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Abstract

Due to their simplicity, triangle meshes are used to reptegeo-
metric objects in many applications. Since the number ahgies
often goes beyond the capabilities of computer graphicdviene
and the transmission time of such data is often inappraglyiaigh,

a large variety of mesh simplification algorithms has beeppsed
in the last years. In this paper we identify major requiretadar
the practical usability of general purpose mesh reductigoréthms
to enable the integration of triangle meshes into digitaiuoents.
The driving idea is to understand mesh reduction algoritama
software extension to make more complex meshes accessthle w
limited hardware resources (regarding both transmissimhdis-
play). We show how these requirements can be efficientlgfgzdi
and discuss implementation aspects in detail. We preserdgsa m
decimation scheme that fulfills these design goals and whazh
already been evaluated by several users from differentcapion
areas. We apply this algorithm to typical mesh data setsrwode
strate its performance.

1 Introduction

Just like multi-media data, the use of 3D objects enrictatitional
digital documents like text documents, web-pages, onlowkb, or
encyclopedia on CD-ROM. The possibility to add 3D data ezsbl
interaction and provides a maximum amount of information.
Digital 3D documents do not only extend existing applicasio
but they also provide completely new possibilities. A vesyge
community may visit a virtual electronic museum over thesiint
net, regardless where on the world it is located. In tomosow
museum catalogue, Michelangelo’s fresco-paintings cooihde to-
gether with a whole virtual chapel. A customer may compod®; a
trarily often change, and inspect furniture arrangementgsdigital

warehouse catalogue and by pressing a button he would get a de

tailed part list together with the total price. Or an elentecclinical
record could contain not only textual descriptions andypis, but
also, e.g, an iso-surface reconstructed from a CT-scafifef1).

Many applications process or generate 3D surface geomiatry.
order to make such data persistent, either by storing it tackup
device or by transmitting it via the internet to other congoigys-
tems, a certain representation format has to be chosenngtar
transmitting surface geometry data means to find a mappaorg fr
the geometry (e.g. points) and topology (e.g. triangleff)édinear
structure of random access memory, harddisks, or etheenitas.

There exist several surface representation formats. Sirgie
object can be of arbitrary complexity, itis usually assesdlily sev-
eral parts or so-called patches. CAD-software uses NURE®B{N
Uniform Rational B-Splines) to describe fairly complex gias.
Using simpler types of patches naturally requires a largenber
of them to describe an object of similar complexity.
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Figure 1: Example of a digital document: a 3D iso-surfacemec
structed from a CT-scan (red) is included into the digitaiudoent
to provide additional information.

The simplest patch at all is a triangle. There are severabrea
why triangle meshes have become a common way to represent sur
faces: graphics hardware accelerates the display of tdangshes
(in fact, today any other surface representation formatesiially
converted to triangles meshes for display). Furthermadgerighms
for triangle meshes are more easy to implement and more trobus
than for higher order patches. Thus, triangle meshes haeegewh
as a de-facto standard for representing 3D geometry in ctampu
graphics.

Since the complexity of triangle meshes grows faster than th
capabilities of computer graphics hardware and transoridsnd-
widths, there is much ongoing effort in the area of mesh sfimpl
cation. Many algorithms have been proposed for the deocimat
triangle meshes. [19, 20, 17] give an overview over the |laaye
riety of techniques. Recently, an attempt was made to iigagst
the generic nature of incremental mesh decimation algostfi 3].
Even more important, incremental mesh simplification athors
can be used to generate hierarchical triangle mesh repatioas
that are essential when using triangle meshes in digitairdeats
(cf. next section).

After considering the use of triangle meshes in digitaldies,
in the following sections we discuss in detail, how the pratt
usability of a simplification algorithm can be achieved. Wesent
the necessary components that have to be considered anéheomb
these partial solutions to a mesh simplification algorithie. verify
the achievement of the design goal by applying our impleatent
to data sets from different application areas.
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Figure 2: The two bottlenecks and possible solutions whérgumplex triangle meshes in client/server systems teractive display.

