
Teaching meshes, subdivision and multiresolution techniques

Stephan Bischoff, Leif Kobbelt

Computer Graphics Group, RWTH Aachen

Abstract

In recent years, geometry processing algorithms that directly
operate on polygonal meshes have become an indispensable
tool in computer graphics, CAD/CAM applications, numer-
ical simulations, and medical imaging. Because the demand
for people that are specialized in these techniques increases
steadily the topic is finding its way into the standard curric-
ula of related lectures on computer graphics and geometric
modeling and is often the subject of seminars and presen-
tations. In this article we suggest a toolbox to educators
who are planning to set up a lecture or talk about geometry
processing for a specific audience. For this we propose a set
of teaching blocks, each of which covers a specific subtopic.
These teaching blocks can be assembled so as to fit differ-
ent occasions like lectures, courses, seminars and talks and
different audiences like students and industrial practition-
ers. We also provide examples that can be used to deepen
the subject matter and give references to the most relevant
work.

1 Introduction

In the last decade the processing of polygonal meshes has
emerged as an active and very productive research area. This
can basically be attributed to two developments:

• Modern geometry acquisition devices, like laser scan-
ners and MRT, easily produce raw polygonal meshes of
ever growing complexity

• Downstream applications like analysis tools (medical
imaging), computer aided manufacturing, or numerical
simulations all require high quality polygonal meshes
as input.

The need to bridge the gap between raw triangle soup data
and high-quality polygon meshes has driven the research on
efficient data structures and algorithms that directly oper-
ate on polygonal meshes rather than on a (most often not
feasible) intermediate CAD representation.

We roughly structure the main area of geometry process-
ing into three major sub-topics: meshes, subdivision and
multiresolution techniques. The topic meshes covers the ba-
sic data structures and algorithms that are used for repre-
senting and modifying polygonal geometry. Here we find al-
gorithms that are used to create, analyze, smooth, decimate
or parameterize polygonal meshes. Subdivision methods pro-
vide a link between (discrete) polygonal meshes and con-
ventional (continuous) spline surface representations. Their
main application is geometric modeling and adaptive mesh-
ing for finite element computations. Multiresolution tech-
niques decompose the model into a hierarchy of meshes that
represent different levels of detail. Technically this hierar-
chy can be exploited in order to significantly speed up many
algorithms. More important, however, is the semantic ef-
fect in that such hierarchies can be used for intuitive mod-

eling metaphors or highly efficient geometry compression al-
gorithms.

Due to the increasing demand for people that are special-
ized in geometry processing, the topic is finding its way into
related lectures and is also the subject of many seminars and
talks. There is, however, no canonical curriculum to draw
from. In this article we propose to alleviate this problem by
structuring the subject into a set of teaching blocks each of
which covers a certain subtopic. Each teaching block con-
sists of . . .

• . . . a number of keywords that compactly describe the
essence of the block. After teaching a teaching block
the students should be able to reconstruct the contents
by means of the keywords.

• . . . a list of references to recent publications.

• . . . the actual contents of the block in form of a short
description. This description is not meant to be tutorial
in nature but as a rough guideline for lecturers.

The idea is that these teaching blocks can be put together
in various ways such as to accommodate different audiences
and occasions:

• A one-semester general course on geometry processing
would comprise all of the presented blocks and combine
it with more classical material on spline theory and
NURBS.

• As part of an advanced course on computer graphics,
geometry processing can be covered by the more prac-
tical blocks on meshes and subdivision.

• An advanced and more specialized course on geometric
modeling would focus on the subdivision and multires-
olution blocks, possibly including the more theoretical
material on the convergence analysis.

• A seminar for industrial practitioners would primarily
focus on the practical blocks and the examples.

Figure 1 gives an overview of all the blocks and their rela-
tionships.

2 Preliminaries

In this paper we will only deal with the core topics in ge-
ometry processing. However, for many of these topics some
previous knowledge in mathematics and/or geometric mod-
eling is indispensable for the students.

Concepts that should be known from calculus include con-
tinuity/differentiability of functions, sequences of functions,
convergence criteria, Taylor expansion and approximation
power. From linear algebra the basic concepts of vector
spaces, linear maps and spectral theory should be available
as well as knowledge of notions from affine geometry.

Subdivision schemes Subdivision matrixRefinement

Boxsplines Convergence

Adaptive subdivisionPractical schemes

Multiresolution analysis

LiftingSurface hierarchies

Discrete differential
geometry

Taylor expansion

Affine geometry

Calculus

Linear Algebra Mathematical
background

Meshes

Parameterization

Data structures

Smoothing

Decimation

Conversion
Compression

Voronoi techniques

Remeshing

Figure 1: Teaching block overview. For the sake of com-
pleteness we have also included a “mathematics” block that
is, however, not further explained in this paper.

We have also experienced that students benefit from set-
ting the topic into the broader view of computer graph-
ics/geometric modeling. In particular the students should
be familiar with the different approaches to represent sur-
face geometry either explicitly, parametrically or implicitly
and to use points, patches or volume elements as the basic
structural primitive.

3 Meshes

In the following we will describe the basic data structures
and algorithms that are used to process polygonal meshes.
Most of these data structures and algorithms can be under-
stood without previous knowledge. Their implementation is
often straightforward which makes them suited as practical
exercises.

3.1 Data structures

. winged-edge, halfedge

. [9, 10, 49, 66, 97]

The many data structures that are available for represent-
ing polygonal meshes are designed such as to facilitate the
access to local neighborhood information, e.g. enumerating
the 1-ring of a vertex. Furthermore, as constant-size data
structures can be stored more compactly one often restricts
oneself to triangle meshes or uses edges as the topological
primitive.

Example: Winged- and Halfedge The prevalent data
structures for representing orientable two-manifold polygo-
nal meshes are the winged-edge and the halfedge data struc-
tures. In contrast to a simple shared vertex representation,
they allow one to easily access neighborhood information.

Shared vertex, winged edge and halfedge representation

The winged-edge data structure associates with each edge
eight references: two vertices, two faces and four incident
edges. Since edges cannot be oriented globally consistent, a
case distinction is necessary during traversal.

Splitting an edge into two neighboring halfedges results in
the halfedge data structure, where each halfedge stores four
pointers to a vertex, its next and opposite halfedge and to a
face.

Face based data structures Face-based data structures are
especially convenient for subdivision and multiresolution hi-
erarchies [99]. Here the basic structuring element is a face
that contains pointers to its adjacent vertices and faces and
for each adjacent face the index of the adjacent edge. In a
quadtree one additionally stores pointers to the child faces.

Other examples There are a number of less commonly used
data structures, including quad edge that simultaneously en-
codes a mesh and its dual and is able to represent non-
orientable manifolds, radial edge for handling non-manifold
meshes and directed edges which is very memory efficient but
restricted to triangular meshes.

3.2 Voronoi diagram and Delaunay triangulation

. Voronoi diagram, Delaunay triangulation

. [6, 19, 30, 33, 39, 84]

Given n points pi ∈
� d the Voronoi region corresponding

to pi is defined as

Vi = {p : dist(p,pi) ≤ dist(p,pj) for all j 6= i}
resulting in a partition of

� d into Voronoi regions.

Voronoi–Diagram and Delaunay–Triangulation

The dual of the Voronoi diagram is called the Delaunay tri-
angulation. For d = 2 we have that a triangulation is De-
launay iff for each edge the circle circumscribing one adja-
cent triangle does not contain the opposite vertex. Among
all possible triangulations, the Delaunay triangulation is the
one that maximizes the smallest angle.

