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Abstract

Due to their simplicity, triangle meshes are used to represent geo-
metric objects in many applications. Since the number of triangles
often goes beyond the capabilities of computer graphics hardware
and the transmission time of such data is often inappropriately high,
a large variety of mesh simplification algorithms has been proposed
in the last years. In this paper we identify major requirements for
the practical usability of general purpose mesh reduction algorithms
to enable the integration of triangle meshes into digital documents.
The driving idea is to understand mesh reduction algorithmsas a
software extension to make more complex meshes accessible with
limited hardware resources (regarding both transmission and dis-
play). We show how these requirements can be efficiently satisfied
and discuss implementation aspects in detail. We present a mesh
decimation scheme that fulfills these design goals and whichhas
already been evaluated by several users from different application
areas. We apply this algorithm to typical mesh data sets to demon-
strate its performance.

1 Introduction

Just like multi-media data, the use of 3D objects enriches traditional
digital documents like text documents, web-pages, online books, or
encyclopedia on CD-ROM. The possibility to add 3D data enables
interaction and provides a maximum amount of information.

Digital 3D documents do not only extend existing applications,
but they also provide completely new possibilities. A very large
community may visit a virtual electronic museum over the inter-
net, regardless where on the world it is located. In tomorrow’s
museum catalogue, Michelangelo’s fresco-paintings couldcome to-
gether with a whole virtual chapel. A customer may compose, arbi-
trarily often change, and inspect furniture arrangements in a digital
warehouse catalogue and by pressing a button he would get a de-
tailed part list together with the total price. Or an electronic clinical
record could contain not only textual descriptions and pictures, but
also, e.g, an iso-surface reconstructed from a CT-scan (cf.Fig. 1).

Many applications process or generate 3D surface geometry.In
order to make such data persistent, either by storing it to a backup
device or by transmitting it via the internet to other computer sys-
tems, a certain representation format has to be chosen. Storing or
transmitting surface geometry data means to find a mapping from
the geometry (e.g. points) and topology (e.g. triangles) tothe linear
structure of random access memory, harddisks, or ethernet devices.

There exist several surface representation formats. Sincea 3D
object can be of arbitrary complexity, it is usually assembled by sev-
eral parts or so-called patches. CAD-software uses NURBS (Non-
Uniform Rational B-Splines) to describe fairly complex patches.
Using simpler types of patches naturally requires a larger number
of them to describe an object of similar complexity.
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Figure 1: Example of a digital document: a 3D iso-surface recon-
structed from a CT-scan (red) is included into the digital document
to provide additional information.

The simplest patch at all is a triangle. There are several reasons,
why triangle meshes have become a common way to represent sur-
faces: graphics hardware accelerates the display of triangle meshes
(in fact, today any other surface representation format is eventually
converted to triangles meshes for display). Furthermore, algorithms
for triangle meshes are more easy to implement and more robust
than for higher order patches. Thus, triangle meshes have emerged
as a de-facto standard for representing 3D geometry in computer
graphics.

Since the complexity of triangle meshes grows faster than the
capabilities of computer graphics hardware and transmission band-
widths, there is much ongoing effort in the area of mesh simplifi-
cation. Many algorithms have been proposed for the decimation of
triangle meshes. [19, 20, 17] give an overview over the largeva-
riety of techniques. Recently, an attempt was made to investigate
the generic nature of incremental mesh decimation algorithms [13].
Even more important, incremental mesh simplification algorithms
can be used to generate hierarchical triangle mesh representations
that are essential when using triangle meshes in digital documents
(cf. next section).

After considering the use of triangle meshes in digital libraries,
in the following sections we discuss in detail, how the practical
usability of a simplification algorithm can be achieved. We present
the necessary components that have to be considered and combine
these partial solutions to a mesh simplification algorithm.We verify
the achievement of the design goal by applying our implementation
to data sets from different application areas.
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Figure 2: The two bottlenecks and possible solutions when using complex triangle meshes in client/server systems for interactive display.

