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Abstract

In this paper we present a new algorithm which turns an unstruc-
tured triangle mesh into a quad-dominant mesh with edges aligned
to the principal directions of the underlying geometry. Instead of
computing a globally smooth parameterization or integrating cur-
vature lines along a tangent vector field, we simply apply an itera-
tive relaxation scheme which incrementally aligns the mesh edges
to the principal directions. The quad-dominant mesh is eventually
obtained by dropping the not-aligned diagonals from the triangle
mesh. A post-processing stage is introduced to further improve the
results. The major advantage of our algorithm is its conceptual sim-
plicity since it is merely based on elementary mesh operations such
as edge collapse, flip, and split. The resulting meshes exhibit a
very good alignment to surface features and rather uniform distri-
bution of mesh vertices. This makes them very well-suited, e.g., as
Catmull-Clark Subdivision control meshes.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Geometric algorithms, languages, and systems.

Keywords: quad dominant remeshing, feature alignment, local
updates

1 Introduction

After the technology for 3D geometry acquisition has become both
powerful and simple to use in recent years, the generation of faith-
ful digital 3D models of complex objects is now being used in more
and more application fields ranging from Computer Graphics and
Computer Aided Design to Rapid Prototyping and Computer Aided
Manufacturing. However, while earlier algorithms for 3D recon-
struction have focussed on the generation of highly detailed but un-
structured triangle meshes, a recent shift can be observed towards
the generation of structured meshes where the vertex sample pattern
takes the underlying surface geometry into account.

Since the local geometry of a surface can be characterized by two
principal curvatures and the corresponding two principal directions,
quad dominant meshes are usually preferred over triangle meshes
because they can represent this structure in a more natural way.
Moreover there are many classical results from differential geom-
etry [do Carmo 1976] which imply that well-aligned quad meshes
provide a better surface approximation [Cohen-Steiner et al. 2004]
and minimize normal noise [Botsch and Kobbelt 2001].

Among the many different algorithms for quad mesh generation,
we can identify several classes of algorithms which are designed
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such that certain mesh properties are guaranteed. For example we
can distinguish quad-dominant vs. pure quad meshing schemes and
conforming schemes vs. schemes that produce T-vertices. Besides
this, the fundamental quality criteria are mostly identical:

• The mesh structure should be as regular as possible.
(no “unstructured quad meshes”).

• Individual faces should be as rectangular as possible.

• Faces should be aligned to the principal directions in
general and to sharp features in particular.

• The size of the faces should adapt to the local
curvature.

Especially the last requirement is, however, in conflict to the other
ones since adaptive mesh resolution is difficult to achieve in con-
forming quad meshes. This is due to the fact that regularity and
rectangularity imply non-local consistency conditions (see Fig. 1).

Figure 1: Global regularity and conformity for quad meshes lead
to non-local consistency conditions and may cause strongly dis-
torted quads. T-vertices provide the flexibility to adjust the quad
mesh resolution and to avoid the accumulation of distortion.

In order to relax these consistency conditions, we propose in this
paper a quad-dominant meshing scheme (not pure quad) which
generates T-vertices. These relaxed conditions allow us to com-
pute quad meshes with high rectangularity and good adaptivity of
the mesh resolution. In fact, T-vertices seem to be the appropriate
means to produce quad meshes with adaptive resolution as can be
seen in many hand-made CAD models (see Fig. 2).

In Computer Graphics, T-vertices seem to have a “bad reputation”
because in a polygonal mesh, obtuse inner angles close to π usually
lead to shading artifacts due to badly estimated normal vectors and
interpolation singularities. While this is true for polygonal meshes,
it turns out to be less relevant if we consider quad meshes as a struc-
tured geometry representation that is being used for sophisticated
downstream applications like shape modeling, segmentation into
constructive elements, or tool path generation. Higher order geom-
etry representations such as T-splines [Sederberg et al. 2003] and
Catmull-Clark subdivision surfaces can handle T-vertices in a natu-
ral manner and no surface singularities are caused by them.



Figure 2: Quad meshes are a well-established representation
in shape design and modeling applications. In order to flexibly
change the resolution while not compromising the local regularity
T-vertices are introduced.

Another design goal for our algorithm is simplicity. Instead of do-
ing complex calculations to analyze the geometric and topologi-
cal structure of the input shape, our algorithm is based on a small
number of mesh operations which are available in every polygo-
nal mesh library. The major processing stage of our algorithm is
a simple mesh relaxation scheme that moves mesh vertices in tan-
gent direction in order to promote edge alignment to the principal
directions. The vertex sliding is interleaved with local connectiv-
ity updates (edge collapses, splits, and flips) in order to prevent the
mesh connectivity from degenerating. The overall process is illus-
trated in Fig. 3 and Fig. 4.