2 Client/Server Systems

Although interactive display of 3D surfaces is possible tang-
alone graphics workstations, major gains in functionatithe con-
text of digital libraries are acquired if 3D documents arelman-
mediately available to a large number of users in a worldevdis-
tributed system like the internet. Thus, the data shouldbatéd
on server systems and accessed by client computers. THstea
two major bottlenecks (cf. Fig. 2):

e Transmission bandwidthare limited. The user has to wait
until his client computer received the whole data set and the
finally displays the object.

o Different client systems typically have a very broad ranfje o
graphics performanceA standard PC may only display ob-
jects with a few hundred triangles interactively, while agg-
ics workstation can process several thousand trianglesaat i
active frame rates. This effect is independent from theaserf
representation formats.

These two bottlenecks clearly show the main drawback of tri-
angle meshes: a large number of triangles is required taitlesc
a complex 3D object. Mesh compression techniques [23, 8] onl
help to reduce the transmission latency which is still deljpenon
the size of the whole triangle mesh. Fortunately, hieraalhieor-
ganization of the triangle mesh representation helps taawath
bottlenecks at the same time. Furthermore, the advantdgekio
erarchical representation are of practical use even fodsatone
computer systems.

3 Mesh Hierarchies

The upper row of Figure 3 shows the traditional sequentéaigs
mission and display of a 2d picture. In contrast, the lower ob
Figure 3 exploits the advantages of a hierarchical imagedbtike
progressive GIF or JPEG: already after receiving only a feregnt
of the total data, one can imagine how the final image woul# loo
like.

Hierarchical representation of triangles meshes has the s@o-
tivation and advantages as it is well known for the mentidmiedar-
chical image formats. The upper row of Figure 4 shows theesequ
tial, and the lower row the hierarchical transmission argpldiy
of a 3D object. The benefits of the hierarchical represemtadre
clearly visible and obviously help to avoid the bottlenetkmited
transmission bandwidths.

stations, we can observe that all of them are able to staxa-tri
gle meshes into their main memory which they are not ablego di
play with acceptable frame rates. It makes sense to exasgptilis
observation into the future, i.e., the ratio of main memadrege 40
graphics performance will not change significantly.

Since computers can easily handle larger meshes than they ca
actually display, mesh reduction algorithms or pre-coraguhesh
hierarchies (from which a reduced mesh can be extractedeare
quired to bridge the gap. This can be considered as a pipglini
process:

mesh
reduction

graphics

— hardware

memory —

Hence the maximum size of a triangle mesh that may be displayed
on a specific computer is obviously limited by the numberiafir
gles that may be processed by a mesh simplification algorithm
the same systemThus, hierarchical triangle meshes also help to
avoid the second bottleneck: interactive display.

Several hierarchical triangle mesh representation fosra al-
ready available. The Virtual Reality Modeling Language (MB
[4] has been defined for the transmission of 3D geometries ove
the internet. An object may be represented hierarchicallyding
a level-of-detail (LOD) node in the scene description. THBD
node uses several distinct versions of the object at varessu-
tions. Thus, the total amount of memory requirement in@easth
the number of levels.

Hierarchical triangle meshes based on wavelets method$]5,
require a certain structure of the mesh — the so-called sistai
connectivity. Since only few models have this special cotinigy
a priori, a conversion has to be performed in a preprocessem
which re-samples the original object [5, 14].

Another method for the hierarchical representation ofantyie
mesh is to first transmit a coarse approximation and theril deta
formation is added successively to the current mesh. Tlisetea
very smooth sequence of finer and finer triangle meshes. Tlké mo
popular technique that works in this way is thegressive mesh
(PM) representation [10]. The benefits of PMs are that thegato
require more memory than the mesh at its highest resolugbn [
and that they provide a smooth and lossless hierarchy afgliea
meshes.