Example: Fortune’s sweep-line algorithm In case d = 2
a nice visual interpretation of the Voronoi diagram can be
given as follows. Embed

� 2 as the z = 0 plane into
� 3

and locate on each point pi a cone of opening angle 45◦. If
one then views the configuration from z = −∞, the Voronoi
diagram is given by the visible parts of the cones. Fortune’s
algorithm exploits this observation by sweeping a slanted
plane over the points thereby successively constructing the
Voronoi diagram or the Delaunay triangulation.

Example: Delaunay triangulation from convex hulls Any
algorithm for computing the convex hull of an object can
also be used to compute Delaunay triangulations [74]. For
this one embeds the points pi in

� d+1 by projecting them
onto the parabola P : xd+1 = x2

1 + · · ·+x2
d. From the convex

hull of P we remove the faces whose normals point in the
d+1 direction. The Delaunay triangulation is then obtained
by projecting back the remaining polyhedron into

� d.

3.3 Conversion: implicit representations → meshes

. signed distance field, marching cubes

. [36, 48, 56, 65]

A surface S can be represented as the kernel of a signed
distance function d(x, y, z), i.e.

S = {[x, y, z] : d(x, y, z) = 0}

In typical applications (e.g. medical imaging) d is sampled
on a regular grid, dijk = d(i, j, k), and interpolated by a
piecewise tri-linear function.

Example: Marching Cubes The marching cubes algo-
rithm [65] extracts a polygonal representation from the grid
dijk by generating a vertex for each edge that intersects S
and connects these vertices to a (triangulated) polygon. If
additional (Hermite-) data is available at the grid points,
one can use the extended marching cubes algorithm [56] in
order to reconstruct sharp features.

Example: Surface Nets Dual methods like the surface nets
algorithm [36] compute a face for each edge that intersects
S. This method can also be extended to reconstruct sharp
features when Hermite data is available [48].

Marching cubes and Surface Nets

3.4 Conversion: point clouds → meshes

. organized/unorganized point clouds,power crust,volumetric
approach

. [7, 17, 46]

Given a set of points pi ∈
� 3 sampled from a surface S

we search for a triangle mesh that interpolates or approxi-
mates these points. The various algorithms that have been
proposed for this task can be classified according to whether
they accept unstructured point clouds as input, whether the
reconstruction is based on a signed distance function and
whether they are interpolatory or approximating.

Point cloud triangulation

Example Hoppe et al. [46] estimate a normal ni for each
point pi by fitting a (tangent) plane to the k-neighborhood
of pi. In order to consistently orient the normals, the nor-
mal orientation is propagated along an extended Euclidean
minimum spanning tree. The signed distance of an arbitrary
point p to the object is then estimated as the distance to
the tangent plane associated with the nearest pi. Finally a
triangle mesh is extracted via the marching cubes algorithm.

Example: Volumetric approach Curless et al.’s volumetric
method [17] takes as input a set of range images, i.e. point
clouds that are organized according to a regular grid, as they
are produced e.g. by laser range scanners. Each range image
is scan converted to a cumulative weighted signed distance
function. Time and space efficiency is achieved by resam-
pling the range image according to the voxel ordering and by
run-length encoding the volume. Finally an explicit polyg-
onal mesh is extracted via the marching cubes algorithm.
This algorithm is also able to automatically fill in gaps and
hence produces watertight models.

Example: Voronoi/Delaunay filtering algorithms If the
points pi are sufficiently dense samples of a surface S then
S can be reconstructed via filtering as a subset of the De-
launay triangulation of the pi [1, 5, 30]. As an advanced
example, Amenta et al.’s power crust algorithm [7] proceeds
as follows: First the Voronoi diagram of all sample points
pi is computed. If the pi are sufficiently dense, the Voronoi
cells will be needle-like polyhedra orthogonal to the surface
S. The two vertices of the Voronoi cell that are farthest
away from pi in positive and negative direction are called
the poles of the cell. Let ai be the set of all poles and ri the
radii of their corresponding Voronoi balls. Then the power
diagram of all poles is defined as the Voronoi diagram with
respect to the power-distance

dpow(x, ai) = ||x− ai||2 − r2i

Inside/outside information is propagated over the poles us-
ing the fact that two poles corresponding to the same sample
point are on different sides of the surface and that an inner
and an outer polar ball can only intersect shallowly. The
output of the algorithm is the power crust, i.e. those cells of
the power diagram that separate inside and outside poles.

3.5 Mesh decimation

. vertex clustering, incremental decimation, edge collapse,
quadric error metrics, progressive meshes, view-dependent
refinement

. [34, 37, 44, 57, 63, 81]

Mesh decimation algorithms simplify polygonal meshes by
reducing their number of vertices while preserving as much of
their shape and appearance as possible. One can distinguish
two classes.

Vertex clustering algorithms set up a voxel grid and com-
bine vertices that lie in the same voxel. These algorithms are
typically applied in an out-of-core fashion, but provide only

limited control on the resulting mesh complexity, topology
or quality.

Incremental decimation algorithms repeatedly remove the
geometrically least important vertex from the mesh. This is
done by either deleting a vertex together with its incident
faces followed by a retriangulation of the resulting hole (ver-
tex removal) or by collapsing two vertices along a common
edge (edge collapse).

Edge collapse and vertex removal

The decimation order is determined by an error metric like
the Hausdorff distance or quadric error metrics.

Example: Quadric error metric Quadric error metrics [34]
measure the squared distance of a vertex from all of its sup-
porting planes. For this a quadric Qi is associated with each
vertex i. Let nT

j x = 0 be the homogeneous Hessian normal
form of the planes supported by the faces adjacent to vertex
i, then Qi is initialized as

Qi =
�

j

njn
T
j

Whenever two vertices i and j are collapsed into a new vertex
k the quadric Qk associated with k is computed as

Qk = Qi +Qj

and k’s position xk is determined such as to minimize the
quadratic equation xTQkx, i.e. by solving a linear system.

Example: Progressive Meshes and view-dependent refine-
ment Halfedge collapses can be easily reversed (vertex
split) resulting in a so-called progressive mesh representa-
tion [44]. Arranging the vertex collapses/splits in a forest
allows to selectively refine a mesh based on view-frustum,
screen-space error etc. [45, 51]

3.6 Mesh smoothing

. Taubin’s smoothing, curvature flow

. [22, 53, 89]

Data that is acquired by physical measurement often ex-
hibits noise. The removal of this noise is called mesh smooth-
ing. In the following let x = [x1, . . . , xn] be the positions of
the n vertices of a triangle mesh M. We further need a
discretization of the Laplacian ∆ to triangle meshes

∆xi =
�

j neighbor of i

wij(xi − xj)

where wij are some weight coefficients reflecting edge-lengths
or angles. The discrete Laplacian can then be written in
matrix form as ∆x.

Example: Signal processing approach The matrix ∆ has
real eigenvalues 0 ≤ k1 ≤ · · · ≤ kn ≤ 2 and the correspond-
ing eigenvectors e1, . . . , en can be considered as the natural

vibration modes of the mesh. Let x = � x̂iei be the dis-
crete Fourier transform of x and let f(k) be an arbitrary
polynomial, then we have

f(∆)x =
�

x̂if(ki)ei

Hence f(k) can be considered as the transfer function of the
filter f(∆). Taubin proposes to set f(k) = (1− λk)(1− µk)
where µ < −λ < 0 in order to get a non-shrinking filter.

Example: Curvature flow approach Desbrun et al. con-
sider mesh smoothing as a diffusion process

∂x

∂t
= λ∆x

This system becomes stationary when ∂x

∂t
= 0 i.e. when

∆x = 0. Instead of an explicit forward Euler method to
solve this PDE one uses an implicit scheme

(I − λdt∆)xn+1 = x
n

to iteratively solve the equation for each time step where λdt
can be arbitrarily large.

