1; : : : ;pn be the neighbors ofp0 and we assign the param-
eter values(ui ;vi) to pi (cf. Fig. 3). Without loss of generality we
assume(u0;v0) = (0;0). The linear Vandermonde system for the
(least squares) interpolating polynomial
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where we exploit thatF = p0. If we denote the matrix in (1) byV
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Figure 3: For the construction of the local divided difference opera-
tors at a specific vertexp0, we have to find parameter values(ui ;vi)

for the direct neighborspi in order to solve the local interpolation
problem.

then the least squares solution is given by
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The rows of the matrixD = (VT V)

�1VT are the coefficients of the
divided difference operators.

Obviously there are many degrees of freedom in the choice for
the parameter values(ui ;vi) and the remaining question is whether
there are specific choices which are optimal in some sense.

The most simple way to define the values(ui ;vi) is by uniform
parameterization

(ui ;vi) =

�

cos(2π i=n); sin(2π i=n)
�

:

The advantage of this choice is that the matrixD depends only on
the valencen of p0. Hence, the coefficients for the divided dif-
ference operators can be computed in advance for each possible
valencen= 3;4; : : :

However from scattered data interpolation techniques we know
that the uniform parameterization often leads to rather badinterpo-
lating polynomials. The approximation of the data can be improved
by adapting the parameterization to the spatial configuration of the
verticespi . Moreover, when rating the smoothness or fairness of a
triangle mesh we are not so much interested in partial derivatives
with respect to some arbitrary parameterization but our eventual
goal is to find approximations of the principal curvaturesκ1 andκ2
or their combinationsT = κ2

1 +κ2
2 (total curvature),H = κ1 +κ2

(mean curvature), orK = κ1 κ2 (Gaussian curvature).
It is a well-known theorem in differential geometry thatT, H,

andK are simple (linear or quadratic) combinations of the second
order partial derivatives if the parameterization isisometric. This
means that both tangent vectorsFu andFv have unit length and are
perpendicular to each other. In general there is no isometric global
parameterization for surfaces unlessK � 0 everywhere.

For the derivation of the divided difference operators, however,
we need a consistent parameterization only in a small neighborhood
of each vertex. We can choose these local parameterizationsinde-
pendent from each other because we construct a custom tailored set
of divided difference operators for each vertex. This meansthat we
can assign different parameter values to the same vertex if local pa-
rameterizations are overlapping. Since the Taylor coefficientsFuu,
Fuv, andFvv are evaluated at the center pointF(0;0) = p0 we tune

each local parameterization such that it becomes (approximately)
isometric at(u;v) = (0;0).

There are several heuristics to find such a parameterization. The
most simple one is to estimate a normal vectorn0 at p0 and then
project the neighboring verticespi into the corresponding tangent
plane (cf. Fig. 4). The projected pointsp0i are represented with
respect to an orthonormal basis at the originp00 = p0. Usually this
basis is found by normalizingu0 = p01�p0 andv0 = u0�n0.

Figure 4: Projecting the adjacent neighborspi of a vertexp0 into
an estimated tangent plane yields parameter values(ui ;vi) for a lo-
cal parameterization which is isometric at(u;v) = (0;0), i.e., the
(discrete) first fundamental form is the identity.

Another heuristic which does not even require to estimate a nor-
mal vector is thediscrete exponential mapwhich emerges from a
local parameterization in polar coordinates [40]. The parameter
values are defined as

(ui ;vi) = hi
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wherehi is proportional to the edge lengthkpi�p0k (geodesic dis-
tance) and the angleα j is proportional to the angle6 (p j ;p0;p j+1)

such that
n

∑
j=1

α j = 2π:

All these heuristics uniquely define the parameter values(ui ;vi) up
to rotations around the origin in the parameter plane. However it
turns out that although the second order partial derivatives (and
hence the second fundamental form) depends on the orientation in
the parameter plane, the curvature valuesH, K, andT do not (ro-
tation invariance) [1]. Consequently, we can arbitrarily choose the
orientation, e.g., by forcing(u1;v1) to lie on theu-axis.

One immediate application of the discrete curvature estimation
on meshes is the detection and visualization of surface artifacts.
When real objects are scanned or mechanical deformation pro-
cesses are simulated numerically, the resulting surface geometry is
often given as a mere polygonal mesh with no additional shapein-
formation.Reverse engineeringis necessary to obtain a continuous
representation on which curvature analysis can be done.

With the divided difference operators available, we can plot the
color coded discrete curvature directly on the given mesh and hence
thesurface interrogationcan be performed without reconstructing
a full-size CAD model.

Fig. 5 shows a typical mesh for finite element analysis. The color
coded mean curvatureH is plotted directly on the mesh such that
cylindrical and flat regions are clearly visible due to constant color.

3 Discrete Fairing

Once we know how to compute curvatures on triangle meshes, the
next step is to use this information for optimizing the fairness of a



Figure 5: Precise curvature analysis on polygonal mesh models can
be performed by using locally adapted divided difference operators.
This enables direct surface interrogation on discrete datawithout
reverse engineering of CAD models.

given mesh by reducing its curvature or the variation of its curva-
ture.