2 Related Work

Remeshing has been an active research topic for years and a thor-
ough survey is well beyond the scope of this paper. The reader is
rather referred to [Alliez et al. 2005] for an excellent and compre-
hensive overview. Remeshing methods can be classified based on
the output mesh structure into triangle remeshing and quad remesh-
ing.

2.1 Triangle Remeshing

Early work focuses on semi-regular triangle remeshing which pro-
duces mostly regular vertices (of valence 6) except for a few iso-
lated extraordinary vertices in the output mesh. A coarse triangle
mesh is constructed from the dual of a quasi Voronoi diagram [Eck
et al. 1995] or from mesh simplification [Lee et al. 1998] and uni-
form subdivision is applied.

Isotropic remeshing [Alliez et al. 2003b; Surazhsky et al. 2003;
Surazhsky and Gotsman 2003; Botsch and Kobbelt 2004] produces
approximately equilateral triangles of the same size without car-
ing about topological regularity. [Alliez et al. 2003b] uses a global
conformal parameterization which restricts the allowed topology of
the input meshes. [Surazhsky et al. 2003] generalizes this by us-
ing local parameterizations. The methods in [Surazhsky and Gots-
man 2003; Botsch and Kobbelt 2004] achieve high quality isotropic
remeshing by a series of local mesh modifications, which is similar
in spirit to our approach in this paper.

Isotropic remeshing can be adapted to vary the sizes of triangles
according to the local curvature. [Alliez et al. 2003b] uses a den-

sity map to control the mesh resolution. Lai et al. [Lai et al. 2007]
propose to use a curvature sensitive distance metric to anisotrop-
ically remesh models so that triangles are elongated along sharp
and semi-sharp features. Alignment of edges with such features
was specifically studied in [Botsch and Kobbelt 2001]. Other ap-
proaches (e.g. [Attene et al. 2003]) try to recover artifacts of fea-
tures introduced by scanning or remeshing by a post filtering oper-
ation, which may be used after feature unaware remeshing methods
to improve the quality of output meshes.

2.2 Quad Remeshing

Alliez et al. [2003a] propose a method to integrate principal curva-
ture lines in the parameter domain of the input mesh and generate
a quad-dominant output mesh by intersecting these lines. Marinov
and Kobbelt [2004] extend this work by directly integrating curves
on the input model. Streamline integration methods add integration
curves in a greedy fashion, thus they cannot guarantee a globally
uniform distribution. Principal directions usually suffer from sin-
gularities, even after smoothing. Dong et al. [2005] hence suggest
to use the gradient of a smooth harmonic scalar field instead of
principal directions. More regular results are obtained at the cost of
necessary user intervention and the loss of feature alignment.

Global parameterization has also proven to be a powerful tool for
quad remeshing. Geometry images [Gu et al. 2002] remesh arbi-
trary input meshes into all-quad meshes, by cutting the input mesh
into a topological disk (a fundamental domain), parameterizing and
regularly sampling it over a square domain. Multi-chart geometry
images [Sander et al. 2003] extend this idea and reduce the map-
ping distortion significantly. The input model is segmented into
pieces and they are parameterized one by one. A zippering opera-
tion is performed to keep the remeshed model water-tight. Periodic
global parametrization is proposed in [Ray et al. 2006a] to param-
eterize the input model so that principal directions are aligned with
coordinate axes in the parameter domain. Non-linear optimization
is required to achieve this. Remeshing can then be performed by
regular sampling in the parameter domain. Kälberer et al. [2007]
improve this by converting a given frame field into a single vec-
tor field on a branched covering of the 2-manifold and producing
quadrilaterial meshes with fewer singularities.

When using local parametrizations for quad meshing, the input
mesh has to be decomposed into patches and compatibility condi-
tions have to be satisfied along patch boundaries. Dong et al. [2006]
propose a quad remeshing method which connects extrema of
Laplacian eigenfunctions via gradient flow to form a quadrangular
base mesh. High quality remeshing with few extraordinary vertices
is achieved this way, although features are usually not well cap-
tured. In [Tong et al. 2006] the patch layout is prescribed manually
and more general compatibility conditions are considered allowing
for a swap of the principal directions. The work by Boier-Martin
et al. [2004] produces quad-dominant meshes by first constructing
a coarse domain using clustering techniques. A two-stage remesh-
ing algorithm is proposed in [Marinov and Kobbelt 2006] that first
segments the input mesh into patches using a variant of the varia-
tional shape approximation algorithm [Cohen-Steiner et al. 2004]
and then applies a combinatorial optimization procedure to build
the output mesh from a set of smooth curves. This method is specif-
ically targeting at the generation of coarse output meshes. A con-
touring based approach was proposed in [Canas and Gortler 2006]
that can run at interactive rates, however sacrificing regularity and
feature alignment in the output mesh.