Example: Energy minimization approach A standard mea-
sure for the global surface stretching and bending energy are
the membrane and thin-plate energies resp.:�

f
2
u + f

2
v and

�
f
2
uu + 2f2

uv + f
2
vv

Applying variational calculus we obtain the necessary con-
ditions

∆x = 0 and ∆2
x = 0

These equations can be solved iteratively by e.g. a Gauss-
Seidel solver. The solution is identical to the stationary con-
figuration in the curvature flow setting.

3.7 Discrete differential geometry

. tangent,(Gaussian,mean,principal) curvature, principal di-
rections

. [11, 16, 26, 43, 67]

Let S be a smooth surface in space, p a point on this
surface and n its normal vector, i.e. n is orthogonal to the
tangent plane at p. For every unit direction e = e(θ) in the
tangent plane given by an angle θ the normal curvature κ(θ)
is defined as the curvature of the intersection of S with the
plane containing n and e.

Continuous differential geometry and discrete analogue

The normal curvature takes on two extremal principal
curvatures κ1, κ2 at orthogonal principal directions e1, e2.
The mean and Gaussian curvatures are then defined as
κH = (κ1 + κ2)/2 and κG = κ1κ2 resp. Note that κH can
also be defined as κH = 1/2π � κ(θ)dθ.

It is not easy to carry over these notions to non-
differentiable triangle meshes. There are many ad-hoc so-
lutions, but these are often not consistent, i.e. they do not
converge to the pointwise properties of S when the triangle
mesh is considered as an approximation of S.

Example Meyer et al. propose the following consistent for-
mulas: Let xi be a vertex, θj the adjacent angles and xj

the adjacent vertices. Then the associated normal ni and
curvatures can be computed by

κH(xi)ni =
1

A
�

j

(cotαij + cot βij)(xi − xj)

κG(xi) = � 1− 2π
�

θj � /A
Here A is the area around the center vertex and αij , βij are
the two angles opposite the edge xixj .

Example The usual definition of geodesic as a locally short-
est path fails on the vertices of triangle meshes. Polthier et
al. [69, 70] propose to use the notion of straightest geodesics,
where the sum of angles on each side of the line is equal.

3.8 Parameterization

. parameterization, conformal maps

. [21, 32, 38, 61, 62, 75, 78, 79, 82, 83, 94]

Parameterization is the process of assigning two-
dimensional coordinates ui to the vertices xi of a triangle
mesh such that the resulting piecewise linear map becomes
injective and hence invertible. Parameterizations are used
e.g. for remeshing and texture mapping. Two problems have
to be solved:

Parameterization

First, a triangle mesh can only be parameterized when
it is topologically equivalent to a disk, i.e. when it has a
boundary and is of genus 0. This has led to the develop-
ment of various algorithms that subdivide a given mesh into
patches that are homeomorphic to a disk [35, 38, 83].

Second, only developable surfaces can be parameterized
without distortion. Therefore one tries to preserve alter-
native properties like (generalized) barycentric coordinates,
angles (conformal parameterization), or area (authalic pa-
rameterization) as good as possible or to minimize the geo-
metric stretch. Note that no mapping can be conformal and
authalic at the same time.

One can distinguish between non-linear methods that
solve the parameterization problem iteratively[78, 79, 82]
and linear methods. The latter amount to solve a linear sys-
tem Au = b, where the matrix A and b depend on the vertex
positions xi, and u = [ux,0 . . . ux,n uy,0 . . . uy,n]. Whether
this system leads to an admissible solution depends on the
boundary conditions: if A = [aij] is a matrix with � j aij = 0

and non-negative weights aij , i 6= j and if the boundary of
the parameterization is convex then the solution of the linear
system results in an injective mapping.

Example: Floater’s weights Floater constructs a shape-
preserving parameterization as follows [32]: The 1-ring xj of
each interior vertex xi is mapped onto the plane via an expo-
nential map. In a second step, the barycentric coordinates
of ui with respect to every triangle uj0 ,uj1 ,uj2 that con-
tains ui are determined, summed up and normalized. This
leads to a convex combination ui = � j λijuj for the interior
vertices. The boundary vertices are heuristically distributed
on some convex shape and kept fixed, i.e. they affect only
the right hand side b. The resulting linear system is then
described by the matrix A = I − [λij].

Floater’s construction

Example: Least Squares Conformal Maps Levy et al. [62]
determine a parameterization as follows: Let X :

� 2 → M
be a parameterization of a triangle mesh M and let U : M →� 2 be its inverse (local coordinates). Consider a triangle
T ∈ M and represent U|T with respect to a x, y-coordinate
frame that lies within T , i.e.

U|T : T → � 2

(x, y) 7→ (u(x, y), v(x, y))

U|T is conformal, if ∂U

∂x
⊥ ∂U

∂y
, and || ∂U

∂x
|| = || ∂U

∂y
||, i.e. if

c(U|T) = � ∂u
∂y

+
∂v

∂x
,
∂v

∂y
− ∂u

∂x � = (0, 0)

Note that U|T is linear and hence c(U|T) is actually a con-
stant. The deviation of U resp. X from a conformal map
can thus be measured as�

T∈M

�
T

||c(U|T)||2dxdy =
�

T∈M

||c(U|T)||2AT

where AT is the area of T . This is a quadratic equation that
can be minimized using the conjugate gradients algorithm.

LSCM can also handle free boundaries. Furthermore,
Levy et al. proposed a multigrid framework to compute
the LSCM for very large meshes [75].

Other examples: Desbrun et al [21] derived a map that is
equivalent to the least squares map by way of minimizing
the Dirichlet energy and called it discrete conformal map.
Sander et al. [78] minimize the geometric stretch of a pa-
rameterization and extend their method such that the ap-
proximation of signals that are defined on the surface is op-
timized [79].

3.9 Mesh compression

. cut-border, connectivity vs. geometry compression

. [3, 40, 47, 77, 92]

3.9.1 Connectivity coding

Let M be a mesh with n vertices. If M is given in shared
vertex representation, one needs log(n) bits per vertex for
storing the mesh connectivity, i.e. the indices referencing
the point list with n entries. The algorithms presented in
this section are based on traversal strategies that encode
the mesh connectivity as a command sequence for a recon-
struction automaton. These programs can then be efficiently
encoded using only a constant number of bits per vertex.

Most connectivity coding algorithms encode mesh ele-
ments and their incidence relation with respect to one or
more cut-borders that are propagated over the mesh. The
cut-borders are stored in a stack, the top element being the
active cut-border.

pivot

untouched
current face
cut border

processed

gate

Connectivity coding

One can distinguish growing operations that process the
current face and advance the cut-border (see examples be-
low) and the special operations split and merge. The split op-
eration Si is performed when the current cut-border touches
itself at the i-th vertex, a merge operation Ms,i is performed
when the current cut-border touches the s-th cut-border
from the stack at vertex i (once per handle).

Example: Valence-based coding Touma and Gotsman [92]
proposed a valence-based coding scheme for triangle meshes
that achieves less than 2 bit/vertex on the average. To avoid
the handling of special cases all holes are first closed by tri-
angle fans around a dummy vertex. The add operation Ai

introduces a vertex of valence i. If a vertex has no more free
edges, its neighborhood can be completed.

A5

Touma–Gotsman

Example: Edge-based methods Face Fixer [47] is an edge-
based scheme that encodes arbitrary polygonal meshes with
an average of 2–3 bits/vertex. The face/hole operations
Fl/Hl attach a face/hole with l edges to the gate. The glue
operations L and R identify the gate with the next/previous
edge on the cut-border. The decoding proceeds in reverse
order.