A standard measure for the global surface quality in geometric
modeling is the thin plate energy [30, 34]

E(S) =

Z

S

κ2
1+κ2

2: (2)

This geometric functional is rather difficult to handle and hence it
is usually approximated by its ”linearized” version

E(S) �

Z

Ω
F2

uu+2F2
uv+F2

vv (3)

where the quality of the total curvature’s approximation bythe
squared second partial derivatives depends on how stronglythe ac-
tual parameterizationF(u;v) deviates from an isometric parameter-
ization. The effect of this approximation error on the resulting min-
imum energy surface is very difficult to estimate. If we are using
polynomial splines, then the functional (3) can obviously be eval-
uated exactly. Even for subdivision surfaces which emerge from
generalized B-spline subdivision, the value of (3) can be computed
from the given control mesh [16, 29].

In the discrete setting, the integral can be approximated bya
weighted sum over all vertices (quadrature formula) and the partial
derivatives are approximated by divided differences:
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∑
i

ωi

�

�

∑
j

αi; j pi; j

�2
+2
�

∑
j

βi; j pi; j

�2
+

�

∑
j

γi; j pi; j

�2
�

:

(4)
Herepi; j are the neighbors of the vertexpi andαi; j , βi; j , andγi; j
are the coefficients of the second order divided differencesat pi
which are obtained by solving the local interpolation problem. The
weight coefficientsωi represent the discrete surface element, i.e.
their sizes are proportional to the surface area that is associated with
the corresponding vertexpi . Hence, a good choice forωi is the sum
of the adjacent triangles’ areas (constant factors do not matter).

The important advantage of the discrete functional (4) is that
the local divided difference operators can be constructed with re-
spect to locally isometric parameterizations while the continuous
functional (3) requires a global (or at least patch-wide) parameter-
ization. Hence in the discrete setting, the original functional (2)
is properly sampled and the approximation (of the functional) can
be improved by reducing the sample step width, i.e. by refining
the mesh. In the continuous setting the approximation errorbe-
tween (2) and (3) cannot be reduced by refining the spline space
since this does not change the planarity of the parameter domain

Ω which is the source for the distorsion of the parameterization (=
non-isometry) [12]. Fig. 6 demonstrates the effects resulting from
the difference between both types of approximation.

The functionalE(S) is quadratic in every vertex and hence its
partial derivatives are linear expressions. The unique minimum of
E(S) is found if all partial derivatives with respect to the vertices
vanish. We find

∂E(S)

∂pi
= ∑

k

wi;k pk
!
= 0 (5)

where the sum in fact ranges over all direct neighbors ofpi and all
their neighbors (2-ring neighborhood) because all otherwi;k vanish.

Equation (5) is one row of a large linear system whose solution
is the minimum energy mesh. The number of rows in this linear
system equals the number of vertices which can be moved freely
in order to reduce the global energy. The system is sparse since in
every row only the entries corresponding to vertices in the 2-ring
neighborhood are non-vanishing.

The easiest way to solve such a system is by an iterative
alogrithm like the Gauß-Seidel scheme. We solve each row forthe
diagonal element

pi = �

1
wi;i

∑
k6=i

wi;k pk (6)

which yields a local update rule. By repeatedly cycling through the
vertices and applying the update rule, the discrete thin plate energy
(4) is iteratively reduced.

As we will discuss in Section 6 we additionally have to define
proper boundary conditions for the optimization problem since oth-
erwise the mesh will collapse eventually.

Ignoring this fact, we can still apply the Gauß-Seidel update rule
like a linear filter operation in order to remove high frequency noise
from the mesh data. The reason why this works is because the spe-
cial spectral properties of the iteration matrix imply thatconver-
gence is fast in high frequency subspaces and rather slow in low
frequency subspaces. Hence the noise which affects every other
vertex in the mesh is removed after a few iterations while larger fea-
tures are more or less preserved. Intuitively, this behaviour can be
explained by the observation that the local update rule effectively
reduces the curvature by considering only a small portion ofthe
mesh while such changings propagate very slowly to more distant
mesh regions.

Notice that although the global convergence of the iterative
scheme is slow, we still observe slight changings in the global
shape: the application of the update rule as a mere filter operation
causes a global shrinking effect [36]. This cannot happen ifproper
boundary conditions are imposed.

In the above heuristics, we used the geometric constellation of
a vertexpi and its neighborspi; j to derive a locally isometric pa-
rameterization. Since this constellation changes during the iterative
updating it seems reasonable to also update the local parameteri-
zation. Assuming that the current mesh is always the best known
approximation to the optimal mesh, it might make sense to estimate
the local surface metric based on this information.

However, besides the high computational costs for repeatedly re-
computing the coefficients of the divided difference operator, the
major argument against this strategy is the instability of the result-
ing scheme. If we change the parameterization after every iteration
we in fact also change the underlying energy functional thatis to
be minimized. Hence there is no reason to assume that the iteration
will ever converge.