We have implemented an ActiveX-control for Microsoft Win-
dows that allows to progressively receive such PM-recaris{g-
ure 5 on the left) [2]. Another implementation is a viewer kbo-
tif and OpenGL that may be used as a helper application for web
browsers (cf. Figure 5 on the right) [2]. This PM-viewer atdlows
the load-adaptive display of a progressive mesh, i.e.,tiraati-

The performance of computer systems is increasing steadily cally adapts the complexity of the shown mesh to the capigsilof
considering CPU speed, the size of main memory, the triangle the used graphics hardware and the current processor load.

throughput of computer graphics hardware, and transnmissad-
widths. Looking at contemporary systems, PCs or graphiagwo

To convert an arbitrary triangle mesh to a PM, an incremen-
tal mesh decimation algorithm is required that iteratiyedyforms



Figure 3: Upper row: sequential transmission of an imagevdraow: progressive transmission using a hierarchicaperfide format. The
two images in each column have been generated using the sanuatof transmitted data.

Figure 4: Upper row: sequential transmission of a 3D objéawer row: progressive transmission using progressivehe®s The two
models in each column use the same number of triangles (&tinolright: 1.759, 7.038, 28.155, 112.623 triangles).
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Figure 5: Interactive display of progressively receivadrigle meshes. Left: ActiveX control for Microsoft WindowRight: web-browser
helper application for Motif and OpenGL that also allows libed-adaptive display of the hierarchy.

edge collapse operations. The mesh simplification alguorittes

As mentioned above, any mesh decimation algorithm using edg

to find a base mesh of a PM that represents the global shape of th collapse operations may be used to convert an arbitrarggiea

object and that is encoded in a traditional way (e.g. by shaee-
tices). The remainder of a PM file encodes the detail infoionat
i.e., alarge sequence of vertex splits that reverse thetipes per-

formed during mesh decimation. Transmission of a PM file may

be interrupted when desired (resulting in an approximatibthe
object).

4 Mesh Decimation

Up to now, research in the field of mesh simplification has $ecl

on the development of new decimation algorithms and it seems

have gained a status of maturity. For every sort of appbtoai suit-
able simplification algorithm can be found. All of them amaited
by the tradeoff between speed and the quality of the reguttiesh.

We claim that besides specific technical properties theviotig
aspects are essential for practical use:

e Robustness of the algorithmmost real world data contain
topological inconsistencies, e.g. complex vertices. Thiis

gorithms assuming the input data to come as (bounded) 2-
manifolds would fail. This aspect can be handled by topology

modifying algorithms [6, 21, 16, 9].

e Intuitive parameters to control the reductiomost people us-

ing mesh reduction software are not experts in the field of

computer graphics algorithms. Thus, intuitive parameters
control the simplification process are strongly required.

e Thoughtful use of computer hardware resourcesesh re-

mesh into the PM representation. According the above claims
now present the ingredients that fulfill these requiremémtthe
next sections. Afterwards, we put these ingredients tegetform
an efficient mesh simplification algorithm that may be usegetio-
erate PMs.

5 Robustness

Besides wavelet-methods [7, 5] and re-tiling of surfaceg f@ost
known mesh decimation algorithms iteratively reduce amgimesh.
A sequence of simple topological operations is applied ¢octlr-
rent mesh removing certain geometric entities in each skas-
sible basic operations include vertex removal and re-griéation
[22], general edge collapse [10], half edge collapse [118],\&ertex
collapse [6, 21].

Most current iterative mesh decimation algorithms use erityi
gueue to obtain optimal approximations to the original mdsteir
generic structure is as follows:

For all geometric entities {
Measure cost for applying operator
Put result into priority queue

Loop until queue enpty {
Perform operator with | east cost
Update costs in queue

}

The computationally most expensive part is measuring ard up

duction techniques have to be fast, e.g. with respect to dating the cost function for the potential execution of eotopgical

Schroeder’s recent definition [21] 96° reduced triangles per

operation. Itis intrinsic to each algorithm, how the costdiion for

day. Yet, the reduction process has to fit into the memory of every possible operation is calculated. An algorithm mayswter

current computer systems.

the geometric deviation as the cost for performing an opmerair



the change of the “fairness” of the modified surface. Thené&ss
is typically related to first or second order surface denrestand
we call the cost function that performs the appropriatewdaton
“fairing oracle” of order one or two.