2 Client/Server Systems

Although interactive display of 3D surfaces is possible on stand-
alone graphics workstations, major gains in functionalityin the con-
text of digital libraries are acquired if 3D documents are made im-
mediately available to a large number of users in a world-wide dis-
tributed system like the internet. Thus, the data should be located
on server systems and accessed by client computers. This leads to
two major bottlenecks (cf. Fig. 2):

� Transmission bandwidthsare limited. The user has to wait
until his client computer received the whole data set and then
finally displays the object.

� Different client systems typically have a very broad range of
graphics performance. A standard PC may only display ob-
jects with a few hundred triangles interactively, while a graph-
ics workstation can process several thousand triangles at inter-
active frame rates. This effect is independent from the surface
representation formats.

These two bottlenecks clearly show the main drawback of tri-
angle meshes: a large number of triangles is required to describe
a complex 3D object. Mesh compression techniques [23, 8] only
help to reduce the transmission latency which is still depending on
the size of the whole triangle mesh. Fortunately, hierarchical reor-
ganization of the triangle mesh representation helps to avoid both
bottlenecks at the same time. Furthermore, the advantages of a hi-
erarchical representation are of practical use even for stand-alone
computer systems.

3 Mesh Hierarchies

The upper row of Figure 3 shows the traditional sequential trans-
mission and display of a 2d picture. In contrast, the lower row of
Figure 3 exploits the advantages of a hierarchical image format like
progressive GIF or JPEG: already after receiving only a few percent
of the total data, one can imagine how the final image would look
like.

Hierarchical representation of triangles meshes has the same mo-
tivation and advantages as it is well known for the mentionedhierar-
chical image formats. The upper row of Figure 4 shows the sequen-
tial, and the lower row the hierarchical transmission and display
of a 3D object. The benefits of the hierarchical representation are
clearly visible and obviously help to avoid the bottleneck of limited
transmission bandwidths.

The performance of computer systems is increasing steadily,
considering CPU speed, the size of main memory, the triangle
throughput of computer graphics hardware, and transmission band-
widths. Looking at contemporary systems, PCs or graphics work-

stations, we can observe that all of them are able to store trian-
gle meshes into their main memory which they are not able to dis-
play with acceptable frame rates. It makes sense to extrapolate this
observation into the future, i.e., the ratio of main memory size to
graphics performance will not change significantly.

Since computers can easily handle larger meshes than they can
actually display, mesh reduction algorithms or pre-computed mesh
hierarchies (from which a reduced mesh can be extracted) arere-
quired to bridge the gap. This can be considered as a pipelining
process:

graphics
hardware

mesh
reductionmemory

Hence,the maximum size of a triangle mesh that may be displayed
on a specific computer is obviously limited by the number of trian-
gles that may be processed by a mesh simplification algorithmon
the same system. Thus, hierarchical triangle meshes also help to
avoid the second bottleneck: interactive display.

Several hierarchical triangle mesh representation formats are al-
ready available. The Virtual Reality Modeling Language (VRML)
[4] has been defined for the transmission of 3D geometries over
the internet. An object may be represented hierarchically by using
a level-of-detail (LOD) node in the scene description. ThisLOD
node uses several distinct versions of the object at variousresolu-
tions. Thus, the total amount of memory requirement increases with
the number of levels.

Hierarchical triangle meshes based on wavelets methods [5,15]
require a certain structure of the mesh — the so-called subdivision
connectivity. Since only few models have this special connectivity
a priori, a conversion has to be performed in a preprocessingstep
which re-samples the original object [5, 14].

Another method for the hierarchical representation of a triangle
mesh is to first transmit a coarse approximation and then detail in-
formation is added successively to the current mesh. This defines a
very smooth sequence of finer and finer triangle meshes. The most
popular technique that works in this way is theprogressive mesh
(PM) representation [10]. The benefits of PMs are that they donot
require more memory than the mesh at its highest resolution [3]
and that they provide a smooth and lossless hierarchy of triangle
meshes.

