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Abstract

In this paper we combine methods from the field of com-
puter vision with surface editing techniques to generate an-
imated faces, which are all in full correspondence to each
other. The input for our system are synchronized video
streams from multiple cameras. The system produces a
sequence of triangle meshes with fixed connectivity, rep-
resenting the dynamics of the captured face. By carfully
taking all requirements and characteristics into account we
decided for the proposed system design: We deform an ini-
tial face template using movements estimated from the video
streams. To increase the robustness of the initial reconstruc-
tion, we use a morphable model as a shape prior. However
using an efficient Surfel Fitting technique, we are still able
to precisely capture face shapes not part of the PCA Model.
In the deformation stage, we use a 2D mesh-based track-
ing approach to establish correspondences in time. We then
reconstruct image-samples in 3D using the same Surfel Fit-
ting technique, and finally use the reconstructed points to
robustly deform the initially reconstructed face.

1. Introduction

The dense motion capture of facial movements is an im-
portant part to generate data driven facial animations. The
acquired motion data can be used to create animations for
movies, computer games, or humanoid avatars which can
be utilized in scientific as well as industrial applications.
Standard tracker based motion capture systems often record
only sparse temporal and spatial data. Fortunately, modern
multi-camera and computer systems allow for the acquisi-
tion and analysis of a large amount of data, so the dense
reconstruction of facial movements becomes possible.

In this paper, we exploit methods from computer vision
and mesh editing to compute a dense motion field for facial
animations from synchronized video streams. The motion
field is represented by a predefined face template whose ver-
tices move in time according to the underlying scene flow.
In many applications such as the retargeting of facial move-
ments, expression blending or statistical analysis of motion

data, it is essential to establish correspondences between
vertices not only from frame to frame but also between dif-
ferent data sets. Since we use a predefined face template
which is fitted to an individual face, we immediately ob-
tain the correspondences between all acquired reconstruc-
tions. Our predefined face template is a simple morphable
model whose low-dimensional set of parameters is able to
control the shape of neutral looking faces. In our work, this
simple model additionally helps to stabilize the 3D multi-
view stereo reconstruction of human faces, since it provides
a good initial solution for a stereo reconstruction algorithm.

1.1. Related Work

A common technique to generate (caricaturated) facial
movements for movies and computer games is Free Form
Deformation (FFD). FFD provides a framework which al-
lows artists to drag points on a cage or within 3D space
to intuitively deform the space around that cage and thus
the underlying geometry. The major difficulty for these
methods is to find efficient mappings which do not induce
large distortions (such as volumetric shrinking) to the model
[13, 18, 1].

One way to simulate more realistic movements of a hu-
man face is to use physically based methods, which usually
rebuild some anatomical features of the human head with
the aim of mimicking natural movements. In [24] Waters
and Keith develop a parameterized facial muscle process
by abstracting the facial action units originally introduced
by Ekman and Friesen [7]. However, their work uses only
a few muscles to reproduce basic human emotions. Simi-
larly, Lee et al. [16] build an anatomically accurate physi-
cally based head model. They map the geometry and tex-
ture, obtained from laser scans, to a generic head model and
augment this model with multilayer facial tissue, a skull
and synthetic muscles, which are used to deform the tis-
sue to produce facial expressions. Kihler er al. [14] use a
similar model to perform real-time deformations based on
antropometrically meaningful landmarks. Their method is
also capable of simulating aging. A more recently intro-
duced biomechanically based muscle model was suggested
by Sifakis er al. [22]. This anatomically accurate model



(b)
Figure 1. Workflow to reconstruct a dynamic face. (a) Views from different directions and camera rig. (b) Top: Morphable model after
optimizing rigid transformation and shape parameters. Down: Reconstruction of the neutral face from the first image. (c) The 2D mesh
tracking establishes temporal correspondence between the frames. (d) Top: The Surfel Fitting produces a point could, which may contains
some holes. Down: Result of the 3D mesh tracking: Successfully reconstructed Surfels define constraints for a non-rigid deformation of
the initial face template.

uses finite elements methods to deform the synthetic tissues
around a skull model. It also uses a set of sparse surface
landmarks to track facial movements with a motion cap-
ture system. The major problem with all biomechanical
models is that they are difficult to build correctly, because
our anatomical knowledge about human skin, muscles, and
bone structures is still incomplete. Thus, models sometimes
require extensive tuning to produce realistic output.