Possible topological inconsistencies in the mesh, e.gaptex
vertices [22] or edges, complicate the computation of ttst ftonc-
tion. Such inconsistencies may occur for different reasarisey
could be used to represent a feature or erroneous prepirgess
algorithms generate inconsistent meshes. We encounteaegt m

Representation layer Operation layer

Algorithm
encapsulating mesh A/v
«4—p | Algorithm
data structure
'\‘ Algorithm

cases where the data could have been represented by an-ideal Zrigure 6: Separating the triangle mesh from the algorithorking

manifold. But for algorithmic reasons the generating pangs,
e.g. data acquisition tools or surface meshers, producenplea
entities.

Mesh modifying algorithms, e.g. mesh decimation, can use di
ferent strategies to cope with possible topological inisiascies:

on that data.

6 Intuitive parameters

To control the iterative mesh reduction and to terminatesitmgolifi-

e The mesh can be repaired in a preprocessing step [1]. Sincecation process, it is necessary that the user defines somm@ers.

this is usually done by a separate algorithm, valuable iméer
tion may be lost. But this allows the simplification algonith
to make certain simplifying assumptions.

e The handling of all possible problems may be incorporated
into the algorithm. Unfortunately, this complicates impkn-
tation and the algorithm itself becomes much more involved.

People familiar with computer graphics techniques are blese
such algorithms after a short time. But in practice, peopleetto
use these programs who may not understand the underlying alg
rithm and the parameters for geometric or topologic val(ésis,
we want to draw the attention on this aspect of mesh decimatio
algorithms in this section.

As described previously, most current mesh reduction @lgos
use a priority queue to decide which topological operatmper-

e Object-oriented techniques can be used to separate the dataform next. This means that all currently possible operatibave

structures representing the mesh from the algorithms wgrki
onit.

Since the last item combines the advantages of the othemefer
this strategy.

to be considered and a cost has to be computed for perforimigg t
operation. This cost is a scalar value that is used to sors¢he
of candidates. Since most algorithms impose several dondibn
potential operations, the problem arises, how to combiasethlif-
ferent measures into a single scalar value. Several Siatage

Fig. 6 shows how to separate the raw mesh from algorithms possible:

working on that data by object-oriented software designe fw
mesh data is encapsulated into a data-structure that mdgitexp
meta-knowledge about that data. This encapsulating obgscto
provide the following interface:

e Access to geometric entities, e.g. lists of vertices, edges
triangles.

e Methods to inform the data structure about requirements of
the algorithm, e.g. 2-manifolds.

e Methods to ask the data structure, if a topological openato
possible with respect to the given requirements.

e Methods to commit basic operations on the data.

The encapsulating data structure can treat topologicallgmus
in several ways. It can try to repair them on-the-fly, e.g. fiitting
complex vertices [21], while repairing in a preprocessimgp £ould
incorporate the methods presented in [1]. Finally, it canpdy
disallow the modification of the affected sub-meshes.

The separation into a representation and operation |layer iclat
change the structure of an algorithm, but simply decoupléspen-
dent aspects of processing triangles meshes. Most iteratésh
decimation algorithms can be formulated using such an endaip
ing data structure, if the interface is carefully implenasht Thus,
it makes sense to encapsulate everything to treat comgicaid
complex meshes into a separate class. The algorithms camlhe
stract from these basic tasks and concentrate on their restire.i
This eases implementation aspects of the mesh modifyingr alg
rithms very much. Further, it helps to make programs moreastb
since an algorithm may process a mesh even if that mesh nentai
unexpected topological problems that would cause the ithgoto
fail.

e The easiest case occurs if only a single measure is used that
directly provides a scalar value, e.g. the geometric dieviat
of the current from the original mesh [12].

e |f the cost function considers more than one aspect, each of
them providing scalar values, these can be combined by a
weighted sum. E.g., [18] combines the geometric deviation
and a measure of the tilt of the surface normals, or [10] uses
a scalar energy function that incorporates a large number of
different aspects of the generated mesh.

e One adequate aspect is chosen to provide the scalar value,
while the others are used for a binary decision that define the
set of candidatesvhich are actually considered for elimina-
tion.