4 5F F L

Face Fixer

Other schemes The original cut-border machine [40] and
the edge-breaker algorithm [77] are examples of face-based
methods. Alliez et al. proposed a progressive encoding
scheme [3]. The forest split scheme [90] is also progressive
and is used in the MPEG 4 standard.

3.9.2 Geometry compression

The mesh geometry (i.e. the vertex positions) is first quan-
tized (usually to 10–12 bits) and then encoded losslessly us-
ing a predictive scheme, like the parallelogram rule. Huff-
man or arithmetic coders can then take advantage of the low
entropy of the prediction errors.

a

c

b

b+c−a

Prediction error of the parallelogram rule

Example: Normal meshes Guskov et al. [42] propose a ge-
ometry representation called normal meshes. These meshes
are semi-regular and hence need no connectivity information
(except for the base mesh that is encoded traditionally). Ver-
tex positions are predicted using a subdivision scheme and
displaced in normal direction, i.e. the tangential components
are zero and one only needs to store one scalar value per
vertex for the normal component. Applying wavelet com-
pression to normal meshes, Khodakovsky et al. [50] achieve
significant geometry compression rates.

3.10 Remeshing

. irregular, semi-regular, regular connectivity

. [4, 29, 38, 61, 93]

Remeshing is the process of approximating a given geom-
etry by a mesh with a special connectivity. The resulting
meshes are categorized as irregular, semi-regular or regular.

Original, irregular, semi-regular and regular (re-)mesh

Irregular remeshing Turk’s remesher [93] distributes points
on the original geometry and then relaxates them via re-
pulsion forces. When in equilibrum state, the points are
connected to form a triangle mesh. Surazhsky et al. [86] de-
scribe a remesher including a post-processing step, that re-
duces the number of irregular vertices by propagating edge
flips over the mesh. Furthermore, each mesh decimation al-
gorithm can be considered as a special remeshing operation
that produces irregular meshes.

Semi-regular remeshing A mesh is called semi-regular (or
of subdivision-connectivity), if its connectivity can be ob-
tained by uniformly subdividing some (coarse) base mesh.
This type of connectivity is the basis for many multi-
resolution algorithms. Eck et al. [29] describe a remeshing
algorithm that works on arbitrary input meshes. First the

mesh is partitioned into triangular patches by taking the
dual of a Voronoi-like partitioning. Each patch is then pa-
rameterized in the plane and resampled to produce a semi-
regular mesh. The MAPS [61] algorithm tracks vertices
through a mesh decimation hierarchy to produce a parame-
terization over a suitable base mesh. Regular resampling of
the base mesh again leads to a semi-regular mesh.

Regular remeshing Regular meshes can efficiently be stored
and transmitted as the vertex positions can be arranged in
matrix form and no connectivity information is needed. Ge-
ometry images [38] are produced by successively introducing
cuts into a mesh in order to open it into a topological disk
and to reduce the distortion of the subsequent parameteri-
zation.

Other examples Alliez et al. [4] create an atlas of the
mesh and conformally parameterize each patch over the unit
square. Then they use standard image processing opera-
tions on these images instead of on the mesh. Approaches
that do not need a parameterization of the mesh include the
shrink-wrapping algorithm [59] and the Anisotropic Polygo-
nal Remeshing method [2].

4 Subdivision

Subdivision schemes have become increasingly popular in
recent years because they provide a simple and efficient con-
struction of smooth curves and surfaces. In contrast to plain
piecewise polynomial representations like Bézier patches and
NURBS, subdivision schemes can easily represent smooth
surfaces of arbitrary topology.

Implementation and application of subdivision surfaces
is straightforward and intuitive, hence these topics can be
taught in a basic computer graphics course or to industrial
practitioners who might not be interested in the mathemat-
ical background. The analysis of subdivision schemes, how-
ever, is mathematically involved and therefore better suited
for in-depth courses on geometric modeling or for a seminar.

In the following sections, ck
i generally signifies the i-th

control point of a control polygon or of a control mesh on
subdivision level k. We will also freely move forth and back
from the curve to the surface setting, depending on which of
the two is better suited for presenting the concepts.

4.1 Subdivision schemes

. 2-scale relation, subdivision mask, scaling function

. [99, 31, 73, 96]

We start out with curves of the type � i c
k
i φi(x) where

φi(x) = φ(x − i) are integer shifts of some scaling function

φ(x), and the points ck
i make up the control polygon of the

curve. If the φi satisfy a 2-scale-relation

φi(x) =
�

αjφ2i+j(2x) (∗)

it follows that � cki φi(x) = � ck+1
j φj(2x) for a certain sub-

divided control polygon ck+1
j , where

ck+1
j =

�
αj−2ic

k
i (∗∗)

Examples and notations:

• The 2-scale relation (∗) can most easily be demon-
strated for linear B-splines.

2-scale relation

• Formula (∗∗) can be split for the even and odd control
points as

ck+1
2j =

�
α2ic

k
j−i and ck+1

2j+1 =
�

j

α2i−1c
k
j−i

• A more graphical way to give the coefficients αi is by
means of subdivision masks,

Subdivision masks

• Given subdivision coefficients αi, it is in general not
possible to find a closed form expression for the basis
function φ(x). However, if the basis function exists,
it can be approximated by applying the subdivision
scheme to the Dirac vector.

Limit function

Example: Lane-Riesenfeld scheme Lane and Riesen-
feld [60] give an algorithmic formulation for uniform B-spline
subdivision. A single subdivision step is performed by first
doubling all control points and then taking n times the av-
erage of each two consecutive control points.

Lane-Riesenfeld scheme

From this view subdivision can more generally be consid-
ered as a topological splitting step, followed by a smoothing
(averaging) step.

Example: 4-point scheme The subdivision mask of the 4-
point scheme [27] is given by

[αi] = [−1, 0, 9, 16, 9, 0,−1] /16

and can easily be constructed using cubic interpolation.

4-point scheme

The 4-point scheme makes a good example of an interpo-
latory scheme and is also suited to demonstrate the conver-
gence analysis (cubic precision by definition).

Example: Bivariate schemes The most widespread exam-
ples of subdivision schemes are the ones by Catmull-Clark,
Doo-Sabin, Loop, Kobbelt and the Butterfly scheme. They
can easily be used to demonstrate the different classes of
subdivision schemes

• approximating / interpolating

• quadrangle based / triangle based

• primal / dual

The table below gives a brief overview of the basic proper-
ties of these subdivision schemes (here Ck means Ck almost
everywhere)

Doo-Sabin [23] approx. C
1 quad. dual

Catmull-Clark [12] approx. C
2 quad. primal

Kobbelt [52] interpol. C
1 quad. primal

Butterfly (mod.) [28, 100] interpol. C
1 tri. primal

Loop [64] approx. C
2 tri. primal

√

3 [54] approx. C
2 tri. dual

Catmull–Clark subdivision scheme

Loop subdivision scheme

4.2 Uniform B-splines and box splines

. piecewise polynomials, uniform B-splines, box splines

. [20, 31, 72, 73]

The uniform B-splines Nn(x) of degree n over the knot
vector 	 are defined by iterative convolution

N0(x) =
 1, x ∈ [0, 1)
0, otherwise

Nn(x) =

� 1

0

Nn−1(x− t)dt

From this recurrence it can easily be seen that

Nn(x) ∈ Sn� = {piecewise polynomials over 	 }

Because Sn� ∈ Sn�
/2, the uniform B-splines satisfy a 2-scale

relation
Nn

i (x) =
�

αn
j N

n
2i+j(2x)

where the coefficients αn
j can be computed by αn

j = � n+1

j � /2n

These coefficients can be computed by repeatedly convolving
the Dirac vector with [1, 1] (averaging), i.e.