Data driven facial animation usually involves a mo-
tion tracking system that records the movement of markers
placed in the face, see e.g. [5, 22, 2, 26]. The captured tra-
jectories typically represent the movements of the face in a
very sparse way. To improve geometric details, Bickel [2]
added wrinkles to a facial base mesh, which is deformed by
the motion capture data using a shell-based mesh deforma-
tion method. Active Sensing methods project special light
patterns or colors onto an object to capture the three dimen-
sional motion field without the use of markers. Herndndez
et al. [11] use multispectral photometric stereo to compute
a dense normal field from untextured surfaces. Weise ef al.
[25] use active illumination based on phase-shift to recon-
struct surfaces at high framerates. A drawback of this work
is that they are unable to maintain correspondences between
vertices in time. Additionally special hardware which is
often not commercially available (like the scanner used by
Weise et al.) is required. Blanz and Vetter [3] learn shape
and texture parameters for a morphable model by perform-
ing a Principal Component Analysis (PCA) on a set of laser
scans of human heads. In an image based approach, they
optimize these parameters to extract the geometry and tex-
ture of a human head from a photo. In a related approach
Dellepiane et al. [6] deform a dummy head to reconstruct
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the shapes of human heads from images and used them for
binaural rendering. Active Appearance Models (AAMs), as
in [20, 15], are used to track motion through (multiview)
image sequences. As with morphable models, though, the
reconstructions are always restricted to the low-dimensional
space spanned by the parametric model. Vedula et al. intro-
duced the term dense scene flow in [23], which was fur-
ther improved by Li and Sclaroff [17]. They reformulate
the optical flow problem, find corresponding pixels in time,
and use disparity to find correspondences between differ-
ent views. The extraction of geometric information which
could be used for simple visibility tests was not considered.
In [9] Furukawa extended their reconstruction approach to
track vertices of a mesh reconstructed in the first image of
a video stream. In the examples the captured faces had to
be endued with additional paint to obtain highly textured
surfaces. They also do not use a predefined template face,
which keeps its topology over all frames.

1.2. Overview

To generate the input for our system, a camera rig with
five synchronized cameras was constructed and calibrated
to capture the dynamic facial expressions of different sub-
jects. Each of the cameras record images at 30 FPS with a
resolution of 640 x 480 (Figure 1a shows the rig, together
with four of these images in the middle of a sequence). If
necessary, the framerate could be increased to 60 FPS by
triggering the cameras externally.

The first image of each sequence shows the face in its
neutral pose. In order to be able to track facial movement
we need to reconstruct the face seen in the first frame. Inde-
pendently optimizing point depth values using Surfel Fitting



would produce a point cloud of arbitrary size. In addition
to this, it can contain holes and outliers. We decided to use
a simple morphable model to estimate the shape of the face
seen in the first frame (see Section 3.1). This drastically
increases to robustness of the Surfel Fitting because of the
good initial Surfel parameters. One requirement of our sys-
tem is that inter-subject correspondences have to be main-
tained. This becomes possible by using a face template,
containing a fixed number of vertices, which is in a one-
to-one correspondence with the vertices of the morphable
model. Morphable models are restricted to a space spanned
by their training examples. In order to represent more gen-
eral shapes we additionally non-rigidly deform the resulting
model to produce a smooth face template, which is used for
all further steps of the pipeline (Figure 1b).