Since each asymmetry in the neighborhood of a vertexpi is
balanced by adapting the local parameterization, the energy func-



Figure 6: The triangle mesh on the left is to be interpolated by a surface which minimizes the thin plate energy. In the center, the geometric
functional is approximated by the continuous quadratic functional with respect to some uniform parameterization which does ignore the
unequal distribution of interpolation points. Consequently the resulting surface has a rather uniform distribution of mesh vertices (center left).
This surface (center) is optimal but with respect to thewrongfunctional! For the surface on the right a parameterizationhas been used which
adapts to the given surface’s metric. Hence divided differences are computed with respect to locally isometric parameterizations and the true
functional is approximated much better. The vertex distribution on the mesh is similar to the distribution in the original mesh (center right).

tional’s gradient implies no force component actingwithin the tan-
gent plane. Consequently, the resulting non-linear systembecomes
unstable because vertices can move freely on the surface. For ex-
ample a sphere is a surface with minimum curvature variation. If
we have a mesh with vertices lying on a sphere then we obtain the
same curvature estimate for each vertex (under the assumption that
the local divided difference operators are properly adjusted). Al-
lowing the parameterization to be updated during the iteration leads
to a situation where the vertices can flow freely on the sphere. Some
authors tried to cope with this problem by restructuring themesh,
i.e. edges are flipped when the local triangle distorsion violates
some upper bound [40], but this is not appropriate in many applica-
tions.

Hence, in order to stabilize the optimization problem, we have to
apply the iterative mesh filtering with divided difference operators
being constructed once for a fixed parameterization. The difficulties
with this fixed parameterization emerge from the fact that wehave
to estimate the surface metric of the result a priori. In practice, it
turns out that the heuristics of Sect. 2 lead to satisfactoryresults.
In Sect. 5 we will come back to this issue in a slightly different
context.

4 Multi-level smoothing

Although the update rule (6) works like an effective filter operation
to remove high frequency noise from a given mesh, its global con-
vergence is rather slow. A standard technique in numerical analysis
to deal with such situations are multi-level approaches where the
same optimization problem is solved on different levels of detail in
order to accelerate the global convergence [14]. The idea behind
this approach is that iterations on coarse levels are cheap and hence
a feasible solution can be obtained. This coarse-scale solution is
prolongatedin order to find a good starting configuration for the
iterative solver on the next finer level. The prolongation operator
is designed such that the error on the finer level is mostly high fre-
quency and hence can be reduced effectively by the update rule. We
can mimic this behaviour in our mesh filtering setting by applying
the Gauß-Seidel update rule (6) to a hierarchical representation of
the mesh.

For an arbitrary mesh, a hierarchical structure emerges from the
application of a mesh decimation algorithm. In [24] a sequence
of nested unstructured meshes is generated by successivelyremov-
ing vertices from a given mesh by edge collapses (fine-to-coarse
hierarchy). Starting on a coarse scale, we can reconstruct finer res-
olutions (and eventually the original mesh) by applying theinverse
operations (vertex splits) in reverse order (progressive meshes) [17].

There are different ways to define distinct levels of resolution

within the continuous spectrum of resolutions provided by apro-
gressive mesh representation. We combine sub-sequences ofver-
tex split operations or edge collapses into (macro-) upsample and
downsample operations. Criteria for the distinct levels can be the
exponential growth in complexity by a certain factor, the removal
or insertion of an independent set of vertices, or a specific average
edge length on each level of detail. Here, a set of vertices iscalled
independent if the neighborhoods which are affected by the corre-
sponding collapse operations are disjoint.

A complete V-cycle multi-level algorithm consists of the follow-
ing operations: therestriction operatormaps the original data to
a coarser level, theiterative solverapproximates the solution by
running several Gauß-Seidel update cycles on the coarse mesh, the
prolongation operatorreconstructs the original fine mesh topology,
and some more update iterations on the fine mesh yield the final
result. Notice that the restriction and prolongation can run over
several refinement levels.

When using this technique in the context of mesh filtering, we
can exploit the typical convergence behaviour of the Gauß-Seidel
update for the design of sophisticated geometric low-pass filters.
The schedule of these filters is similar to the V-cycle algorithm. We
first apply mesh decimation to the given mesh until all the detail
that is to be filtered is removed. On this level of detail we start
alternating the re-insertion of vertices by vertex splits and the itera-
tive mesh smoothing by Gauß-Seidel updates. Since on each level,
the highest frequency noise is removed, we eventually end upwith
a mesh that has the same connectivity as the original one but with
the geometric detail removed (cf. Fig. 7). In [13] this generalized
notion of signal processing for triangle meshes is investigated in
more detail.

5 Variational subdivision

In the last section, we discussed the situation when a fine triangle
mesh is given and discrete fairing techniques are applied toimprove
its quality. A rather different setup in freeform modeling is the scat-
tered data interpolation problem where only few points in space are
given and a smooth interpolating surface is sought. The topology
of the interpolating surface is usually part of the input data. Hence
the given data points usually come as the vertices of a coarsetri-
angle mesh and we want to generate a refined mesh with the same
topology which interpolates or approximates the original points.