The first strategy considers only a small portion of the imfation
given in a mesh. The second strategy requires the user tesehoo
the weighting factors that may not be intuitive. Furtheesth fac-
tors need not to be invariant under geometric transformatfdghe
mesh. Scaling of objects to the unit cube does not help simee t
bounding box of an object in general varies under rotatioa.fiid
the third strategy most promising for several reasons.t,Rtree-
duces the set of candidates that have to be further conditigras-
ing binary decisions (this also reduces computation tirkejther,

it makes the need for counter-intuitive weighting factonmeces-
sary. We have applied this strategy in our implementatiothef
algorithm by Ronfard and Rossignac [18] and found the rizgult
program much more easy to handle.

Usually, authors of mesh reduction algorithms can prodest b
results when using their own implementations since theykex-
actly how the parameters affect the reduction process. Bot n
experts often have difficulties to find the optimal settingeelding
this in mind, we now want to describe the ingredients for ahmes



simplification algorithm with only very fevintuitive parameters by
following the third of the above strategies.

First, we use the half-edge collapse as topological operiadq
vertices are pulled into one of their neighbors, since inglates
degrees of freedom, i.e., where to put the new vertex, thatdvo
have to be optimized involving further user-adjustableapeaters.

Further efficiency gains result from the exploitation of gedric
coherence which avoids recalculation of intermediateltsBince
the priorities of all edges emanating from one vertex areutated
at the same time, intermediate information can be storedearsd
for neighboring edges.

With this knowledge we can efficiently implement functions

Next, we use the one-sided Hausdorff distance to measure thecal cVert exPri o() andupdat eVert exPri o() for calcu-

deviation of the current mesh from the original vertices, [13]
as a binary decision. Thus, the user only has to choose ativiatu
global error bound to identify the current set of candidgterations
for the reduction algorithm. If a specific reduction rate ésided,
the program can increase an initial (e.g. automaticallyehperror
bound until the desired reduction rate is reached.

Finally, a fairing oracle is used to measure the quality @ th
generated surface [13] and to steer the greedy reductionitilg,
i.e., to compute the priority of a potential half-edge cp#la in the
candidate set. We let the user choose between the use of @n ord
1 or order 2 fairing oracle, since this can be translated ihte
language”. Order 1 should be used for technical applicatimn
for meshes to be passed to further processing programs ginc
is related to local distortion of the mesh (first order deies).
Order 2 should be chosen for the visualization of meshesusec
it considers the local curvature of the modified mesh (secoddr
derivatives). Note that the fairing oracle measures thditguat
the modified surface. Hence, “better” configurations areseho
automatically because of the use of the priority queue witlioe
need for any further parameters. Since our implementatidheo
fairing oracles is closely related to performance issueg@stpone
the details to the next section.

As a result of the above recommendations, the user only has to
choose an intuitive global error bound and one of two fairimegh-
ods (which are related to different application areas).sTlam un-
experienced user willimmediately be able to use such anittigo
while still generating approximating meshes of high qyaliOf
course, other fairness criteria or error metrics based xioreand
color are possible according to special requirements dfiipap-
plications.

7 Thoughtful use of hardware resources

In the previous section, we have presented the ingredientarf
easy to use mesh reduction algorithm. In this section, wesfon
implementation issues beyond the separation into an enleziog)
data structure and the abstract reduction algorithm asisisd in
Section 5. We show how the memory resources can be efficiently
used by reducing edge-based algorithms to more compaexvert
based structures. Further, we show how high performancéean
achieved at the same time by efficiently implementing thevabo
ingredients.