We have implemented an ActiveX-control for Microsoft Win-
dows that allows to progressively receive such PM-records (cf. Fig-
ure 5 on the left) [2]. Another implementation is a viewer forMo-
tif and OpenGL that may be used as a helper application for web
browsers (cf. Figure 5 on the right) [2]. This PM-viewer alsoallows
the load-adaptive display of a progressive mesh, i.e., it automati-
cally adapts the complexity of the shown mesh to the capabilities of
the used graphics hardware and the current processor load.

To convert an arbitrary triangle mesh to a PM, an incremen-
tal mesh decimation algorithm is required that iterativelyperforms



Figure 3: Upper row: sequential transmission of an image. Lower row: progressive transmission using a hierarchical image file format. The
two images in each column have been generated using the same amount of transmitted data.

Figure 4: Upper row: sequential transmission of a 3D object.Lower row: progressive transmission using progressive meshes. The two
models in each column use the same number of triangles (from left to right: 1.759, 7.038, 28.155, 112.623 triangles).



Figure 5: Interactive display of progressively received triangle meshes. Left: ActiveX control for Microsoft Windows. Right: web-browser
helper application for Motif and OpenGL that also allows theload-adaptive display of the hierarchy.

edge collapse operations. The mesh simplification algorithm tries
to find a base mesh of a PM that represents the global shape of the
object and that is encoded in a traditional way (e.g. by shared ver-
tices). The remainder of a PM file encodes the detail information,
i.e., a large sequence of vertex splits that reverse the operations per-
formed during mesh decimation. Transmission of a PM file may
be interrupted when desired (resulting in an approximationof the
object).

4 Mesh Decimation

Up to now, research in the field of mesh simplification has focused
on the development of new decimation algorithms and it seemsto
have gained a status of maturity. For every sort of application a suit-
able simplification algorithm can be found. All of them are limited
by the tradeoff between speed and the quality of the resulting mesh.

We claim that besides specific technical properties the following
aspects are essential for practical use:

� Robustness of the algorithm:most real world data contain
topological inconsistencies, e.g. complex vertices. Thus, al-
gorithms assuming the input data to come as (bounded) 2-
manifolds would fail. This aspect can be handled by topology
modifying algorithms [6, 21, 16, 9].

� Intuitive parameters to control the reduction:most people us-
ing mesh reduction software are not experts in the field of
computer graphics algorithms. Thus, intuitive parametersto
control the simplification process are strongly required.

� Thoughtful use of computer hardware resources:mesh re-
duction techniques have to be fast, e.g. with respect to
Schroeder’s recent definition [21] of108 reduced triangles per
day. Yet, the reduction process has to fit into the memory of
current computer systems.

As mentioned above, any mesh decimation algorithm using edge
collapse operations may be used to convert an arbitrary triangle
mesh into the PM representation. According the above claimswe
now present the ingredients that fulfill these requirementsin the
next sections. Afterwards, we put these ingredients together to form
an efficient mesh simplification algorithm that may be used togen-
erate PMs.

5 Robustness

Besides wavelet-methods [7, 5] and re-tiling of surfaces [24] most
known mesh decimation algorithms iteratively reduce a given mesh.
A sequence of simple topological operations is applied to the cur-
rent mesh removing certain geometric entities in each step.Pos-
sible basic operations include vertex removal and re-triangulation
[22], general edge collapse [10], half edge collapse [13], and vertex
collapse [6, 21].

Most current iterative mesh decimation algorithms use a priority
queue to obtain optimal approximations to the original mesh. Their
generic structure is as follows:

For all geometric entities {
Measure cost for applying operator
Put result into priority queue

}
Loop until queue empty {
Perform operator with least cost
Update costs in queue

}

The computationally most expensive part is measuring and up-
dating the cost function for the potential execution of a topological
operation. It is intrinsic to each algorithm, how the cost function for
every possible operation is calculated. An algorithm may consider
the geometric deviation as the cost for performing an operation or



the change of the “fairness” of the modified surface. The fairness
is typically related to first or second order surface derivatives and
we call the cost function that performs the appropriate calculation
“fairing oracle” of order one or two.