αn =
1

2n
([1] ∗ [1, 1] ∗ · · · ∗ [1, 1])

Box splines are the generalization of univariate, uniform B-
splines to higher dimensions and can also be defined using a
convolution formula. Given directions v0, . . . ,vm ∈ 	 2, the
box splines are defined as

B(x|v0 v1) =
 1, x ∈ [v0,v1] [0, 1)
2

0, otherwise

B(x|v0 . . .vm) =

� 1

0

B(x− tvm|v0 . . .vm−1)dt

Analogously to the univariate case, box splines satisfy a 2-
scale relation and the corresponding subdivision masks can
be produced by convolving the Dirac function with the mask
[1, 1] in the directions vi.

Example Let v0 = [0, 1], v1 = [1, 0] and v2 = [1, 1]. Con-
volving the Dirac impulse in these directions results in

�
1
 ⊗ �� 0

1 ��
−−−−−→ � 1

1 � ⊗ �� 1
0 ��

−−−−−→ � 1 1
1 1 � ⊗ �� 1

1 ��
−−−−−→ �� 0 1 1

1 2 1
1 1 0

��
From this mask the subdivision rules can be read off by
taking the even and odd row and column entries resp.

1 1

1

1
1

2
1

Boxspline subdivision masks

4.3 Convergence analysis (regular case)

. [13, 24, 25, 28, 91]

4.3.1 Calculus basics

. uniform convergence, Cauchy sequence

The control polygons ck
i can be interpreted as a sequence

of piecewise linear functions over the knot vectors 2−k 	 .
A sequence fk of functions converges uniformly to a limit
function f if

||fk − f ||∞ k→∞−−−−→ 0

where ||f ||∞ = max |f(x)| is the maximum norm. If fk

converges uniformly to f and if all fk are continuous then f
is also continuous. If furthermore the derivatives (fk)′ exist
and converge uniformly to a function g then f ′ = g.

In the setting of subdivision analysis the limit function f
is often not known, hence one needs other criteria to prove

the convergence of a sequence like e.g. the Cauchy criterion.
For example, if

||fk+1 − fk|| < βαk

for β > 0 and 0 < α < 1 then fk is a Cauchy sequence and
hence uniformly convergent.

4.3.2 Generating function formalism

. generating function, convolution ↔ multiplication

Generating functions are a convenient tool to describe and
analyze subdivision schemes. The idea is to replace the con-
trol polygons ck

i as well as the subdivision coefficients αi by
their generating functions

cki 7→ ck(z) =
�

cki z
i and αi 7→ α(z) =

�
αiz

i

Applying a subdivision step to the control polygon ck
i can

then easily be described by

ck+1(z) = α(z) ck(z2)

i.e. the convolution with the subdivision mask becomes a
simple polynomial multiplication.

4.3.3 Convergence criteria

. (divided) difference scheme, polynomial reproduction

The convergence of a subdivision scheme is closely related
to the existence and convergence of its (divided) difference
schemes. The m-th difference of a control polygon ck(z) is
given by

(1 − z)mck(z)

If α(z) reproduces polynomials of degree m, the (m + 1)st
difference scheme

αm+1(z) =
α(x)

(1 + z)m+1

exists and relates the (m+ 1)st differences of ck+1(z) to the
(m+ 1)st differences of ck(z) by

(1 − z)m+1ck+1(z) = αm+1(z)(1− z2)m+1ck(z2)

If furthermore the difference scheme

2mαm+1(z)

of the mth divided difference scheme 2mαm(z) is contrac-
tive, the control polygons ck(z) converge to a m-times con-
tinuously differentiable curve. Let βi be the coefficients of
2mαm+1(z), then the contraction property follows if

max � �
|β2i|,

�
|β2i+1| � = q < 1

Note that one often needs to combine multiple subdivision
steps in order to be able to prove the contraction property.

4.4 Subdivision matrix formalism

. subdivision matrix

. [8, 71, 76, 98]

Local properties of a subdivision scheme can easily be
computed using the subdivision matrix formalism. This for-
malism is especially useful

• for analyzing the convergence properties of surface
schemes at extraordinary vertices and

• for computing explicit masks for the limit points and
tangents

The basic idea is to track a finite neighborhood of a ver-
tex p through different subdivision levels. Let pk be a col-
umn vector that comprises p and a sufficiently large regular
neighborhood of p at subdivision level k. Then there exists
a subdivision matrix satisfying

p
k = Sp

k−1

The subdivision matrix maps the 1-ring pk to pk+1

Let 1 = λ0 > λ1 = λ2 > λ3 . . . be the eigenvalues of
S, let x0,x1, . . . be the corresponding (right) eigenvectors,
i.e. Sxi = λixi and let y0,y1, . . . be the associated left
eigenvectors (with xT

i yj = δij). Then we can expand p0 as

p
0 =

�
ωixi

where we have set ωi = yT
i p0. Subdividing the mesh k times

means applying Sk to p0, yielding

p
k = Sk

p
0 =

�
λk

i ωixi (∗ ∗ ∗)

Hence, as λ0 = 1 > λ1 the scheme is convergent and
limpk

0 = ω0. Further analysis of the scheme requires a repa-
rameterization by the characteristic map which is defined
as the limit surface associated with the planar control net
[x1,x2]. If this map is regular and injective the subdivision
scheme produces C1 continuous surfaces and the eigenvector
decomposition (∗ ∗ ∗) can be viewed as a generalized Taylor
expansion of the limit surface around the extraordinary ver-
tex. In particular, the limit tangents are given by ω1 and ω2

resp.

4.5 Topological refinement

. uniform refinement, primal/dual graph

Splitting operators can be constructed by combining uni-
form refinement and duality.

Refinement and duals

The lower row shows the uniform refinement of the lattices
in the middle row. The upper row shows their dual lattices.

4.6 Adaptive subdivision

. red/green triangulation,
√

3 subdivision

. [99, 54, 95]

The complexity of the control meshes increases exponen-
tially with the subdivision level k. Adaptive subdivision
schemes reduce the costs by subdividing only in critical ar-
eas, e.g. along the object silhouette or when the normals
of two adjacent faces differ to much. Regular tilings, how-
ever, cannot be adaptively subdivided without introducing
gaps. This leads to ad-hoc solutions like the red-green tri-
angulation. Dropping the regularity requirements leads to
subdivision schemes that are better suited for adaptive sub-
division.

Adaptive subdivision

5 Multiresolution techniques

When it comes to geometry processing, multiresolution tech-
niques offer two distinct advantages: technical and seman-
tical. First, algorithms that are able to exploit a mul-
tiresolution representation typically can achieve significant
speedups. Second, multiresolution representations naturally
separate the detail of a model from the base shape. These
two advantages allow one to implement intuitive modeling
metaphors for interactive editing of triangle meshes.

5.1 Wavelets and Multiresolution analysis

. scaling function, wavelets, filter bank, (bi-)orthogonality

. [15, 18, 85, 55]

Wavelets can be introduced using either a summation no-
tation or a matrix formalism. The summation notation is
better suited to demonstrate the convolution nature of the
reconstruction and decomposition operators and nicely fits
within the subdivision framework presented in the previous
section. The matrix formalism, however, avoids the cumber-
some index notation, eases the handling of boundaries and
leads to compact formulas that are much easier to read. In
this section we use both notations simultaneously for educa-
tional purposes.