5.1 Subdivision operators

The most effective technique in the context of geometric model-
ing with polygonal meshes aresubdivision schemes. A subdivi-



Figure 7: The effect of the V-cycle multi-level smoothing. On the left top the original bunny data set is shown. If we applythe smoothing
update operator, we obtain the result on the left bottom. Only the highest frequency noise is removed since the convergence on lower frequency
bands is too slow. We can apply mesh decimation (restriction) to switch to coarser levels of detail (top row, left-to-right). Alternating mesh
smoothing and re-insertion of the vertices yields the surfaces in the bottom row. All meshes in the bottom row have the same connectivity.
Notice how the degree by which detail information is removed, corresponds to the coarseness of the base mesh in the V-cycle scheme (top
row).

sion scheme is given by a set of rules to refine a polygonal control
mesh. By iteratively applying these rules, we generate a sequence
of meshes which eventually converge to a smooth limit surface (cf.
Fig. 8). This technique is very similar to the knot-insertion oper-
ation for spline surfaces [25]. Inserting a knot-line into the spline
representation of a surface requires the computation of newcontrol
vertices according to simple rules (linear combinations ofold con-
trol vertices). It is well-known that the control meshes converge to
the spline surface if the knot-lines eventually become dense [31].

Subdivision schemes are a generalization of knot-insertion in the
sense that the refinement rules of a subdivision scheme can beap-
plied to arbitrary meshes, i.e., the tensor-product regularity of spline
control meshes is not required. This enables the generationof sur-
faces with arbitrary topology and not only triangular or quadrilat-
eral patches.

The subdivision operator always consists of two parts. The first
is a topological split operation by which new control vertices are in-
serted into the mesh. The split operation is chosenuniformsuch that
all new vertices are regular and the number of extraordinaryvertices
in the refined meshes is constant (subdivision connectivity). The
second part is a smoothing operator which moves the control ver-
tices according to weighted averages of neighboring vertices. The
weights of the smoothing rule usually depend on the valence of the
vertices only. In Fig. 9 a typical sequence of meshes generated by
this process is shown. This type of subdivision operator is called
stationarysince the same rule is applied in each step of the iterative
refinement.

There are two major classes of subdivision schemes. One class
are theinterpolatoryschemes which do not change the position of
the old vertices (and hence the refined mesh always interpolates the
coarser one). For interpolatory schemes, the limit surfaceinterpo-

Figure 8: Subdivision schemes can be applied to arbitrary meshes.
The advantages of spline surfaces (built-in smoothness andintuitive
local shape control by control vertices) are preserved withthe ad-
ditional flexibility that smooth surfaces with arbitrary topology can
be generated.

lates all intermediate control vertices. The other class are thenon-
interpolatoryschemes where all vertices are shifted by the smooth-
ing operator. In this case the limit surface only approximates the
control vertices (cf. cubic spline curves and their controlpolygon).

For all important settings, i.e., interpolatory / non-interpolatory
and triangle meshes / quadrilateral meshes, there are stationary
subdivision schemes which generateC1 continuous limit surfaces
[2, 5, 26, 6, 21, 42]. However in terms ofsurface fairness, the
global C1 continuity is sometimes not sufficient. This is why in
sophisticated geometric modeling applications the quality of sur-
faces is usually measured by some physically based global energy
functional [3, 15, 30, 34, 39].

We can combine the two techniques, i.e., the high quality surface
generation by energy minimization (variational modeling,fairing)
and the generation of surfaces with arbitrary topology by subdi-



Figure 9: A sequence of meshes generated by a stationary subdivision scheme. From left to right we alternatingly apply the split operator and
the smoothing operator.

vision schemes, in the following way: Instead of using the fixed
smoothing rules of stationary subdivision schemes, we place the
vertices in the refined mesh such that a global energy functional is
minimized [20, 22, 37, 38]. Since otherwise the algorithmicstruc-
ture of subdivision schemes is preserved, we call such algorithms:
variational subdivision schemes.

As we discussed in the last section, global energy minimiza-
tion requires the solution of a sparse linear system. Hence the
refinement operator of a variational subdivision scheme consists
of a splitting step which introduces new degrees of freedom for
the optimization and the stationary smoothing operator is replaced
by the Gauß-Seidel update rules of an iterative solver. As each
Gauß-Seidel step merely computes a linear combination of nearby
vertices, the computational complexity of variational subdivision
schemes is not significantly higher than for stationary schemes if
the number of Gauß-Seidel iterations is bounded (in fact, a constant
factor).

On the other hand, the alternating splitting step and Gauß-Seidel
iteration can be considered as a multi-level algorithm for solving the
optimization problem on the finest resolution level. Hence,varia-
tional subdivision is an efficient method for computing meshes with
minimum discrete curvature energy.