Possible topological inconsistencies in the mesh, e.g., complex
vertices [22] or edges, complicate the computation of the cost func-
tion. Such inconsistencies may occur for different reasons. They
could be used to represent a feature or erroneous preprocessing
algorithms generate inconsistent meshes. We encountered many
cases where the data could have been represented by an ideal 2-
manifold. But for algorithmic reasons the generating programs,
e.g. data acquisition tools or surface meshers, produced complex
entities.

Mesh modifying algorithms, e.g. mesh decimation, can use dif-
ferent strategies to cope with possible topological inconsistencies:

� The mesh can be repaired in a preprocessing step [1]. Since
this is usually done by a separate algorithm, valuable informa-
tion may be lost. But this allows the simplification algorithm
to make certain simplifying assumptions.

� The handling of all possible problems may be incorporated
into the algorithm. Unfortunately, this complicates implemen-
tation and the algorithm itself becomes much more involved.

� Object-oriented techniques can be used to separate the data-
structures representing the mesh from the algorithms working
on it.

Since the last item combines the advantages of the others, weprefer
this strategy.

Fig. 6 shows how to separate the raw mesh from algorithms
working on that data by object-oriented software design. The raw
mesh data is encapsulated into a data-structure that may exploit
meta-knowledge about that data. This encapsulating objecthas to
provide the following interface:

� Access to geometric entities, e.g. lists of vertices, edges, or
triangles.

� Methods to inform the data structure about requirements of
the algorithm, e.g. 2-manifolds.

� Methods to ask the data structure, if a topological operation is
possible with respect to the given requirements.

� Methods to commit basic operations on the data.

The encapsulating data structure can treat topological problems
in several ways. It can try to repair them on-the-fly, e.g. by splitting
complex vertices [21], while repairing in a preprocessing step could
incorporate the methods presented in [1]. Finally, it can simply
disallow the modification of the affected sub-meshes.

The separation into a representation and operation layer does not
change the structure of an algorithm, but simply decouples indepen-
dent aspects of processing triangles meshes. Most iterative mesh
decimation algorithms can be formulated using such an encapsulat-
ing data structure, if the interface is carefully implemented. Thus,
it makes sense to encapsulate everything to treat complicated and
complex meshes into a separate class. The algorithms can then ab-
stract from these basic tasks and concentrate on their main issue.
This eases implementation aspects of the mesh modifying algo-
rithms very much. Further, it helps to make programs more robust,
since an algorithm may process a mesh even if that mesh contains
unexpected topological problems that would cause the algorithm to
fail.

Algorithm

Algorithm

Algorithm

raw data

encapsulating mesh

data structure

Representation layer Operation layer

Figure 6: Separating the triangle mesh from the algorithms working
on that data.

6 Intuitive parameters

To control the iterative mesh reduction and to terminate thesimplifi-
cation process, it is necessary that the user defines some parameters.
People familiar with computer graphics techniques are ableto use
such algorithms after a short time. But in practice, people have to
use these programs who may not understand the underlying algo-
rithm and the parameters for geometric or topologic values.Thus,
we want to draw the attention on this aspect of mesh decimation
algorithms in this section.

As described previously, most current mesh reduction algorithms
use a priority queue to decide which topological operation to per-
form next. This means that all currently possible operations have
to be considered and a cost has to be computed for performing this
operation. This cost is a scalar value that is used to sort theset
of candidates. Since most algorithms impose several conditions on
potential operations, the problem arises, how to combine these dif-
ferent measures into a single scalar value. Several strategies are
possible:

� The easiest case occurs if only a single measure is used that
directly provides a scalar value, e.g. the geometric deviation
of the current from the original mesh [12].

� If the cost function considers more than one aspect, each of
them providing scalar values, these can be combined by a
weighted sum. E.g., [18] combines the geometric deviation
and a measure of the tilt of the surface normals, or [10] uses
a scalar energy function that incorporates a large number of
different aspects of the generated mesh.

� One adequate aspect is chosen to provide the scalar value,
while the others are used for a binary decision that define the
set of candidateswhich are actually considered for elimina-
tion.