Unlike most other approaches, Liu et al. [2006] considers the prob-
lem of producing quad dominant meshes with each quad being
planar. This is accomplished by a post optimization of the ver-
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Figure 3: Intermediate results produced by the individual steps of our algorithm. (a) The input triangle mesh with smoothed principal
direction field. (b) The triangle mesh produced by curvature adaptive isotropic remeshing. (c) and (d) The triangle mesh during iterative
optimization when α reduced to 50% and 0% of the initial value; well aligned, aggregated edges are highlighted. (e) The triangle mesh after
the incremental optimization, with well aligned edges highlighted. (f) Output quad-dominant mesh after post processing.

tex positions of a quad-dominant mesh, keeping the connectivity
unchanged. This post optimization could be applied to our quad
meshes if this property is desired. Tchon and Cameredo [2006] pro-
pose to use iterative, specialized local operators to produce quad-
dominant meshes, which bears some similarity with our method,
however, their method applies only to 2D meshes.

In [Wan-Chiu Li and Lévy 2006] an algorithm for the generation
of high quality T-spline control meshes is presented which is based
on the periodic global parametrization but allows for more flexible
user intervention. Our output meshes can also be used as T-spline
control meshes.

3 Overview of the Algorithm

Given an unstructured triangle mesh M as input, we first have to
compute a tangent direction field to which we want to align the
quad faces. Usually we will use the principal directions of the un-
derlying surface estimated at the vertices of M, but other choices
would be possible as well. Next we perform an isotropic remeshing
M→M′ which is feature sensitive in the sense that the local ver-
tex density is adapted to the maximum curvature [Lai et al. 2007].
This pre-process is necessary to provide a sufficient number of de-
grees of freedom for the incremental alignment procedure.

The basic idea of the incremental alignment is to let the vertices of
M′ slide over the input mesh M such that edges of M′ become
aligned to the principal directions of M. The sliding is controlled
by various forces which promote alignment as well as uniform dis-
tribution. Since at each surface point there are four principal direc-
tions (minimum and maximum curvature in two opposite directions
each), the alignment force can only take up to four adjacent edges
into account. The other edges do not imply any forces and will end
up as diagonals. Eventually these diagonals are removed from the
mesh M′ such that a quad-dominant output mesh is generated. In
order to avoid degenerate triangles, we adjust the mesh connectivity
during vertex sliding.

3.1 Principal Direction Estimation

Our algorithms aligns mesh edges to an arbitrary pair of tangent
direction fields. The geometrically most relevant directions on a
surface are the principal directions which indicate at each point on
a surface the (mutually orthogonal) tangent directions of minimum
and maximum curvature [do Carmo 1976].

We use the methods proposed in [Cohen-Steiner and Morvan 2003]

and [Yang et al. 2006] to estimate the principal directions at the ver-
tices of the input mesh M. Since this estimate is sensitive to noise
and since it cannot guarantee a smooth direction field in nearly um-
bilic regions of the surface, we have to apply a smoothing operator.
The number of singularities in the resulting direction fields can be
reduced considerably by treating the local direction information as
a 4-symmetric vector field [Ray et al. 2006b]. We apply the method
proposed in [Hertzmann and Zorin 2000] to smooth the principal
frames by using a simple non-linear optimization scheme which
tends to converge very robustly and fast.

The principal direction estimation and smoothing provides an or-
thogonal coordinate frame Fi = (Xi, Yi, Zi) for each vertex in the
input mesh M where Xi is the minimum curvature direction, Yi

is the maximum curvature direction, and Zi is the normal vector.
We interpolate this direction information linearly across triangles
by using barycentric coordinates.

For the normals, linear interpolation is straightforward. For the tan-
gent directions, however, we first have to find the proper permuta-
tions of the directions for interpolation (due to 4-symmetry). Let
Fi, Fj , and Fk be the local frames at the three vertices of a triangle.
For each triplet (Di, Dj , Dk) we check the consistency defined by

consistency(Di, Dj , Dk) := DT
i Dj + DT

j Dk + DT
k Di

where the direction Di is taken from the set {Xi,−Xi, Yi,−Yi}
and the directions Dj and Dk are chosen analogously (yielding a
total of 43 = 64 combinations). From the triplet (D̂i, D̂j , D̂k)
with maximum consistency we compute the first interpolated tan-
gent vector X by barycentric combination. The second tangent vec-
tor is then defined as Y = Z×X where Z is the interpolated normal
vector.