In order to guarantee that the resulting fine mesh interpolates the
originally given vertices, the Gauß-Seidel updates must not be ap-
plied to those vertices which already belong to the initial mesh. All
other vertices are allowed to move in every step of the variational
refinement scheme. A variant of the variational refinement schedule
is to apply the update rule only to those vertices which are inserted
in the current step of the iterative refinement. If all othersare kept
fixed then this variant acts like an interpolatory subdivision scheme.
Obviously, the variant that movesall vertices which are not part of
the initial mesh, leads to a superior mesh quality. Nevertheless, the
convergence can be accelerated if only the new vertices are moved
on every refinement level.

Keeping several vertices fixed during the iterative energy mini-
mization prevents the mesh from shrinking and collapsing. This is
important because the iterative solver does not converge toa non-
degenerate solution if no proper boundary conditions are set. A
more detailed discussion on boundary conditions can be found in
Sect. 6.

5.2 Local parameterization

The remaining open problem in the definition of a variationalre-
finement scheme is to find a local parameterization for each vertex
in order to compute the coefficients of the local divided difference
operators. In the simplest case, we choose the uniform parame-
terization and precompute the weight coefficients for all possible
valences (umbrella algorithm[24]). This is possible since the use
of a uniform split operator for the mesh refinement leads to meshes
with subdivision connectivity where all but the original vertices are
regular (i.e. have valence 6).

Figure 10: In a subdivision connectivity mesh, the neighborhood
of a face-vertex always has the structure of an affine grid while the
neighborhood of an edge-vertex looks like two affine grids meeting
along a straight line. Only the neighborhood of the extraordinary
vertices (right) has all degrees of freedom for the local parameteri-
zation.

The situation is more difficult if we want to apply the more so-
phisticated heuristics that lead to approximately isometric local pa-
rameterizations. The difficulties arise from the fact that we cannot
take the spatial configuration of the neighboring vertices into ac-
count because there is no canonical starting position for the newly
inserted vertices. Hence we cannot project the neighborhood into
an estimated tangent plane or compute length and angles in the pa-
rameter domain. One way to get around this problem would be to
compute a tentative solution, e.g., by using the uniform parame-
terization. Based on this solution, a better parameterization could
be estimated. However, adapting the parameterization to the last
iteration’s solution leads to instability of the iterativealgorithm as
pointed out at the end of section 3.

A feasible solution to the parameterization problem has to esti-
mate the local parameterization without knowing the actualposi-
tions of the vertices. In [22] a solution to this problem is proposed
which is based on the following considerations. First, in a subdi-
vision connectivity mesh there are three different classesof ver-
tices.Extraordinary verticescorrespond to the vertices of the orig-
inal mesh,edge-verticestopologically lie on an edge of the original
mesh andface-verticeslie somewhere in the interior of an original
triangle. Due to the local (semi-) regularity of subdivision connec-
tivity meshes we can find associatedtemplatesfor local parameter-
izations (cf. Fig 10).

In the neighborhood of a face-vertex the parameter values can
be sampled from an affine grid. This is natural since subdivision
meshes are regular within the original base triangles. Thisreduces
the degrees of freedom to three (two angles and one edge length).
For edge-vertices a natural parameterization is piecewiseaffine, i.e.,
affine over the three triangles belonging to the one or the other ad-
jacent base triangle respectively. Hence, there are only five degrees
of freedom (four angles and one edge length). Finally for theex-
traordinary vertices, arbitrary parameterizations are allowed since



Figure 11: A local parameterization for an extraordinary vertex
can be extrapolated to obtain a (semi-regular) parameterization for
the whole parameter plane (crystal seed). This parameterization
is piecewise affine in each sector. Hence the induced parameteriza-
tions for the neighboring vertices match the correspondingtemplate
definitions and can be used for the blending operation.

we cannot make any assumptions on their valence or the spatial
configuration of their neighbors.

When setting up a variational subdivision scheme we start with
the initial (coarse) mesh where all vertex positions are given since
they provide the interpolation constraints for the optimization prob-
lem. We can estimate a local parameterization for each of theorigi-
nal vertices by using one of the heuristics leading to local isometry
(e.g. projection into the tangent plane or exponential map param-
eterization). The crucial idea is then to define the local parameter-
izations for the edge- and face-vertices (which are inserted during
the split operation) byblendingthe parameterizations of the nearest
extraordinary vertices. The motivation for this approach is the no-
tion that for smooth meshes, the distribution of the uniformsamples
within one base triangle should be as equal as possible. Hence the
difference between neighboring parameterizations shouldbecome
smaller on higher refinement levels.

A priori, the blending operation for local parameterizations is
not well-defined but since we use the above templates for the edge-
and face-vertices, we can simply blend the free parameters (angles
and edge lengths) to obtain parameterizations for the intermediate
vertices.

The local parameterization for the extraordinary verticesacts like
a crystal seed which uniquely defines affine and bi-affine parameter-
izations for each sector in its vicinity (cf. Fig. 11). We canuse the
template parameters of these prototypical parameterizations and do
barycentric blending along base mesh edges and across base mesh
triangles (cf. Fig. 12).