The first strategy considers only a small portion of the information
given in a mesh. The second strategy requires the user to choose
the weighting factors that may not be intuitive. Further, these fac-
tors need not to be invariant under geometric transformation of the
mesh. Scaling of objects to the unit cube does not help since the
bounding box of an object in general varies under rotation. We find
the third strategy most promising for several reasons. First, it re-
duces the set of candidates that have to be further considered by us-
ing binary decisions (this also reduces computation time).Further,
it makes the need for counter-intuitive weighting factors unneces-
sary. We have applied this strategy in our implementation ofthe
algorithm by Ronfard and Rossignac [18] and found the resulting
program much more easy to handle.

Usually, authors of mesh reduction algorithms can produce best
results when using their own implementations since they know ex-
actly how the parameters affect the reduction process. But non-
experts often have difficulties to find the optimal setting. Keeping
this in mind, we now want to describe the ingredients for a mesh



simplification algorithm with only very fewintuitiveparameters by
following the third of the above strategies.

First, we use the half-edge collapse as topological operator, i.e.,
vertices are pulled into one of their neighbors, since it eliminates
degrees of freedom, i.e., where to put the new vertex, that would
have to be optimized involving further user-adjustable parameters.

Next, we use the one-sided Hausdorff distance to measure the
deviation of the current mesh from the original vertices [12, 13]
as a binary decision. Thus, the user only has to choose an intuitive
global error bound to identify the current set of candidate operations
for the reduction algorithm. If a specific reduction rate is desired,
the program can increase an initial (e.g. automatically chosen) error
bound until the desired reduction rate is reached.

Finally, a fairing oracle is used to measure the quality of the
generated surface [13] and to steer the greedy reduction algorithm,
i.e., to compute the priority of a potential half-edge collapse in the
candidate set. We let the user choose between the use of an order
1 or order 2 fairing oracle, since this can be translated into“his
language”. Order 1 should be used for technical applications or
for meshes to be passed to further processing programs, since it
is related to local distortion of the mesh (first order derivatives).
Order 2 should be chosen for the visualization of meshes, because
it considers the local curvature of the modified mesh (secondorder
derivatives). Note that the fairing oracle measures the quality of
the modified surface. Hence, “better” configurations are chosen
automatically because of the use of the priority queue without the
need for any further parameters. Since our implementation of the
fairing oracles is closely related to performance issues, we postpone
the details to the next section.

As a result of the above recommendations, the user only has to
choose an intuitive global error bound and one of two fairingmeth-
ods (which are related to different application areas). Thus, an un-
experienced user will immediately be able to use such an algorithm
while still generating approximating meshes of high quality. Of
course, other fairness criteria or error metrics based on texture and
color are possible according to special requirements of specific ap-
plications.

7 Thoughtful use of hardware resources

In the previous section, we have presented the ingredients for an
easy to use mesh reduction algorithm. In this section, we focus on
implementation issues beyond the separation into an encapsulating
data structure and the abstract reduction algorithm as discussed in
Section 5. We show how the memory resources can be efficiently
used by reducing edge-based algorithms to more compact vertex-
based structures. Further, we show how high performance canbe
achieved at the same time by efficiently implementing the above
ingredients.

Euler’s formula indicates that a triangle mesh withn vertices
has about3n undirected and about6n directed (half-)edges. Thus,
each iterative mesh simplification algorithm using a priority queue
for the potential vertex removals or edge collapses as topological
operations, has to consider that number of geometric entities. A
straight forward implementation would have to store a maximum of
the same number of candidate topological operations in the queue.

Collecting all edges emanating from one vertex reduces the
edge-based oracles and operations to vertex-based ones by local
pre-selection of the best candidate. If one edge collapse isper-
formed, all edges starting from the removed vertex have to bere-
moved from the priority queue anyway. Thus, it is not necessary
to store all valid potential edge collapses in the priority queue, but
only the best one for each vertex. This enables the efficient use of
the half-edge collapse as topological operator for the iterative mesh
reduction, since only a priority queue forn potential entries is re-
quired instead of6n.