The initial face template is deformed during the whole
sequence while correspondences between the vertices of the
template and the captured face are maintained. To achieve
this, we combine mesh modeling techniques with multi-
view stereo reconstruction: 2D image-samples, placed in
the first image of every view, are tracked over the entire
sequence (Figure 1c). In order to establish temporal corre-
spondences between successive frames, we use a 2D mesh
based tracking approach. Simple feature tracker like the
KLT tracker [21] often have the problem that features slide
past each other, since their displacements ore optimized in-
dependently of their local neighborhood. In the proposed
2D mesh tracking (Section 3.2) we can control for the global
smoothness of the produced mapping, to prevent foldovers.
Shooting rays through an image-sample of the first image
hits the initial face template and thereby defines an anchor
point in 3D. At each step, the tracked image-samples are re-
constructed using the Surfel Fitting approach [10] (top of
Figure 1d). Together with its anchor point lying on the
surface of the face template, a successfully reconstructed
image-sample will provide a constraint which is used in
the modeling step to deform the face template (Figure 1d).
See Section 3.3 for a more precise description. The pro-
posed modelling step has two advantages: First, if the Surfel
Fitting does not succeed the face template can still be de-
formed using surrounding successfully reconstructed Sur-
fels. Second, since the tracked face template provides good
initial solutions, Surfel Fitting becomes much more robust.

Since Surfel Fitting is used to reconstruct the initial face,
as well as to track facial movements we will describe this
approach in the next section. The advantage of this algo-
rithm is its simplicity since each Surfel can be optimized
independent of its local neighborhood.

2. Surfel Fitting

Our 3D multi-view stereo reconstruction method is
based on the simple to use Surfel Fitting approach intro-
duced by [10]. Assume we have an initial estimate of a sur-
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Figure 2. The 3D plane together with the image projection matri-
ces define a homography H which maps image points from I, to
points in the image /..

face element (Surfel) defined by a point and a normal. The
Surfel’s associated plane defines a homography which maps
pixels from a calibrated reference image I, to a calibrated
comparison image I.. Surfel Fitting optimizes the parame-
ters of the plane by minimizing pixel intensity differences
between the reference and comparison images.

Given the input plane defined by the initial position p €
R3 and normal n € R3, a reference image, and a set of
comparison images for the plane are defined by:

re{l,...,C}
I} e, €{1,...,C}

ref(p) = I,
comp(p) = (.-

where C'is the number of views. The reference image can
for example be chosen as the image where viewing direc-
tion and the vertex normal are closest to parallel. In all the
presented steps of the tracking workflow, we have a good
initial closed surface. Thus, the set of comparison images
can be obtained by a simple visibility test using the OpenGL
z-Buffer.

For simplicity we consider only one comparison image I. in
the following. Let the projection matrices for the reference
image and the comparison image be

P, =[Q.|q;] and P, = [Q.|q.]

Without loss of generality, we can transform the scene by
a matrix B such that P/, = P,.B = [Id3|0]. Together with
its normal n we define a plane at point p as N7 = [n”', §],
with § = —p - n. This determines a homography

HC(N) = (6Qc - qch) (6Qr - anT)
= (0Q;—awn”)
which maps pixels p € R? from the reference image to the

comparison image (Figure 2). The objective is to find new
plane parameters which minimize the energy function

E(N) =" (I(p) — L(H.(N)p))?
peQ

—1



where () is a square region in the reference image around
the projected vertex P,.p. Notice that the final energy takes
all comparison images into account and can be expressed as
E(N) =3 _E.. Wesetto15 x 15 pixels in all our ex-
periments. Using a Taylor expansion of the intensity func-
tion I.(H.(IN)p), we linearize the gradient of F and use
Newton’s method to solve for the optimal plane equation.
For stability reasons we subtract the average pixel intensity
from all pixels within the region. For more details on the
Taylor expansion and how to set up the linear system for
each step in Newton’s method, please see [10].