Variational subdivision schemes can be implemented very effi-
ciently. Besides the iterative application of the Gauß-Seidel update
rules, there is a small overhead for the computation of the divided
difference coefficients. This has to be done only once for each ver-
tex since the local parameterization of a coarse-scale vertex does
not change on higher refinement levels.

As the alternating refinement and smoothing corresponds to a
multi-level algorithm for solving the optimization problem on the
finest level, only a constant number of Gauß-Seidel iterations is
necessary on each intermediate level. This leads to computational
cost which are linear in the number of triangles of the resulting
mesh. In our current implementation of variational subdivision, we
generate about 10K4 per second on a 250 Mhz / R10K SGI work-
station.

6 Boundary conditions

Variational subdivision schemes generate smooth meshes that in-
terpolate the originally given vertices of the initial basemesh. The
underlying discrete optimization problem becomes well-posed be-
cause the interpolation conditions make its solution unique. In the
more general setting of discrete fairing in Sect. 3, we did not explic-
itly solve optimization problems but we merely applied the Gauß-
Seidel update rules as low-pass filters to the mesh. By exploiting
the special convergence behaviour of these operators, we can de-
rive effective low-pass filters with adjustable pass-band frequency.
However, in terms of mesh optimization, the proposed algorithms
do not make any sense if the underlying optimization problemis
ill-posed.

In order to turn the heuristic mesh filtering into an iterative al-
gorithm for solving a well-posed optimization problem, we need to
impose non-homogeneous boundary conditions. In the context of
geometric modeling the typical boundary conditions are interpola-
tion constraints for surface points and/or normal vectors.

In the global linear system characterizing the optimal mesh, each
constraint provides another row. The trivial case is the interpolation
of a pointP in space by some mesh vertexpi . Here, an additional
row

�

: : : ;0;1;0; : : :
�
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B

�

...
pi
...

1

C

C

A

= P (7)

is added as theith row into the global system. In the Gauß-Seidel
algorithm this constraint is satisfied by simply skipping the update
of pi when cycling through the mesh vertices. If the pointP is to be
interpolated in theinterior of a triangleT =4(pi ;p j ;pk) we have
to specify the interpolation condition by barycentric coordinatesα,
β, and γ within the triangleT. The resulting row for the global
system is
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= P:

In practice it can be observed that the iterative solvers converge
faster, if the interpolation constraints are imposed within the inte-
rior of triangles instead of at the vertices. For symmetry reasons
the update steps for the three verticespi , p j , andpk are combined.
The three vertices are shifted in order to re-establish the interpola-
tion condition while altering the geometry of the mesh as little as
possible. Letc be the correction vector

c = P�αpi �βp j � γpk

then we distribute the correction among the three vertices by

pi +=

α
α2
+β2

+γ2 c

p j +=

β
α2
+β2

+γ2 c

pk +=

γ
α2
+β2

+γ2 c

such that the mesh modification is minimal in the least squares
sense (least norm solution for the update vectors). Notice that the
three vertices are subject to an energy reducing update stepinduced
by the global energy functional. Hence the interpolation condition
is violated during the energy minimization and then re-enforced
when processing the constraint. The symmetric treatment ofthe



p

q

a
b

a
b

a
b

r

p

p

r
r

q

q

p

q

Figure 12: Defining local parameterizations by blending along a base edge. The local parameterizations of the two extraordinary vertices
p andq induce bi-affine parameterizations for their direct neighbors p̄ andq̄. The template parameters of these parameterizations(ap;bp)

and(aq;bq) can be used for weighted blending along the base edge which connectsp andq. The coefficients(ar ;br ) then define the local
parameterization for the vertexr = (1�u)p+uq. The same technique can be used for the face-vertices in the interior of a base triangle
where we use barycentric weights for the blending.

interpolation constraint is necessary since the corresponding row in
the linear system might not be diagonal dominant and hence the
iterative solving algorithm might turn instable otherwise.

The interpolation ofnormal vectorsis most easily achieved by
freezing all three vertices of a triangular face. This imposes a po-
sitional and normal constraint on the mesh. Other formulations for
normal constraints based on the vanishing inner product of mesh
edges with the normal vector, tend to make the iterative solving
algorithm unstable due to lacking diagonal dominance.

In many applications, strict interpolation constraints are not nat-
ural and approximation constraints within a prescribed toleranceε
make more sense, e.g., when the input data is disturbed by noise.
Instead of freezing the position of some mesh vertices, we can im-
plementapproximation constraintsby projecting the constrained
vertices back to anε-sphere around the approximation points af-
ter every Gauß-Seidel iteration. This simple approximation scheme
however uses anisotropicerror metric which is too strict in many
cases.

If we assume the interpolating mesh to be locally flat then the
approximation error has to be measured in normal direction only
(anisotropic error metric. This provides more flexibility such that
the mesh can relax within the tangent plane. It mimics the effect
of the parameter correction in classical scattered data interpolation
[18].