Notice that only the barycentric interpolation has to be computed
during the incremental mesh optimization. Estimating the princi-
pal directions at the vertices of M and finding the most consistent
triplet per triangle is done in a pre-process.

3.2 Initial Mesh Generation

The starting configuration is crucial for incremental optimization.
Hence we make sure that the initial mesh M′ locally has suffi-
ciently many degrees of freedom, i.e. that the vertex density of
M′ is higher in curved regions and lower in flat areas. We use
the method proposed in [Lai et al. 2007] which produces isotropic
meshes with the vertex density adapted to the local curvature. This
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Figure 4: Mesh processing pipeline for incremental quad-dominant meshing.

is achieved by computing a uniform vertex density with respect to
the augmented metric

dist(Vi, Ni, Vj , Nj) =
√
‖Vi − Vj‖2 + ω ‖Ni −Nj‖2

which takes Euclidian distance ‖Vi − Vj‖2 as well as unit normal
rotation ‖Ni −Nj‖2 into account. The non-negative coefficient ω
is used to control the sensitivity of the density adaption. The algo-
rithm first distributes unconnected vertices on the surface by using
particle repulsion [Witkin and Heckbert 1994] and then recovers the
mesh connectivity by constrained Delaunay triangulation in a local
parameterization [Lai et al. 2007].

3.3 Incremental Optimization

Sliding the vertices of M′ over M such that the (some) edges of
M′ become aligned to the tangent direction fields ofM is the most
important step of our quad-dominant remeshing scheme. Since at
every surface point we can identify four principal directions and the
average valence of a vertex in a triangle mesh is six, it is obvious
that not all edges can be aligned. In fact, some edges will turn out to
become diagonally oriented with respect to the principal direction
fields. The various forces that act on the vertices in this stage and
the overall incremental optimization procedure is described in detail
in section 4.

Technically, the vertex sliding is implemented by computing a lo-
cal parametrization for the 1-ring of each vertex in M′ and then
performing the position update in the parameter domain. After
the update, the 3D position is recovered by simply evaluating this
parametrization. Even if this already guarantees a good preserva-
tion of the geometry, it can still happen that the vertices ofM′ drift
away from the input mesh M. Hence we project the vertices of
M′ back to the nearest point ofM after every iteration. The vertex
relocation is concluded by re-evaluating the (interpolated) principal
direction field in order to update the local coordinate frame associ-
ated with a vertex.

When the vertices of M′ are freely sliding across the input mesh
M, the mesh structure can degenerate. Hence, in order to preserve
a good mesh quality, we have to apply a local remeshing procedure.
Since the step width of the vertex motion is rather small in our
incremental procedure, simple local connectivity updates turn out to
be sufficient. We use a variant of the connectivity update procedure
described in [Botsch and Kobbelt 2004]:

After re-location and back-projection of the vertices, we

• collapse edges that have become shorter than some
threshold Θmin.

• split edges that have become longer than some
threshold Θmax.

• flip edges if the maximum inner angle of one of the
adjacent triangles is above some threshold Φmax.

The choice of the three thresholds Θmin, Θmax, and Φmax does
not require too much tuning. Θmin and Θmax control the mesh
resolution and the aspect ratio of the resulting quad faces. Φmax

has always been set to π − ε in our experiments.

3.4 Quad Mesh Generation and Post Processing

After a few iterations of the incremental optimization, we obtain a
triangle mesh M′ which exhibits a good local edge alignment to
the principal directions of M. Removing the badly aligned edges
(the diagonals) from the mesh already leaves a quad-dominant mesh
with mostly rectangular faces.

3.4.1 Post processing for improving polygon quality

Some simple post-processing can further improve the quality of the
output mesh by removing badly shaped faces through merging and
splitting.

In the merging phase, adjacent faces are merged by removing their
common edge from the mesh. An edge is removed if the quality of
the resulting face is superior to the quality of the two faces before
the merge. Here, the quality of a face is measured by its rectangu-
larity, i.e. by the number of quasi-perpendicular corners (should be
four) and by the number of non-convex corners (should be zero). A
quasi-perpendicular corner is one with an inner angle close to π
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,

a non-convex corner is one with an inner angle well above π. The
inner angle of a corner is measured in the tangent plane defined by
the local normal vector.