Further efficiency gains result from the exploitation of geometric
coherence which avoids recalculation of intermediate results. Since
the priorities of all edges emanating from one vertex are calculated
at the same time, intermediate information can be stored andreused
for neighboring edges.

With this knowledge we can efficiently implement functions
calcVertexPrio() andupdateVertexPrio() for calcu-
lating and updating the priorities of a vertex, i.e., for alledges
emanating from the vertex, and for identifying the “best” edge.
calcVertexPrio() first checks for each starting edge of a
vertex if the half-edge collapse satisfies the specified error toler-
ance, and, if yes, calculates the priority of these operations. Fi-
nally, it returns that half-edge collapse with the highest priority.
updateVertexPrio() may be used, if it is known that the ge-
ometric deviation of the modified geometry has not changed since
the last priority calculation and thus only re-calculationof the fair-
ing oracle (i.e., the priority) is necessary. Using these functions, our
mesh simplification algorithm has the following structure:

ALGORITHM: simplify mesh

INPUT:
M: original triangle mesh
d: max. geometric deviation
o: order 1 or 2

OUTPUT:
R: reduced triangle mesh

For all vertices v of M {
p = calcVertexPrio( v, d, o );
add (p,v) to queue;

}
Loop until queue empty {
get next vertex v from queue;
if ( removal of v possible ) {
performCollapse( v->e );
For all vertices v’ that require
recalculation of the priority {

p = calcVertexPrio( v’, d, o );
update (p,v’) in queue;

}
For all vertices v’ that require
update of the priority {

p = updateVertexPrio( v’, d, o );
update (p,v’) in queue;

}
}

}

As mentioned previously, calculation of the priority of a half-
edge collapse involves the use of a “fairing oracle”. We pro-
vide an oracle of order 1 and of order 2 and let the user choose
one of those two that will be used bycalcVertexPrio() and
updateVertexPrio() to calculate the priority of a half-edge
collapse.

Our order 1 fairing oracle is related to the local distortionof
the mesh and is implemented as follows. It uses the function
round(t) to determine the “roundness” of a trianglet, i.e., the
ratio of the longest edge to the radius of the inner circle. First, we
calculate for all trianglest neighboring the vertexv the maximum
valuer

o

of their roundness. This can be done in a preprocessing-
step, i.e., at the beginning ofcalcVertexPrio(v), since this
value is the same for all potential edge collapse operationsstarting
at v. Next, we calculate the maximum valuer

n

of the roundness
for the modified triangles. Ifr

n

< r

o

, we assign this decrease to
the priority for performing that edge collapse. Otherwise,we still



allow that collapse, if the value ofr
n

is below a prescribed maxi-
mum value, but assign those collapses a priority less than that of the
“enhancing” ones. This gives an expert user the freedom to adjust
one further intuitive parameter, if he really desires, but frees non-
expert users from the need to handle that parameter. The support of
this oracle is shown in Fig. 7 (dark gray region).

Our order 2 fairing oracle is is related to the local curvature of a
mesh and is efficiently implemented in the following way. We sum
over the dihedral angles within the modified sub-mesh and those
of the modified triangles and their neighbors that are not changed.
The larger this sum is, the more cost is assigned to a potential edge
collapse. For expert users, we provide the additional parameter�
that disallows edge collapses that would create geometry with a
dihedral angle larger than�. As in the order 1 case, we allow worse
angles as long as they improve the situation locally. For non-expert
users, we default the parameter� to �=2 to avoid degeneration of
the geometry. The support of this order 2 fairing oracle is again
shown in Fig. 7 (dark and medium gray regions). It is obviously
larger than the support of the order 1 oracle, since a larger sub-
mesh is considered. This requires more priorities to be updated if a
half-edge collapse is performed.

The performance-bottleneck for the order 2 fairing oracle is the
fact that a large number of priorities have to be updated after each
collapse operation. As discussed in the caption of Fig. 7, were-
duced the number of vertices that need to be updated by the above
implementation of our order 2 fairing oracle (by reducing the sup-
port of a general order 2 oracle). Computations can be further re-
duced by the heuristic assumption that the edge with the least cost
starting from such a vertex remains the one with the least cost (cf.
Fig 7) and no local search to find the “best” edge is necessary.This
assumption is exact in most cases. Thus, only the prioritiesof some
edges have to be updated. In the next section we verify that this
strategy both speeds up the performance and still provides good re-
sults.