For a given interpolation pointP with (estimated) normal vector
N, the approximation error is measured byE = j(pi �P)T Nj. In
case this error is larger than the prescribedε, we projectpi back to
a plane which is parallel to the tangent plane:

pi �=

�

(pi�P)T N� ε
�

N

Notice that at the mesh boundaries, a different distance criterion has
to be used since projecting the approximation error onto thenormal
vector cannot prevent shrinking effects for open surfaces.

7 Applications

With the effective and flexible techniques ofdiscrete fairingand
variational subdivision schemesavailable, we can use polygonal

mesh representations for various standard problems withinthe area
of sophisticated free form surface modeling. The overall objective
behind all the applications we are presenting is the attemptto avoid,
bypass, or at least delay the mathematically involved generation of
spline CAD-models whenever it is appropriate.

Especially in the early design stages (conceptual design) it is
usually not necessary to have a spline parameterization of asur-
face. The focus on polygonal mesh representations might help to
free the creative designer from being confined by mathematical re-
strictions. In later stages the conversion into a spline model can
be based on more reliable information about the intended shape.
Moreover, since technical engineers are used to perform numerical
simulations on polygonal approximations of the true model anyway,
we also might find short-cuts that allow to speed up the turn-around
cycles in the design process, e.g., we could alter the shape of a me-
chanical part by modifying the FE-mesh directly without converting
back and forth between different CAD-models.

7.1 Scattered data interpolation

One area where the discrete fairing approach can be applied is the
filling of undefined regions in a CAD model or in a measured data
set. Of course, such problems can be solved by fairing schemes
based on spline surfaces as well. However, the discrete fairing ap-
proach allows one to split the overall (quite involved) taskinto sim-
ple steps: we always start by constructing a triangle mesh defining
the global topology. This is easy because noG1 or higher bound-
ary conditions have to be satisfied. Then we can apply the varia-
tional subdivision technique to generate a sufficiently dense piece-
wise regular point set on the objective surface. This part includes
the refinement and energy minimization but it is almost completely
automatic and does not have to be adapted to the particular appli-
cation. In a last step we can fit polynomial patches to the refined
data. Here we can restrict ourselves to pure fitting since thefair-
ing part has already been taken care of during the generationof
the dense data. In other words, the discrete fairing has recovered
enough information about an optimal surface such that staying as
close as possible to the generated points (in a least squaressense) is
expected to lead to high quality surfaces.

Consider the point data in Figure 13. The very sparsely scattered
points in the middle region make the task of interpolation rather dif-
ficult since the least squares matrix for a locally supportedB-spline



basis might become singular. To avoid this, fairing terms have to be
included into the objective functional. This however brings back all
the problems mentioned earlier concerning the possibly poor qual-
ity of parameter dependent energy functionals and the prohibitive
complexity of non-linear optimization.

Alternatively, we can connect the points to build a spatial tri-
angulation. Variational subdivision then recovers the missing in-
formation under the assumption that the original surface was suffi-
ciently fair. The uneven distribution of the measured data points and
the strong distortion in the initial triangulation do not cause severe
instabilities since we define individual parameterizations for every
vertex when computing the divided difference coefficients.These
enable to take the local geometry into account.

Figure 13: The original data on the left is very sparse in the mid-
dle region of the object. Triangulating the points in space and dis-
cretely fairing the iteratively refined mesh recovers more informa-
tion which makes least squares approximation much easier. On the
right, reflection lines on the resulting spline surface are shown.

7.2 Filleting and blending

Another standard problem in CAD is theblendingor filleting be-
tween surfaces. Consider the simple configuration in Figure14
where several plane faces (dark grey) are to be connected smoothly.
We first close the gap with a coarse triangle mesh. Such a mesh can
easily be constructed for any reasonable configuration withmuch
less effort than constructing a piecewise polynomial representation.
The boundary of this initial mesh is obtained by sampling thesur-
faces to be joined.

We then refine the mesh and, again, apply the discrete fairingma-
chinery. The smoothness of the connection to the predefined parts
of the geometry is guaranteed by letting the blend surface mesh
overlap with the given faces by one row of triangles (all necessary
point information is obtained by sampling the given surfaces). The
vertices of the triangles belonging to the original geometry are not
allowed to move but since they participate in the global fairness
functional they enforce a smooth connection. As this corresponds
to the discreteC1 boundary constraints of Sect. 6 where points and
normals are fixed, the discrete blending technique is able tosolve
the Hermite-type interpolation problem.

7.3 Applications to multiresolution modeling

In [24] we describe how to use the discrete fairing techniquein the
context of a multiresolution modeling tool which is able to process
triangle meshes with arbitrary connectivity. The central idea is to
build up multiresolution decompositions based on the hierarchical
representation of meshes. Since we do not assume any specialcon-
nectivity, the hierarchy has to be build from fine to coarse byusing
a mesh decimation algorithm.