Notice that we do not penalize T-vertices, i.e. vertices with an inner
angle of approximately π. Please refer to our discussion of the role
of T-vertices in quad meshing in the introduction.

The merging phase is followed by a splitting phase where we re-
move the remaining non-convex corners by splitting the corre-
sponding non-convex faces into convex ones. Here a simple heuris-
tic finds the most rectangular decomposition of a non-convex face.

3.4.2 Post processing for T-vertices

Due to the local minimum nature of our method, it may produce
some unnecessary T-vertices in certain cases. A post processing
stage may be introduced to reduce the number of T-vertices and
place them in a more reasonable way. For T-vertices located within
regular regions, the consecutive edge sequences ending at the T-
vertex can be extended by appropriately splitting a sequence of
quads. An extended edge sequence terminates when another T-
vertex is met or when the edge sequence is sufficiently close to
nearby edges. The extension of edge sequences is always restricted
to regular quad regions so that regularity is guaranteed after split-
ting. After this phase, edge sequences that are too short or too close
to neighboring sequences will be removed.

Besides proper alignment, another goal of the iterative vertex relo-
cation detailed in Section 4 is to promote a globally uniform size



of the quad faces. However, after the elimination of unnecessary
T-vertices, the line density, i.e. the distribution of (parallel) edge
sequences can become non-uniform because new edges have been
inserted and quad faces have been split. We re-establish uniformity
by iterating a simple smoothing operator. Here we can exploit the
fact that the mesh structure is highly regular at this stage of the
algorithm.

The smoothing operator performs a simple relaxation with back-
projection to the original surface. For the relaxation we distinguish
between regular vertices (valence four with all adjacent faces being
quads), T-vertices (between two small and one larger quad), and
irregular vertices (all the rest).

The positions of the irregular vertices are not changed by the
smoothing operator. T-vertices are shifted towards the mid-point of
the edge on which they lie and regular vertices are shifted towards
the average of their four adjacent vertices. Fig. 8 in the experimen-
tal results section shows an example mesh before and after the final
relaxation step.

4 Incremental Alignment

After we have explained the overall algorithm, we now focus on the
most crucial stage of the process which is the incremental motion
of vertices in order to promote principal direction alignment. For
every vertex v of M′ we evaluate the interpolated principal direc-
tion field and associate a local coordinate frame F with it. We do
the same for the midpoint of every edge.

4.1 Local Parameterization

To simplify the vertex motion, we map the 1-ring neighborhood of
a vertex v to a 2D domain. In order to minimize distortion, we
use the exponential map [Welch and Witkin 1992] [Lee et al. 1998]
which preserves the length of the edges adjacent to v and scales the
adjacent inner angles such that they sum to 2π (planar configura-
tion). The vertex v is mapped to the origin and the configuration
is rotated such that the principal directions X and Y at v coincide
with the x and y axis of the 2D domain.

For the re-location of the center vertex, we have to identify the most
appropriate set of (up to four) adjacent edges which qualify as can-
didates to be aligned to the minimum or maximum principal direc-
tion (x and y axis respectively). We do this by selecting those edges
which have the least angle to the (positive or negative) x or y axis.
Selected edges are rejected if their angle with respect to the corre-
sponding axis is more than π
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. This leads to situations where less

than four edges may remain as alignment candidates. Only these
candidates will affect the re-location of the center vertex, the others
are not taken into account.

4.2 Curl Compensation

Since the edges of M′ have a finite length, the orientation of the
direction field may change along an edge (curl). For symmetry rea-
sons we want to align a candidate edge e to the direction field eval-
uated at its midpoint. However, since in general the corresponding
local frame Fe = (Xe, Ye, Ze) is different from the local frame
Fv = (Xv, Yv, Zv) at the center vertex v we have to compensate
the curl by rotating e in the parameter domain. To simplify the fol-
lowing explanation we assume that the tangent direction vectors Xe

and Ye have already been chosen such that maximum consistency
with the vectors Xv and Yv is established.

Let Ee be the 3-dimensional (geometric) embedding of the (topo-
logical) edge e then (xe, ye) = (ET

e Xe, E
T
e Ye) are the coordinates

of e in the tangent plane with respect to the local coordinate frame
Fe.

The curl compensation consists in a rotation of the frame Fe into
the frame Fv . In the parameter domain where Fv coincides with the
x- and y-axis, we are only interested in the tangential component
of this rotation which corresponds to replacing the edge e obtained
by the exponential map parametrization (in the last section) with
the edge spanned by (xe, ye) and the origin (= location of v in the
parameter domain).