After minimizing the energy function, the 3D position
can be obtained by shooting a ray through the center of 2
and computing the intersection with the optimized plane.
Occasionally, due to noise in the images or badly textured
parts in human faces, this process does not succeed at every
vertex. If the plane equation is numerically ill-conditioned
or if the vertex was only visible in less than 2 cameras, we
discard the result. We also use a histogram based discarding
criterion: If the final error, is among the 20% largest errors
we discard the Surfel.

3. Workflow to Reconstruct a Dynamic Face

In order to reconstruct the dynamics of a face, the first
step is to fit the face template to the individual geometry of
the first frame. Then, the 2D mesh tracking establishes tem-
poral correspondence between pixels of successive frames
by tracking image-samples distributed over regions of the
first frame. Finally, 3D reconstructions of these image-
samples are used as handles to deform the face template
and thereby capture the movement.

3.1. Initialization of the Face Template

To reconstruct a human face by just using Surfel Fit-
ting would produce a point cloud of arbitrary size prob-
ably containing holes and outliers. We overcome this by
using a morphable model as a shape prior. Our face tem-
plate contains a fixed number of vertices (~ 8K) and is in
a one-to-one correspondence with the vertices of the mor-
phable model. The basic appearance of a neutral face can
be changed by adjusting some shape parameters. We initial-
ize the morphable model by fitting it to a set of user defined
points. The model is then automatically refined using the
correspondences generated by Surfel Fitting.

Morphable model. The morphable model we use is
similar to the one introduced by Blanz and Vetter [3]. To
generate the model, we scanned about 50 faces in a neutral
expression and established correspondences, similar to [3].
By adjusting shape parameters o;; we can approximate each
face of the database as a weighted sum of eigenfaces m;

added to an average face M

k
le\_/I—l—Zaj-mj
j=1

The small number of k eigenfaces are extracted by perform-
ing PCA on the laser scanned face data. If the database con-
tains K faces, PCA extracts K — 1 eigenfaces, describing
the main deviations from the average face. By excluding
eigenfaces with small eigenvalues, the dimensionality of the
face space is reduced to a small number £ < K, while keep-
ing the important details. To neglect high frequencies and
to obtain smooth surfaces, we set £ = 15 in all our experi-
ments.

Initial transformation and shape. For a rough estimate
of the rigid translation and rotation w.r.t. the coordinate sys-
tem of the cameras as well as the shape parameters, we use
a few user defined points like the corners of eyes and lips.
Defining these features in at least two views allows us to tri-
angulate the 3D location of those features. We assume the
user defined a very sparse set of L feature points denoted as

U = [ui,,...,u;,]T. Then the corresponding points of the
morphable model are
M = [M,,...,M;,]"

K
= [Mi1a-"7MiL]T+Zaj'[mjil""amjiL]T
j=1

We alternately optimize the rigid transformation and shape
parameters of the morphable model. To compute the
model’s translation and rotation, the method of Iterative
Closest Points [12] is used which minimizes the squared
distances between user defined points and corresponding
model points. In what follows, M denotes the rigidly trans-
formed morphable model.

After optimizing the rigid transformation, the new shape
parameters can be obtained by minimizing the function

Q
<o

K
E = Eshape + AEave = (M = U)? + 1)
j=1

Q
S

where o; denotes the eigenvalue of the eigenface m;. The
second term with weight A has a smoothing effect, because
faces near the average face have a smaller energy value. De-
riving this function w.r.t. the shape parameters « yields a
system linear in «. In each iteration A is lowered propor-
tional to the number of iterations, such that the morphable
model slowly approaches the user defined points.
Improvement of transformation and shape. In the
next step, we run the Surfel Fitting algorithm to calculate
new depth values for the vertices of the face model. To do
this for each vertex, a reference image is defined as that im-
age with viewing direction most parallel to the vertex nor-
mal. The comparison images are obtained from a visibility



Figure 3. Displacing the triangle vertices by do, d; and d2 yield a
similar intensity distribution within the triangle for both successive
images I/~ and I7.

test. The resulting point cloud, possibly containing some
holes, is used to augment the user defined feature points
U. For each new point u € U, a corresponding point is
obtained as the point on the face model with minimal dis-
tance to w. This results in new pairs (M, U), which are used
to compute new parameters for shape and rigid transforma-
tion, as described above.