Euler's formula indicates that a triangle mesh withvertices
has abouBn undirected and aboét: directed (half-)edges. Thus,
each iterative mesh simplification algorithm using a ptiogueue
for the potential vertex removals or edge collapses as ogjxdl
operations, has to consider that number of geometric esititA
straight forward implementation would have to store a maxmof
the same number of candidate topological operations inukeae)

Collecting all edges emanating from one vertex reduces the
edge-based oracles and operations to vertex-based onesdly |
pre-selection of the best candidate. If one edge collapgeris
formed, all edges starting from the removed vertex have teebe
moved from the priority queue anyway. Thus, it is not neagssa
to store all valid potential edge collapses in the prioritege, but
only the best one for each vertex. This enables the efficismiofi
the half-edge collapse as topological operator for thatitez mesh
reduction, since only a priority queue farpotential entries is re-
quired instead ofn.

lating and updating the priorities of a vertex, i.e., for atiges
emanating from the vertex, and for identifying the “bestged
cal cVertexPrio() first checks for each starting edge of a
vertex if the half-edge collapse satisfies the specifiedr e¢aler-
ance, and, if yes, calculates the priority of these oparatioFi-
nally, it returns that half-edge collapse with the highegony.
updat eVer t exPri o() may be used, if it is known that the ge-
ometric deviation of the modified geometry has not changecksi
the last priority calculation and thus only re-calculatairthe fair-
ing oracle (i.e., the priority) is necessary. Using thesefions, our
mesh simplification algorithm has the following structure:

ALGORI THM sinplify nesh

I NPUT:
M original triangle nmesh
d: max. geonetric deviation
o: order 1 or 2

OUTPUT:

R reduced triangle nesh

For all vertices v of M{
p = cal cVertexPrio( v,
add (p,v) to queue;

d, o);

}
Loop until queue enpty {
get next vertex v from queue;
if ( renpval of v possible ) {
per f ornCol | apse( v->e );
For all vertices v' that require
recal cul ation of the priority {
p = calcVertexPrio( v', d, 0);
update (p,Vv’) in queue;

For all vertices v’ that

update of the priority {
p = updateVertexPrio( v’',
update (p,Vv’) in queue;

require

d, o);
}
}
}

As mentioned previously, calculation of the priority of afha
edge collapse involves the use of a “fairing oracle”. We pro-
vide an oracle of order 1 and of order 2 and let the user choose
one of those two that will be used lmyal cVert exPri o() and
updat eVer t exPri o() to calculate the priority of a half-edge
collapse.

Our order 1 fairing oracle is related to the local distortimhn
the mesh and is implemented as follows. It uses the function
round(t) to determine the “roundness” of a trianglei.e., the
ratio of the longest edge to the radius of the inner circlestFive
calculate for all triangles neighboring the vertex the maximum
valuer, of their roundness. This can be done in a preprocessing-
step, i.e., at the beginning ofal cVert exPri o(v), since this
value is the same for all potential edge collapse operattarting
atv. Next, we calculate the maximum valug of the roundness
for the modified triangles. If, < r,, we assign this decrease to
the priority for performing that edge collapse. Otherwise, still



allow that collapse, if the value of, is below a prescribed maxi-
mum value, but assign those collapses a priority less ttaoflthe
“enhancing” ones. This gives an expert user the freedomijtsad
one further intuitive parameter, if he really desires, vae$ non-
expert users from the need to handle that parameter. Thedugip
this oracle is shown in Fig. 7 (dark gray region).

Our order 2 fairing oracle is is related to the local curvatof a
mesh and is efficiently implemented in the following way. \Mens
over the dihedral angles within the modified sub-mesh andetho
of the modified triangles and their neighbors that are nohged.
The larger this sum is, the more cost is assigned to a potedtz
collapse. For expert users, we provide the additional param
that disallows edge collapses that would create geometity avi
dihedral angle larger tham. As in the order 1 case, we allow worse
angles as long as they improve the situation locally. Forexpert
users, we default the parametetto = /2 to avoid degeneration of
the geometry. The support of this order 2 fairing oracle igitag
shown in Fig. 7 (dark and medium gray regions). It is obvigusl
larger than the support of the order 1 oracle, since a langler s
mesh is considered. This requires more priorities to be tepdéa
half-edge collapse is performed.

The performance-bottleneck for the order 2 fairing oraslthe
fact that a large number of priorities have to be updated atieh
collapse operation. As discussed in the caption of Fig. 7rewve
duced the number of vertices that need to be updated by the abo
implementation of our order 2 fairing oracle (by reducing gup-
port of a general order 2 oracle). Computations can be furthe
duced by the heuristic assumption that the edge with th¢ teas
starting from such a vertex remains the one with the leadt(cbs
Fig 7) and no local search to find the “best” edge is neces3aiy.
assumption is exact in most cases. Thus, only the prionfiseme
edges have to be updated. In the next section we verify tigt th
strategy both speeds up the performance and still provided ge-
sults.