8 Results

We verify the usability of our simplification algorithm by applying
it to meshes of different application areas in this section.All times
are benchmarked on a SGI, R10000, 195MHz.

First, we used an iso-surface extracted from volume data. The
original mesh consists of 81,132 triangles (cf. Fig. 8a). Table 1
shows statistics for applying our reduction algorithm withvarious
error bounds and using either order 1, order 2, or fast order 2fairing
oracles. Our fast update strategy for the order 2 oracle generates
results that are of the same visual quality, but it is clearlyfaster.
Fig. 8b-c show reduced meshes for a global error bound of" = :01

using order 1 or order 2 fairing oracles, respectively. The order
1 fairing oracle does not eliminate as many triangles as the order
2 method, since the triangles do not have the freedom to elongate
and thus adapt to the local geometry. Because there is no needfor
updating as many vertices as for the order 2 method, the order1
method is clearly the fastest way to reduce a mesh.

We applied our algorithm to a large variety of further mod-
els and got equally satisfying results. E.g., Fig. 10 shows the
Stanford-Buddha that has been generated by merging different
scans (1,087,716 triangles), and Table 2 provides the statistics.

Note that our algorithm clearly meets the Schroeder bound of
10

8 reduced triangles per day [21] (about 1157 reduced triangles
per second) even for high reduction rates. For extreme reduction
rates, the performance drops below, because of the expensive geo-
metric deviation test (Hausdorff). Notice that the algorithm calcu-
lates the exact one-sided Hausdorff distance of the original vertices
to the reduced mesh in each iteration to attain a very high reduction
while exactly following the prescribed error tolerance. Estimating
the error by different error metrics like error quadrics [6]or error

oracle " #� coarse �/sec
.01 28,270 (34.8%) 2634

order 1 .1 3,784 (4.66%) 1992
1 416 (0.51%) 1445

.01 23,068 (28.4%) 1659
order 2 .1 3,222 (3.97%) 1099

1 344 (0.42%) 784
order 2 .01 23,110 (28.5%) 2181

fast .1 3,214 (3.96%) 1602
update 1 340 (0.42%) 1190

Table 1: Reduction statistics for the iso-surface shown in Fig. 8a
consisting of 81,132 triangles (bounding box size: 46 x 46 x 65).
The user supplies the choice of the order and the global errorbound.
Given is the number of triangles the algorithm generates andper-
formance timings for removed triangles per second. The reduction
process requires about 10MB memory.

oracle " #� coarse �/sec.

order 2 10

�3 286,646 (26.4%) 2345
fast 10

�2 30,404 (2.80%) 1542
update 10

�1 3,774 (0.35%) 1004

Table 2: Reduction statistics for the scanned Stanford-Buddha
statue consisting of 1,087,716 triangles (bounding box size is 8.13
x 19.8 x 8.14). The reduction process requires about 117MB mem-
ory.

accumulation [21] would obviously speed up the algorithm signif-
icantly and the reduction rate would be constant during the whole
decimation. But the calculated error would either be only anesti-
mation or an upper bound of the actual error. In the first case,it
cannot be guaranteed that a specified global error is satisfied, while
in the second case the mesh decimation algorithm typically is not
able to reduce as many triangles as when calculating the actual error
for the same specified error tolerance.

The Buddha mesh example demonstrates that even very large
meshes can be processed within a PC’s memory. Hence, the pro-
posed mesh reduction scheme opens the PC platform to applications
that have to visualize this kind of data sets without requiring ex-
pensive graphics hardware. Yet the scheme provides sophisticated
features like global error tolerances and fairness control.