Notice that even if we will use the curl compensated edges in the
parameter domain to compute the update vector for the center ver-
tex (in the next section), we still stick to the candidate selection
based on the orientation before the compensation. The reason for
this is to maintain the compatibility of the minimum and maximum
principal directions at the center vertex.

4.3 Vertex Re-Location

X

Y

(x1, y1)

(x3, y3)

(x4, y4)

(x2, y2)

V
x'x''x'''

Figure 5: Illustration of vertex re-location. The center vertex is
pulled towards a weighted average of three target positions x′, x′′,
and x′′′.

Let (x1, y1), . . . (x4, y4) be the curl compensated endpoints of the
four adjacent edges being candidates for alignment to the minimum
(X), maximum (Y ), negative minimum (−X), and negative max-
imum (−Y ) principal directions respectively (see Fig 5). We will
define three different forces that attract the center vertex v towards
an optimized position in the parameter domain. For brevity we will
only explain how to compute the x-coordinates. The y-coordinates
are obtained analogously.

The first force (“collinearity force”) is trying to make the points
(x2, y2), v, and (x4, y4) collinear:

x′ =
|y4|

|y2|+ |y4| x2 +
|y2|

|y2|+ |y4| x4

The corresponding force for the y-coordinates is making (x1, y1),
v, and (x3, y3) collinear.

The second force (“snapping force”) is promoting edge alignment
by enforcing vertical edges. This is achieved by snapping to the
closer x-coordinate of the corresponding neighbors:

x′′ =
{

x2 (|x2| ≤ |x4|)
x4 (|x2| > |x4|).

For the y-coordinates horizonal edges are enforced.

The third force (“relaxation force”) is promoting uniform vertex
distribution along the principal directions:

x′′′ =
x1 + x3

2



Eventually, the updated x-coordinate for the center vertex is defined
as a weighted average:

(1− λ) x + λ
(
α x′ + (1− α− β) x′′ + β x′′′

)

During the incremental optimization we change the weight coeffi-
cients α and β according to the following schedule. We begin with
α being relatively large (e.g. α = 0.3) and β = 0. With each iter-
ation, we let α decrease towards zero (with a constant decrease of
amount after each iteration). Once α vanishes, we start to increase
β with each iteration up to some moderate value (e.g. β = 0.2).

The rationale behind this schedule is that initially the mesh should
be straightened by making vertices locally collinear. Then the ac-
tual alignment to the principal directions should be promoted. After
some iterations, the alignment is established and we fade in a regu-
larization force to make the vertex distribution more uniform.

This schedule together with a damping factor of λ = 1
2

usually
guarantees stable convergence of the scheme to a good local mini-
mum. Experiments also show that the same set of parameters (and
parameter variation after iteration) is suitable for a wide range of
models.

For vertices with less than four alignment candidates, we apply
just the snapping force for a direction where only one candidate
is present. For the other coordinate, collinearity and snapping is ap-
plied but no relaxation. If no candidate is present for one direction
then there is no update of the respective coordinate at all.

4.4 Aggregation

Updating the position of each vertex in M′ individually may lead
to a very slow convergence and has a high risk of getting stuck
in a sub-optimal local minimum. Hence we have to stabilize the
convergence by making sure that we are not destroying a good local
configuration in future relaxation steps.

We achieve this by aggregation, i.e. by combining adjacent well-
aligned edges into a single rigid component which can only be
updated simultaneously. Aggregation speeds up convergence sig-
nificantly since position and orientation information is propagated
much faster through the mesh.

Initially each edge ofM′ represents an individual rigid component.
After each iteration, we classify edges as well-aligned, if their ori-
entation deviates from one of the two principal directional by less
than some small threshold. If two adjacent edges are both well-
aligned with respect to the same principal direction they are treated
as one rigid component in the next iteration. Contiguous sequences
of well-aligned edges can be aggregated into chains in the same
way. In practical implementation, we do not exert extra limitations
to the length of an aggregated chain. Edges are re-classified and
chains are re-aggregated in each iteration to avoid bad local min-
ima.

The update procedure for vertices v that belong to an aggregated
chain has to be modified. For simplicity we, again, assume that
all the local coordinate frames have been permuted correctly to es-
tablish maximum consistency between adjacent vertices and edges.
Without loss of generality we can further assume that the aggre-
gated edges are well-aligned to the maximum principal direction
(X). Y -alignment is handled analogously.