The starting point for multiresolution analysis is a set of
nested spaces

V k ⊂ V k+1

and corresponding complement spaces W k satisfying

V k+1 = V k ⊕W k

We assume that V k and W k are spanned by scaled trans-
lates of a scaling function φ(x) and a mother wavelet ψ(x)
respectively, i.e.

V k = span{φk
i (x) = φ(2kx− i)}

W k = span{ψk
i (x) = ψ(2kx− i)}

For the matrix formalism we also introduce the row vectors

Φ
k = [φk

i], Ψ
k = [ψk

i]

The decomposition V k ⊕W k = V k+1 implies a 2-scale rela-
tion on the basis functions

φk
i =

�
αjφ

k+1
2i+j

ψk
i =

�
βjφ

k+1
2i+j

[Φk |Ψk] = Φ
k+1 � Ak ���� Bk �

for certain coefficients αj , βj and matrices Ak, Bk resp. On
the other hand each function ∈ V k+1 has a representation
with respect to Φk+1 as well as with respect to [Φk |Ψk],�

ck+1
i φk+1

i =�
cki φ

k
i +

�
dk

i ψ
k
i

Φ
k+1

c
k+1 = [Φk |Ψk] � ck

dk
�

where we define the column vectors ck and dk as

c
k = [cki], d

k = [dk
i]

Applying the 2-scale relation on the right hand side of the
equation we see that the control points on different scales
are related by

ck+1
j =

�
αj−2ic

k
i

+
�

βj−2id
k
i

c
k+1 = � Ak ���� Bk � � ck

dk
�

The above equation defines a reconstruction operator or
a synthesis filter. The most general way to describe an as-
sociated decomposition operator or analysis filter is via dual
bases φ̃(x) and ψ̃(x) such that

〈φk
i (x), φ̃k

j (x) 〉 = 〈ψk
i (x), ψ̃k

j (x) 〉 = δij and

〈φk
i (x), ψ̃k

j (x) 〉 = 〈ψk
i (x), φ̃k

j (x) 〉 = 0

In matrix notation the above condition can be written as

〈 [Φk |Ψk] , [Φ̃k | Ψ̃k] 〉 = I

If there also exists a 2-scale relation for the dual basis

φ̃k
i =

�
γj φ̃

k+1
2i+j

ψ̃k
i =

�
δj φ̃

k+1
2i+j

[Φ̃k | Ψ̃k] = Φ̃
k+1 � Ck ���� Dk �

the decomposition operator can easily be described as

cki =
�

γj−2ic
k+1
j

dk
i =

�
δj−2ic

k+1
j

� ck

dk
� = � CT

k

DT
k

� c
k+1

This general setting is called the biorthogonal wavelet set-
ting.

In the semi-orthogonal setting we further require that the
decomposition V k+1 = V k ⊕W k is orthogonal,

〈Φk,Ψk〉 = 0

which leads to better approximation properties of the recon-
struction operator. In the fully orthogonal wavelet setting,
we even require that

〈[Φk |Ψk] , [Φk |Ψk]〉 = I

In this case the primal and dual basis are the same and the
decomposition operator becomes trivial.

5.2 Lifting scheme

. lifting scheme, split-predict-update-merge

. [80, 87, 88]

Lifting allows us to construct filter banks entirely in the
spatial domain and can hence also be taught to audiences
that are not acquainted with Fourier methods. Instead of
explicitly specifying scaling functions and wavelets, the de-
composition process is made up of so-called splitting, predic-
tion, update, scaling and merging steps that are arranged in
a flow chart

��

⊕ // sk−1
i

sk
i

// S

GF
sk

2i //

@A
sk

2i+1

//

P

��

U

OO

	 //

OO

dk−1
i

In the simplest case the prediction operator P is a subdivi-
sion operator and the update operator U is chosen such as
to preserve higher order moments. The reconstruction oper-
ator is derived from the decomposition operator by simply
reversing all arrows and changing the signs. Using the lift-
ing scheme, the wavelet decomposition/reconstruction can
be performed in-place and in linear time.

Example: Haar Wavelets The Haar transform is a special
wavelet transform. Its scaling function and mother wavelet
are given by

φ(x) =
 1, x ∈ [0, 1)
0, otherwise

and

ψ(x) =
1

2
(φ(2x− 1)− φ(2x))

leading to the prediction and update steps

dk−1
i ← sk

2i+1 − sk
2i

sk−1
i ← sk

2i +
1

2
dk−1

i

Haar scaling function and wavelet

Example: B-spline Wavelets Using linear splines as scaling
functions leads to the prediction step

dk−1
i ← sk

2i+1 − � sk+1
2i + sk+1

2i+2 � /2
To preserve the average (0th moment)

2
�

sk
i =

�
sk+1

i

one assumes that the update step has the form

sk
i ← sk+1

2i + α � dk
i−1 + dk

i �
and solves for α = 1/4. Due to symmetry reasons the 1-st
order moment is then also preserved.

Linear B-spline scaling function and wavelet

5.3 Surface hierarchies

. semi-regular meshes, coarse-to-fine hierarchy, fine-to-
coarse hierarchy

. [41, 58, 101]

In order to carry over the concept of wavelet decomposi-
tion to arbitrary polygonal surfaces, one has to mimic the
behavior of the reconstruction and decomposition operators.
For this let ↑ and ↓ be a pair of compatible upsampling and
downsampling operators, i.e. ↓ (↑ (M)) has the same mesh
connectivity as M. We can then define a hierarchy

· · · → Mk → Mk+1 → · · ·
↗ ↗ ↗

· · · Dk Dk+1 · · ·

of meshesMk and associated detail Dk by defining a recon-
struction operator as

S : Mk,Dk 7→ Mk+1 =↑ (Mk) +Dk

and a decomposition operator as

A : Mk+1 7→
 Mk =↓ (Mk+1)
Dk = Mk+1− ↑ (Mk)

Note that Dk andMk+1 have the same connectivity.
By definition the reconstruction and decomposition are

inverse to each other. The different frequency bands are
captured by the detail coefficients Dk. In general multiple
detail coefficients are associated with each vertex (one for
each level). This redundancy can be avoided by choosing an

interpolatory upsampling operator ↑. Furthermore, in order
to achieve intuitive results, the detail coefficients should be
encoded with respect to local frames. In the semi-regular
setting (coarse-to-fine hierarchies) ↑ can be chosen to be a
subdivision operator and lifting can be used to improve the
filters. In the irregular setting (fine-to-coarse hierarchies)
the downsampling ↓ is performed by some mesh decimation
algorithm. Upsampling ↑ is then done by re-inserting the
vertices, followed by a smoothing step.

Multiresolution hierarchy

6 Exercise courses

As programming a polygonal mesh data structure can
be quite cumbersome it has proven to be more effective
to employ one of the publicly available libraries like e.g.
CGAL [14] or OpenMesh [68]. Exercises that we have as-
signed per student and per week are e.g. to implement

• Garland and Heckbert’s error quadric mesh decimation
scheme

• Taubin’s λ|µ smoothing

• mesh parameterization using Floater’s weights

• a tool to visualize mesh curvatures

• Marching cubes

• Delaunay triangulation (2D)

• Loop subdivision

References

[1] U. Adamy, J. Giesen, and M. John. New techniques for
topologically correct surface reconstrucion. In Proc.
11th IEEE Visualization Conference (VIS), pages 373–
380, 2000.

[2] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, and
M. Desbrun. Anisotropic polygonal remeshing. In
SIGGRAPH proceedings, pages 485–493, 2003.

[3] P. Alliez and M. Desbrun. Progressive compression
for lossless transmission of triangle meshes. In SIG-
GRAPH Proceedings, 2001.