8 Results

We verify the usability of our simplification algorithm by alying
it to meshes of different application areas in this sect@htimes
are benchmarked on a SGI, R10000, 195MHz.

First, we used an iso-surface extracted from volume dat& Th
original mesh consists of 81,132 triangles (cf. Fig. 8a)blddl
shows statistics for applying our reduction algorithm wigrious
error bounds and using either order 1, order 2, or fast orériag
oracles. Our fast update strategy for the order 2 oraclergtrse
results that are of the same visual quality, but it is clefalster.
Fig. 8b-c show reduced meshes for a global error bourd-ef 01
using order 1 or order 2 fairing oracles, respectively. Thaep
1 fairing oracle does not eliminate as many triangles as tero
2 method, since the triangles do not have the freedom to ateng
and thus adapt to the local geometry. Because there is nofoeed
updating as many vertices as for the order 2 method, the drder
method is clearly the fastest way to reduce a mesh.

We applied our algorithm to a large variety of further mod-
els and got equally satisfying results. E.g., Fig. 10 shduwes t
Stanford-Buddha that has been generated by merging differe
scans (1,087,716 triangles), and Table 2 provides thestitati

oracle | ¢ || #Acoarse | Alsec
.01 || 28,270 (34.8%)| 2634

order1l| .1 3,784 (4.66%)| 1992
1 416 (0.51%)| 1445

.01 || 23,068 (28.4%)| 1659

order2| .1 3,222 (3.97%)| 1099
1 344 (0.42%)| 784

order2 | .01 || 23,110 (28.5%)| 2181
fast 1 3,214 (3.96%)| 1602
update | 1 340 (0.42%)| 1190

Table 1: Reduction statistics for the iso-surface shownidgn Ba
consisting of 81,132 triangles (bounding box size: 46 x 46X 6
The user supplies the choice of the order and the global leotand.
Given is the number of triangles the algorithm generatespamd
formance timings for removed triangles per second. Theatasiu
process requires about 10MB memory.

oracle | e I #A coarse | Alsec.
order 2| 1072 || 286,646 (26.4%)| 2345
fast | 1072 || 30,404 (2.80%) 1542
update | 107! 3,774 (0.35%)| 1004

Table 2: Reduction statistics for the scanned StanforddBad
statue consisting of 1,087,716 triangles (bounding bos &8.13

x 19.8 x 8.14). The reduction process requires about 117MB-me
ory.

accumulation [21] would obviously speed up the algorithgnit
icantly and the reduction rate would be constant during thelev
decimation. But the calculated error would either be onlyesti
mation or an upper bound of the actual error. In the first case,
cannot be guaranteed that a specified global error is sdtigitéle

in the second case the mesh decimation algorithm typicaltyot
able to reduce as many triangles as when calculating thalator
for the same specified error tolerance.

The Buddha mesh example demonstrates that even very large
meshes can be processed within a PC’'s memory. Hence, the pro-
posed mesh reduction scheme opens the PC platform to appica
that have to visualize this kind of data sets without reqgiréx-
pensive graphics hardware. Yet the scheme provides sumattést
features like global error tolerances and fairness cantrol

Our current implementation uses a maximum of about 110 bytes
per input triangle to store geometric and topological infation
as well as redundant information to speed up the evaluafitimeo
global distance measure and the fairness oracle. If we testien-
dancy for computing time by not caching any intermediateltes
we can reduce the memory requirements down to 65 bytes per tri
angle (assuming 4 bytes pointers and integers), or evemefurt

Surface attributes like colors, normals, or texture cauatis can
also be considered by our decimation algorithm. This caifydaes
achieved by using appropriate error-metrics in the sameasaje
geometric deviation test. We simply add further binary siecis
for each type of attribute which reduces the current set dickate
operations. Fig. 9 shows a colored sphere with 407.040glesron
the top left. The other two meshes in the top row show the tesul