Figure 14: Creating a “monkey saddle“ blend surface joiningsix
prescribed planes. Any blend surface can be generated by closing
the gap with a triangle mesh first and then applying variational sub-
division.

Standard multiresolution decompositions for meshes whichare
based on stationary subdivision schemes require the fine mesh to
have subdivision connectivity. Starting on a coarse level of detail
in such a decomposition we can either reconstruct the original data
by re-inserting the detail information that has been removed dur-
ing decomposition or we can apply the plain stationary subdivision
operator to obtain a smoothed version of the original mesh. We
call the resulting representationcoarse-to-fine hierarchysince the
coarsest base mesh completely determines the structure of all re-
finement levels.

For mesh hierarchies emerging from the application of a mesh
decimation algorithm, the nested levels of detail are builtfrom fine-
to-coarse. The finest refinement level is the original mesh which
can have arbitrary connectivity. The next coarser level is generated
by performing the decimation until a certain criterion is met. The
decimation is usually implemented byedge collapsessuch that we
can reconstruct the original mesh by applying the corresponding
vertex splitoperations in reverse order.

However, this technique only yields atopological hierarchywith
differently coarselevels of detail. In the standard coarse-to-fine
setting, the analogousgeometric hierarchywith differently smooth
levels of detail is obtained by applying the underlying stationary
subdivision scheme without detail reconstruction. In the plain pro-
gressive mesh setting we can go coarse to fine only by re-inserting
the previously removed vertices. This, however, necessarily recon-
structs the detail and does not provide geometric levels of detail.

In order to obtain true multiresolution semantics on arbitrary
meshes, we have to compute a geometric hierarchy. For this we
first re-insert the vertices by vertex splits. Once the refined level of
resolution is reconstructed, we apply discrete fairing with all ver-
tices from the coarser level fixed and the new ones being allowed to
move. Eventually, this yields a mesh with the same connectivity as
the original one but with the geometric detail removed. Thistech-
nique works since discrete fairing can be applied to meshes with
arbitrary connectivity.

The geometric difference between the original mesh and its
smoothed version provides a multiresolution decomposition for ar-
bitrary meshes. For reasonable reconstruction of the detail after
the global shape has been modified (multiresolution modeling) we
have to encode the position of the original mesh’s vertices relative
to the local geometry of the smoother mesh (local frames). Notice
that simply storing the difference between the original vertex po-
sition and its position after the discrete fairing is not appropriate
since then the detail reconstruction can produce shape artifacts if
the tangent plane of the smooth geometry changes [9, 10].

Based on this multiresolution representation for arbitrary
meshes, we implemented the flexible mesh modeling tool,HUMID.
Fig. 15 demonstrates the interaction metaphor that enablessophis-
ticated modeling operations in realtime.



Figure 15: A flexible metaphor for multiresolution edits. Onthe left, the original mesh is shown. The black line defines the region of the
mesh which is subject to the modification. The white line defines the handle geometry which can be moved by the designer. Both boundaries
can have an arbitrary shape and hence they can, e.g., be aligned to geometric features in the mesh. The boundary and the handle imposeC1

andC0 boundary conditions to the mesh and the smooth version of theoriginal mesh is found by applying discrete fairing while observing
these boundary constraints. The center left shows the result of the curvature minimization (the boundary and the handleare interpolated).
The geometric difference between the two left meshes is stored as detail information with respect to loacal frames. Now the designer can
move the handle polygon and this changes the boundary constraints for the curvature minimization. Hence the discrete fairing generates a
modified smooth mesh (center right). Adding the previously stored detail information yields the final result on the right. Since we can apply
fast multi-level smoothing when solving the optimization problem, the modified mesh can be updated with several frames per second during
the modeling operation. Notice that all four meshes have thesame connectivity.

8 Conclusion

In this paper we gave a survey of discrete fairing and variational
subdivision methods which combine several powerful techniques
for freeform surface design. The major features are that good
approximations for geometric curvatures can be computed byus-
ing divided difference operators with respect to local parameteriza-
tions, arbitrary topology surfaces can be handled by adapting effec-
tive subdivision techniques, and highly efficient iterative algorithms
for computing optimal meshes result from generalizing multi-level
methods to nested grids with arbitrary connectivity.

This general technique can be used in all areas of geometric mod-
eling and CAD/CAM where an approximation of the actual sur-
face by a reasonably fine triangle mesh is a sufficient representa-
tion. If compatibility to standard CAD formats matters, a spline
fitting post-process has to follow the discrete surface generation or
modification. This fitting step can rely on densely sampled infor-
mation about the intended shape if variational subdivisionis used.
Moreover, the discrete fairing technique enables the generaliza-
tion of multiresolution modeling semantics to arbitrary connectivity
meshes.

The problem to handle complex polygonal meshes has not been
addressed in this paper. In priciple, we can either use mesh deci-
mation techniques to remove vertices and triangles in geometrically
flat regions of a surface or (in the context of subdivision techniques)
we can avoid the exponentially increasing complexity by applying
adaptive refinement techniques.
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