We still start by computing a parameterization of the 1-ring neigh-
borhood of v, however, instead of applying the curl compensation
to an already well-aligned edge e1, we follow the aggregated chain
e2, . . . ek to its end vertex where we find a not yet well-aligned

virtual edge

V e1 ek

x1 xk
ek+1

(xk+1,yk+1)

e2

x2

Figure 6: Well-aligned edges are aggregated and treated as rigid
components. In the vertex re-location, this is taken into account by
constructing virtual edges (as delineated in dash line).

edge ek+1 which is a candidate for alignment. Since all the in-
termediate aggregated edges are already well-aligned (to the X di-
rection), their local coordinates in the respective tangent planes are
(xi, yi) = (xi, 0). Propagating the curl compensation along the
aggregated chain leads to the virtual edge:

(
k+1∑
i=1

xi, yk+1

)

This definition makes sure that the collinearity and the snapping
forces for the y-coordinates are compatible for all vertices that be-
long to the same aggregation chain in X direction.

The relaxation force for the y-coordinate has to be treated differ-
ently since it uses adjacent edges in Y direction which are differ-
ent for each vertex in a X chain. In order to make sure that the
well-alignment of the whole chain is not affected, we compute the
y-coordinate relaxation force for each vertex in a X chain individ-
ually and then compute an average update which we apply to all
vertices. By this we allow the X chain to move parallel in Y direc-
tion in order to make the overall vertex distribution more uniform.

Intermediate results of iterative update with aggregation are pre-
sented in Fig. 3 (c-e).

5 Experimental Results

We tested our algorithm with various geometric models of differ-
ent complexity. The results were generally quite good with mesh
edges mostly well-aligned to the principal directions and quads dis-
tributed evenly.

Fig. 7 shows various graphical models remeshed with our method.
Smoothed principal directions are used in these examples to guide
the orientation of the edges. Fig. 8 is the remeshed rockerarm
model, a typical mechanical part. Thanks to the non-linear 4-
symmetric vector field smoothing, even critical configurations like
the non-convex flat region can be remeshed quite reasonably with
mostly quads. The left and right figures show the model before
and after relaxation, respectively; uniformity is re-established after
relaxation.

In Fig. 9 we used a user specified direction field instead of the
principal directions to improve the mesh quality in noisy regions.
Remeshing with the principal directions tends to produce irregular
meshes on the palm due to the existence of creases. The tangent
vector field shown on the left is computed by interpolating 5 key
vectors, one on each finger, using radial basis functions.

Note that there still exist some polygons (other than quads) on the
produced meshes, thus the output results are considered as quad
dominant remeshing (not pure quads). This is partially due to the
singularities of principal field (even after 4-symmetry smoothing)
and partially due to the local minima nature of the iterative update
scheme. Such polygons may be further improved by some heuristic
rules that try to split or merge them appropriately to produce better
results.



Figure 7: Quad-dominant remeshing of various graphical models. From left to right: elephant, fertility and tweety.

Figure 8: Quad-dominant remeshing of the rockerarm model. Left:
before relaxation; right: after relaxation.

Our remeshing results can be used as control meshes of T-splines
or Catmull-Clark subdivision surfaces. Fig. 10 shows such an ex-
ample.

Catmull-Clark subdivision can be generalized to meshes with T-
vertices in a straightforward manner. The original Catmull-Clark
scheme computes a new vertex for every edge and every face of
the input mesh. Then each n-sided face is split into n quads by
connecting the edge-vertices to the face vertices. If an edge of the
input mesh has a T-vertex then it can be used instead of computing
a new vertex for this edge.

In order for this modified Catmull-Clark subdivision to work, we
have to make sure that there is no edge in the mesh that has more
than one T-vertex. We achieve this by applying some more face
splits to our quad meshes. Usually only very few edges have multi-
ple T-vertices.

All our experiments are carried out on a commodity PC with In-
tel Core2Duo 1.86 GHz processor and 1 GB RAM. The models

Figure 9: Hand model remeshed with the specified vector field.

are initially remeshed to 10, 000 vertices. The principal direction
computation takes 1-2s, the non-linear vector field smoothing (not
optimized) 15-20s, the incremental optimization 15-20s, mesh re-
construction less than a second and finally post processing 2-3s.
The hand model is initially remeshed to 20, 000 vertices and the
timings for each step are 3.21s, 122.31s, 31.73s, 0.72s and 3.37s re-
spectively. Statistics of number of faces, number of quads and the
average deviation of inner angles of quads from π/2 (in degrees)
are given in Table 1. The results are quad dominant, and the shape
of quads is close to rectangle.