[4] P. Alliez, M. Meyer, and M. Desbrun. Interactive ge-
ometry remeshing. In SIGGRAPH proceedings, pages
347–354, 2002.

[5] N. Amenta and M. Bern. Surface reconstruction by
voronoi filtering. Discrete and Computational Geome-
try, 22:481–504, 1999.

[6] N. Amenta, M. Bern, and M. Kamvysselis. A new
voronoi-based surface reconstruction algorithm. In
SIGGRPAH 1998 Proceedings, pages 415–422, 1998.

[7] N. Amenta, S. Choi, and R. Kolluri. The power crust.
In Sixth ACM Symposium on Solid Modeling and Ap-
plications, pages 249–260, 2001.

[8] A. A. Ball and D. j. T. Storry. Conditions for tangent
plane continuity over recursively generated b-spline
surface. ACM Transactions on Graphics, 7(2):83–102,
1988.

[9] B. G. Baumgart. A polyhedron representation for
computer vision. In National Computer Conference,
pages 589–596, 1975.

[10] S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed
edges — A scalable representation for triangle meshes.
Journal of Graphics Tools: JGT, 3(4):1–12, 1998.

[11] M. P. Do Carmo. Differential Geometry of Curves and
Surfaces. Prentice Hall College Div, 1976.

[12] E. Catmull and J. Clark. Recursively generated
B-spline surfaces on arbitrary topological meshes.
Computer-Aided Design, 10:350–355, September 1978.

[13] A. Cavaretta, W. Dahmen, and C. Micchelli. Station-
ary subdivision. In Memoirs of the AMS, volume 453,
1991.

[14] CGAL - computational geometry algorithms library.
http://www.cgal.org.

[15] C. K. Chui. An Introduction to Wavelets (Wavelet
Analysis and Its Applications, Volume 1). Academic
Press, 1992.

[16] D. Cohen-Steiner and J.-M. Morvan. Restricted delau-
nay triangulations and normal cycle. In ACM Sym-
posium on Computational Geometry, pages 237–246,
2003.

[17] B. Curless and M. Levoy. A volumetric method for
building complex models from range images. In SIG-
GRAPH 96 proceedings, pages 303–312, 1996.

[18] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

[19] M. de Berg, M. van Krefeld, M. Overmars, and
O. Schwarzkopf, editors. Computational Geometry.
Springer, 2000.

[20] C. de Boor, K. Hoellig, and S. Riemenschneider. Box
splines. Springer, 1993.

[21] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic param-
eterizations of surface meshes. In Eurographics 2002
Proceedings, 2002.

[22] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr.
Implicit fairing of irregular meshes using diffusion and
curvature flow. In SIGGRAPH 99 proceedings, pages
317–324, 1999.

[23] D. Doo and M. Sabin. Behaviour of recursive division
surfaces near extraordinary points. Computer-Aided
Design, 10:356–360, September 1978.

[24] N. Dyn. Subdivision schemes in computer aided ge-
ometric design. In Advances in Numerical Analysis
II, Wavelets, Subdivision and Radial Functions, pages
36–104, 1991.

[25] N. Dyn, J. A. Gregory, and D. Levin. Analysis of
uniform binary subdivision schemes for curve design.
Constructive Approximation, 7:127–147, 1991.

[26] N. Dyn, K. Hormann, S.-J. Kim, and D. Levin. Opti-
mizing 3d triangulations using discrete curvature anal-
ysis. In Innovations in Applied Mathematics. Vander-
bilt University Press, 2001.

[27] N. Dyn, D. Levin, and J. A. Gregory. A 4-point inter-
polatory subdivision scheme for curve design. Com-
puter Aided Geometric Design, 4:257–268, 1987.

[28] N. Dyn, D. Levin, and J. A. Gregory. A butterfly sub-
division scheme for surface interpolation with tension
control. ACM Transactions on Graphics, 9(2):160–
169, 1990.

[29] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution anal-
ysis of arbitrary meshes. In SIGGRAPH 95 Proceed-
ings, pages 173–182, 1995.

[30] H. Edelsbrunner and E. P. Mucke. Three-dimensional
alpha shapes. ACM Trans. Graphics, 13:43–72, 1994.

[31] G. Farin. Curves and Surfaces for CAGD. Morgan
Kaufmann, 2002.

[32] M. S. Floater. Parametrization and smooth approxi-
mation of surface triangulations. Comp. Aided Geom.
Design, 14:231–250, 1997.

[33] S. Fortune. A sweepline algorithm for voronoi dia-
grams. Algorithmica, 2:153–174, 1987.

[34] M. Garland and P. Heckbert. Surface simplification
using quadric error metrics. In SIGGRAPH 96 pro-
ceedings, pages 209–216, 1996.

[35] M. Garland, A. Willmott, and P. Heckbert. Hierarchi-
cal face clustering on polygonal surfaces. In Proceed-
ings of ACM Symposium on Interactive 3D Graphics,
pages 49–58, 2001.

[36] S. F. F. Gibson. Using distance maps for accurate
surface reconstruction in sampled volumes. In IEEE
Volume Visualization Symposium, pages 23–30, 1998.

[37] C. Gotsman, S. Gumhold, and L. Kobbelt. Simpli-
fication and compression of 3d-meshes. In A. Iske,
E. Quak, and M. Floater, editors, Tutorials on mul-
tiresolution in geometric modeling. Springer, 2002.

[38] X. Gu, S. Gortler, and H. Hoppe. Geometry images.
In SIGGRAPH Proceedings, pages 355–361, 2002.

[39] L. Guibas and J. Stolfi. Primitives for the manipu-
lation of general subdivisions and the computation of
voronoi diagrams. ACM Trans. Graphics, 4:74–123,
1985.

[40] S. Gumhold and W. Straßer. Real time compression
of triangle mesh connectivity. In SIGGRAPH proceed-
ings, pages 133–140, 1998.

[41] I. Guskov, W. Sweldens, and P. Schröder. Multireso-
lution signal processing for meshes. In SIGGRAPH 99
proceedings, pages 325–334, 1999.

[42] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder.
Normal meshes. In SIGGRAPH 00 Proceedings, pages
95–102, 2000.

[43] B. Hamann. Curvature approximation for triangulated
surfaces. In Geometric Modeling, Computing Supple-
ment 8, pages 139–153. Springer, 1993.

[44] H. Hoppe. Progressive meshes. In SIGGRAPH 96
proceedings, pages 99–108, 1996.

[45] H. Hoppe. View-dependent refinement of progressive
meshes. In SIGGRAPH 97 proceedings, pages 189–198,
1997.

[46] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. In SIGGRAPH 92 Proceedings, pages 71–78,
1992.

[47] M. Isenburg and M. Snoeyink. Face fixer: Compress-
ing polygon meshes with properties. In SIGGRAPH
proceedings, pages 263–270, 2002.

[48] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual
contouring of hermite data. In Siggraph 02 Proceed-
ings, pages 339–346, 2002.

[49] L. Kettner. Designing a data structure for polyhedral
surfaces. In Proc. of the 14th ACM Symp. on Compu-
tational Geometry, pages 146–154, 1998.

[50] A. Khodakovsky and I. Guskov. Compression of nor-
mal meshes. In Geometric Modeling for Scientific Vi-
sualization, pages 189–206, 2002.

[51] J. Kim and S. Lee. Truly selective refinement of pro-
gressive meshes. In Graphics Interface Proceedings,
pages 101–110, 2001.

[52] L. Kobbelt. Interpolatory subdivision on open quadri-
lateral nets with arbitrary topology. Computer Graph-
ics Forum, 15(3):409–420, 1996.