Our current implementation uses a maximum of about 110 bytes
per input triangle to store geometric and topological information
as well as redundant information to speed up the evaluation of the
global distance measure and the fairness oracle. If we traderedun-
dancy for computing time by not caching any intermediate results,
we can reduce the memory requirements down to 65 bytes per tri-
angle (assuming 4 bytes pointers and integers), or even further.

Surface attributes like colors, normals, or texture coordinates can
also be considered by our decimation algorithm. This can easily be
achieved by using appropriate error-metrics in the same wayas the
geometric deviation test. We simply add further binary decisions
for each type of attribute which reduces the current set of candidate
operations. Fig. 9 shows a colored sphere with 407.040 triangles on
the top left. The other two meshes in the top row show the results
when decimating the meshes down to 19.102 (middle) and 5.760
(right) triangles. Both reduced meshes satisfy the same global geo-
metric deviation but different errors have been allowed forthe color.
The images in the lower row show decimated meshes of the same
geometric complexity, respectively, but without considering devia-
tion in color. The bottom left image shows a close-up of the upper
middle mesh from a different viewpoint. Note that more triangles
are used especially at the coast and the mountains to maintain color
attributes.



half−edge collapse

Figure 7: After performing an half-edge collapse, the vertices (white) on the border of the modified geometry (dark gray,the support of
the order 1 fairing oracle) have to be recalculated. If usinga general order 2 fairing oracle, the priorities of further vertices (gray) have to
be updated as well, because of the larger support (dark, medium, and light gray). Since our implementation of an order 2 fairing oracle is
designed to have a smaller support (not including the light gray regions), fewer priorities have to be updated (only the bold outlined gray
vertices), e.g., the priority of the fat gray vertex, since only a single dihedral angle changes (arc in the right figure).For those “outer vertices”,
this fact can be exploited to speed up the update of priorities.

9 Conclusions

We have identified relevant requirements for the practical usability
of mesh decimation algorithms: robustness, intuitive parameters,
and scalable performance with respect to both CPU and memory
requirements.

We proposed to encapsulate the raw mesh data into a data struc-
ture to simplify algorithms processing triangular meshes by ab-
stracting from special cases. We identified major requirements for
the practical usability of general purpose mesh decimationalgo-
rithms. We discussed implementation aspects to efficientlyattain
our recommendations. This includes how to reduce edge-based al-
gorithms to a vertex-based structure to minimize memory require-
ments, and fast higher-order surface fairing methods. We combined
these ingredients to a new mesh simplification algorithm andveri-
fied the achievement of the design goals. Moreover, our decimation
algorithm may consider any surface attribute like color while still
allowing easy usability.

Our implementation provides high CPU-performance, up to
more than two times the Schroeder bound of10

8 removed trian-
gles per day, and may be run even on computer systems with lim-
ited memory, while not requiring a single parameter to be adjusted.
Decimation time can be significantly reduced if using less restric-
tive error metrics, e.g. error quadrics or error accumulation instead
of the computationally expensive one-sided Hausdorff distance.

Recording the performed half-edge collapses during the iterative
mesh decimation process allows to generate a hierarchical trian-
gle mesh in the progressive mesh format. We have implementedan
ActiveX-control for Microsoft Windows and a general helperappli-
cation using Motif and OpenGL that allow to progressively receive
such records.

Since progressive meshes also allow the display of a view-
dependent triangle mesh [11] we are planning to extend our mesh
viewers by this feature to decrease the number triangles.
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Figure 9: A colored mesh with 407.040 triangles on the top left. Decimation down to 19.102 (upper middle), 19.410 (lower middle), 5.760
(upper right), and 5.770 (lower right) triangles. The decimation algorithm considered vertex attributes for the uppermeshes (satisfying the
same geometric deviation), while only geometric deviationhas been considered for the lower meshes. The bottom left image shows a close-up
of the upper middle mesh from a different viewpoint.

Figure 10: The complex Stanford-Buddha statue, generated by merging multiple scans. From left to right: original mesh with 1,087,716
triangles, simplified meshes using the order 2 oracle with fast update, 286,578, 30,392, and 3,774 triangles, respectively. Note how high-
frequency detail is removed first due to the fairing-oracle.