6 Conclusions and Future Work

In this paper, a quad-dominant remeshing method based on incre-
mental optimization has been proposed. The approach is conceptu-
ally simple, and produces quad-dominant meshes that show a very
good alignment to geometric features and a rather uniform distribu-
tion of mesh vertices. T-vertices are allowed in the output meshes,
since they provide more flexibility in order to improve the align-
ment and the shape of the faces.



Figure 10: The kitten model. Left: quad-dominant remeshing; middle and right: the remeshed model undergone one and two times of
Catmull-Clark subdivision.

Table 1: Statistics of remeshing results.
model no. of faces no. of quads avg. angle

dev. (deg)
elephant 10450 10349 (99.03%) 2.98
fertility 9486 9390 (98.99%) 3.83
tweety 7069 6765 (98.53%) 3.84

rockerarm 6132 6093 (99.36%) 2.56
hand 14763 14675 (99.40%) 2.24
kitten 3916 3829 (97.78%) 4.99

Some limitations still exist. One is that it is generally difficult to
precisely control the resolution of the output mesh. The number
of vertices in the initial phase of feature sensitive isotropic remesh-
ing does have certain influence. But an accurate specification of
the target number of vertices cannot be fulfilled. Another limita-
tion is that there might remain some auxiliary irregular polygons
due to singularities in the tangent vector field. The update scheme
is local and may also produce irregular polygons in certain cases.
This could be relieved by additional post filtering driven by some
suitable heuristics.

We plan to extend our approach to multiresolution quad remesh-
ing in the future. Coarse quad-dominant remeshing will be per-
formed first, and finer meshes can then be computed by Catmull-
Clark refinement followed by further incremental optimization (see
Fig. 10). We expect that multiresolution approaches may result in
improved convergence speed and robustness, too.
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ALLIEZ, P., DE VERDIÈRE, E. C., DEVILLERS, O., AND ISEN-
BURG, M. 2003. Isotropic surface remeshing. In Proc. Shape
Modeling International, 49–58.

ALLIEZ, P., UCELLI, G., GOTSMAN, C., AND ATTENE, M.
2005. Recent advances in remeshing of surfaces. Tech. rep.,
AIM@SHAPE Network of Excellence.

ATTENE, M., FALCIDIENO, B., ROSSIGNAC, J., AND SPAGN-
UOLO, M. 2003. Edge-sharpener: Recovering sharp features
in triangulations of non-adaptively re-meshed surfaces. In Proc.
Eurographics Symposium on Geometry Processing, 63–72.

BOIER-MARTIN, I., RUSHMEIER, H., AND JIN, J. 2004. Parame-
terization of triangle meshes over quadrilateral domains. In Proc.
Eurographics Symposium on Geometry Processing, 193–203.

BOTSCH, M., AND KOBBELT, L. 2001. Resampling feature
and blend regions in polygonal meshes for surface anti-aliasing.
Computer Graphics Forum 20, 3, 402–410.

BOTSCH, M., AND KOBBELT, L. 2004. A remeshing approach to
multiresolution modeling. In Proc. Eurographics Symposium on
Geometry Processing, 189–196.

CANAS, G. D., AND GORTLER, S. J. 2006. Surface remeshing
in arbitrary codimensions. The Visual Computer 22, 9–11, 885–
895.

COHEN-STEINER, D., AND MORVAN, J. M. 2003. Restricted
delaunay triangulations and normal cycle. In Proc. ACM Sympo-
sium on Computational Geometry, 312–321.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. ACM Transactions on Graph-
ics 23, 3, 905–914.



DO CARMO, M. P. 1976. Differential Geometry of Curves and
Surfaces. Prentice-Hall.

DONG, S., KIRCHER, S., AND GARLAND, M. 2005. Har-
monic functions for quadrilateral remeshing of arbitrary mani-
folds. Computer-Aided Geometric Design 22, 5, 392–423.

DONG, S., BREMER, P.-T., GARLAND, M., PASCUCCI, V., AND
HART, J. C. 2006. Spectral surface quadrangulation. ACM
Transactions on Graphics 24, 3, 1057–1066.

ECK, M., DEROSE, T. D., DUCHAMP, T., HOPPE, H., LOUNS-
BERY, M., AND STUETZLE, W. 1995. Multiresolution analysis
of arbitrary meshes. In Proc. ACM SIGGRAPH.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. ACM Transactions on Graphics 21, 3, 355–361.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. ACM Transactions on Graphics 19, 3, 517–526.
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