[53] L. Kobbelt. Discrete fairing and variational subdivi-
sion for freeform surface design. The Visual Computer
Journal, 2000.

[54] L. Kobbelt.
√

3 subdivision. In SIGGRAPH 00 Pro-
ceedings, pages 103–112, 2000.

[55] L. Kobbelt. Multiresolution techniques. In G. Farin,
J. Hoschek, and M.-S. Kim, editors, The Handbook of
Computer Aided Geometric Design. Elsevier, 2002.

[56] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Sei-
del. Feature sensitive surface extraction from volume
data. In SIGGRAPH 2001 proceedings, pages 57–66,
2001.

[57] L. Kobbelt, S. Campagna, and H.-P. Seidel. A general
framework for mesh decimation. In Graphics Interface
’98 Proceedings, 1998.

[58] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Sei-
del. Interactive multi-resolution modeling on arbitrary
meshes. In SIGGRAPH 98 proceedings, pages 105–114,
1998.

[59] L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel.
A shrink wrapping approach to remeshing polygonal
surfaces. In Eurographics 99 proceedings, pages 119–
130, 1999.

[60] J. M. Lane and R. F. Riesenfeld. A theoretical de-
velopment for the computer generation and display of
piecewise polynomial surfaces. IEEE Trans. Pattern
Analysis Machine Intell., 2(1):35–46, 1980.

[61] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar,
and D. Dobkin. Maps: Multiresolution adaptive pa-
rameterization of surfaces. In SIGGRAPH 98 Proceed-
ings, pages 95–104, 1998.

[62] B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least
squares conformal maps for automatic texture atlas
generation. In Siggraph 2002 Proceedings, pages 362–
371, 2002.

[63] P. Lindstrom. Out-of-core simplification of large
polygonal models. In SIGGRAPH 00 proceedings,
pages 259–262, 2000.

[64] C. T. Loop. Smooth subdivision surfaces based on
triangles. Master’s thesis, University of Utah, Depart-
ment of Mathematics, 1987.

[65] W. E. Lorensen and H. E. Cline. Marching cubes: a
high resolution 3d surface reconstruction algorithm. In
SIGGRAPH 87 proceedings, pages 163–169, 1987.

[66] M. Mantila. An Introduction to Solid Modeling. Com-
puter Science Press, Maryland, 1988.

[67] M. Meyer, M. Desbrun, P. Schröder, and Alan H. Barr.
Discrete differential-geometry operators for triangu-
lated 2-manifolds. In VisMath, 2002.

[68] OpenMesh. http://www.openmesh.org.

[69] K. Polthier and M. Schmies. Straightest geodesics on
polyhedral surfaces. In Mathematical Visualization,
page 391, 1998.

[70] K. Polthier and M. Schmies. Geodesic flow on poly-
hedral surfaces. In Proc. Joint EG - IEEE TCVG
Symposium, pages 179–188, 1999.

[71] H. Prautzsch. Smoothness of subdivision surfaces at
extraordinary points. Adv. Comp. Math., 9:377–390,
1998.

[72] H. Prautzsch and W. Boehm. Box splines. In G. Farin,
J. Hoschek, and M.-S. Kim, editors, The Handbook of
Computer Aided Geometric Design. Elsevier, 2002.

[73] H. Prautzsch, W. Boehm, and M. Paluszny. Bézier
and B-spline techniques. Springer, 2002.

[74] Qhull. http://www.thesa.com/software/qhull/.

[75] N. Ray and B. Levy. Hierarchical least squares con-
formal maps. In Eurographics 2003 Proceedings, 2003.

[76] U. Reif. A unified approach to subdivision algorithms
near extraordinary vertices. Computer Aided Geomet-
ric Design, 12(2):153–174, 1995.

[77] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(1):47–61, 1999.

[78] P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Tex-
ture mapping progressive meshes. In SIGGRAPH 2001
proceedings, pages 409–416, 2001.

[79] P. V. Sander, S. J. Gortler, J. Snyder, and H. Hoppe.
Signal-specialized parameterization. In Eurographics
Workshop on Rendering 2002 Proceedings, pages 87–
100, 2002.

[80] P. Schröder, W. Sweldens, M. Cohen, T. DeRose, and
D. Salesin. Wavelets in Computer Graphics. Siggraph
96 Course Notes, 1996.

[81] W. Schroeder, J. Zarge, and W. Lorensen. Decimation
of triangle meshes. In SIGGRAPH proceedings, pages
65–70, 1992.

[82] A. Sheffer and E. de Sturler. Surface parameteriza-
tion for meshing by triangulation flattening. In Proc.
9th International Meshing Roundtable, pages 161–172,
2000.

[83] A. Sheffer and J. Hart. Seamster: Inconspicuous low–
distortion texture seam layout. In IEEE Visualization
Proceedings, pages 291–298, 2002.

[84] J. R. Shewchuk. Delaunay refinement algorithms for
triangular mesh generation. Computational Geometry:
Theory and Applications, 22(1-3):21–74, 2002.

[85] G. Strang and T. Nguyen. Wavelets and Filter Banks.
Wellesley Cambridge, 1996.

[86] V. Surazhsky and C. Gotsman. Explicit surface
remeshing. In Symposium on Geometry Processing
proceedings, pages 20–30, 2003.

[87] W. Sweldens. The lifting scheme: A new philosophy in
biorthogonal wavelet constructions. In A. F. Laine and
M. Unser, editors, Wavelet Applications in Signal and
Image Processing III, pages 68–79. Proc. SPIE 2569,
1995.

[88] W. Sweldens. The lifting scheme: A construction of
second generation wavelets. SIAM J. Math. Anal.,
29(2):511–546, 1997.

[89] G. Taubin. A signal processing approach to fair surface
design. In SIGGRAPH 95 proceedings, pages 351–358,
1995.

[90] G. Taubin, A. Gueziec, W. Horn, and F. Lazarus. Pro-
gressive forest split compression. In SIGGRAPH pro-
ceedings, pages 123–132, 1998.

[91] A. Taylor. Advanced calculus. Ginn and Company,
1955.

[92] C. Touma and C. Gotsman. Triangle mesh compres-
sion. In Graphics Interface, 1998.

[93] G. Turk. Re-tiling polygonal surfaces. In SIGGRAPH
proceedings, pages 55–64, 1992.

[94] W. T. Tutte. How to draw a graph. Proc. London
Math. Soc., 13:743–768, 1963.

[95] L. Velho and D. Zorin. 4-8 subdivision. Computer
Aided Geometric Design, Special Issue on Subdivision
Techniques, 18(5):397–427, 2001.

[96] J. D. Warren and H. Weimer. Subdivision Methods for
Geometric Design. Morgan Kaufman, 2001.

[97] K. Weiler. The radial edge structure: A topological
representation for non-manifold geometric boundary
modeling. In Geometric Modeling for CAD Applica-
tions, 1998.

[98] D. Zorin. Ck Continuity of Subdivision Surfaces. PhD
thesis, California Institute of Technology, Department
of Computer Sciences, 1996.

[99] D. Zorin et al. Subdivision for modeling and anima-
tion. In SIGGRAPH 00 Course Notes, 2000.

[100] D. Zorin, P. Schröder, and W. Sweldens. Interpolat-
ing subdivision for meshes with arbitrary topology. In
SIGGRAPH 96 Proceedings, pages 189–192, 1996.

[101] D. Zorin, P. Schröder, and W. Sweldens. Interactive
multiresolution mesh editing. In SIGGRAPH 97 Pro-
ceedings, pages 259–268, 1997.