Note that our algorithm clearly meets the Schroeder bound of when decimating the meshes down to 19.102 (middle) and 5.760

10® reduced triangles per day [21] (about 1157 reduced triangle
per second) even for high reduction rates. For extreme tieduc
rates, the performance drops below, because of the expegesis
metric deviation test (Hausdorff). Notice that the aldaritcalcu-
lates the exact one-sided Hausdorff distance of the otigartices

to the reduced mesh in each iteration to attain a very highatezh
while exactly following the prescribed error tolerance tifating
the error by different error metrics like error quadrics @8lerror

(right) triangles. Both reduced meshes satisfy the sanmmagtygeo-
metric deviation but different errors have been allowedlffercolor.

The images in the lower row show decimated meshes of the same
geometric complexity, respectively, but without considgrdevia-

tion in color. The bottom left image shows a close-up of thpaup
middle mesh from a different viewpoint. Note that more tgks

are used especially at the coast and the mountains to nragatiair
attributes.



Figure 7: After performing an half-edge collapse, the wedi(white) on the border of the modified geometry (dark gifasy,support of
the order 1 fairing oracle) have to be recalculated. If usirgeneral order 2 fairing oracle, the priorities of furthertices (gray) have to
be updated as well, because of the larger support (dark,umedind light gray). Since our implementation of an orderi@rig oracle is
designed to have a smaller support (not including the lighy gegions), fewer priorities have to be updated (only tbiel lputlined gray
vertices), e.g., the priority of the fat gray vertex, sinoéya single dihedral angle changes (arc in the right figufe}.those “outer vertices”,

this fact can be exploited to speed up the update of prieritie

9 Conclusions

We have identified relevant requirements for the practisability

of mesh decimation algorithms: robustness, intuitive peters,

and scalable performance with respect to both CPU and memory
requirements.

We proposed to encapsulate the raw mesh data into a data struc
ture to simplify algorithms processing triangular meshgsab-
stracting from special cases. We identified major requiregmor
the practical usability of general purpose mesh decimagigo-
rithms. We discussed implementation aspects to efficieatthin
our recommendations. This includes how to reduce edgedlaise
gorithms to a vertex-based structure to minimize memorwyireg
ments, and fast higher-order surface fairing methods. Wbated
these ingredients to a new mesh simplification algorithm\ard
fied the achievement of the design goals. Moreover, our de@m
algorithm may consider any surface attribute like colorle/still
allowing easy usability.

Our implementation provides high CPU-performance, up to
more than two times the Schroeder boundl 6% removed trian-
gles per day, and may be run even on computer systems with lim-
ited memory, while not requiring a single parameter to beistdf.
Decimation time can be significantly reduced if using lesdrie-
tive error metrics, e.g. error quadrics or error accumaoiainstead
of the computationally expensive one-sided Hausdorfadist.

Recording the performed half-edge collapses during thatite
mesh decimation process allows to generate a hierarchiaal t
gle mesh in the progressive mesh format. We have implemeamnted
ActiveX-control for Microsoft Windows and a general helagpli-
cation using Motif and OpenGL that allow to progressivelgeige
such records.

Since progressive meshes also allow the display of a view-
dependent triangle mesh [11] we are planning to extend oshme
viewers by this feature to decrease the number triangles.
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Figure 9: A colored mesh with 407.040 triangles on the top BEcimation down to 19.102 (upper middle), 19.410 (lowéddte), 5.760
(upper right), and 5.770 (lower right) triangles. The dedfion algorithm considered vertex attributes for the uppeshes (satisfying the
same geometric deviation), while only geometric deviatias been considered for the lower meshes. The bottom lefieistzows a close-up

of the upper middle mesh from a different viewpoint.

Figure 10: The complex Stanford-Buddha statue, generataddsging multiple scans. From left to right: original meshhal, 087,716
triangles, simplified meshes using the order 2 oracle wish dpdate, 286,578, 30,392, and 3,774 triangles, respictiote how high-

frequency detail is removed first due to the fairing-oracle.