3.2. Mesh Tracking in 2D

The objective of the 2D mesh tracking is to establish tem-
poral correspondences between successive frames. In our
setup we use five video cameras to track the dynamic facial
expression through time. Each view is tracked individu-
ally. To do this, we place a 2D mesh in the first image and
calculate displacements for every frame such that the mesh
tracks the 2D deformation. Since we can control for global
smoothness, foldovers can be prevented.

Initialization. We project the face template, recon-
structed as described in Section 3.1, into the first frame of
the considered view. The projected mesh is then remeshed
by the algorithm presented in [4], such that the new average
edge length covers about 25 pixel. We denote the remeshed
version of the mesh in the first frame as S.

Tracking. A view consists of a sequence of images

LN CAt o C A £

Given two successive images [ fand It the aim is to
find displacements d; = [d; ., d; |7 € R? for every vertex
of the given shape S/, such that differences in the intensity
distribution within each triangle of two successive images
are small (see Figure 3). Consider one triangle 7" of S/ A
pixel p = [x,y]7 € R? within this triangle has barycentric
coordinates [8g, 51, 82]. The barycentric coordinates and
the vertex displacements define a linear mapping 7 : R? —
R?, which maps p from the undeformed triangle of image
I/ to a deformed triangle in the image I/ 1. If I/ (p) is the
intensity function of an image I/, the minimization function
can be stated as

Er=Y"(F(p) -~ '\ (n(p))”

peT

If the time between two successive frames is short, the in-
put is already close to the optimal solution and a standard
Levenberg-Marquard minimization procedure is suitable to
solve for the displacements d;. Summing these energy func-
tions for all triangles yields the global energy function

Baa= Y BEr=Y Y (I'(p) ~ "' (x(p))’

TeSf Te§f DPET

To ensure a smooth distribution of the displacements we in-
troduce the additional energy term

Esmooth = Z wi Z Wi, j || di - dj H

eV (84) ! jeNeigh,

where V(S) is the set of vertex indices of the mesh S/ and
Neigh, denotes the 1-neighborhood of vertex p;. The stan-
dard chordal weights w; j = i —Pj [|*, wi = 3y, wij
are used to set up the Laplace system. Putting both terms to-
gether, the final energy function is denoted as

FE = Edata + /\Esmooth

where A\ controls the smoothness term.

3.3. Mesh Tracking in 3D

As initialization for the 3D mesh tracking we use again
the surface we estimated for the first frame. The objective
of the algorithm described in this section is to find a defor-
mation of the face template for every frame, such that the
highly detailed movements of the captured face are tracked
by the template face. To achieve this, we generate image-
samples in every view and track them in time. Using the
Surfel Fitting of Section 2, these image-samples are recon-
structed in 3D for every frame. Finally, these reconstructed
3D points are used to deform the template mesh. As stated
above this increases the robustness of Surfel Fitting and de-
couples the reconstruction of the dynamics from the inde-
pendent reconstruction of single image-samples.

Generating image-samples. Running the 2D mesh
tracking described in Section 3.2 on every view of the video
sequence produces a 2D triangle mesh S{ for each view ¢
and frame f. Supersampling the triangles of the meshes in
the first frame of the sequence generates 2D points that have
barycentric coordinates w.r.t. the triangle they are placed in.
For every view c this yields a set of points f)}yc for the first
frame, where a point can uniquely be identified by its index
1 and the view c it was put in. The number of image-samples
is a user-defined parameter. We usually place 1600 samples
in one view to obtain a dense reconstruction. The mapping
m, which is defined by the deformation of a 2D mesh from
one frame to the following, allows us to displace the image-
samples and thereby track them through the whole sequence
of a single view. This produces sequences of points f){ o



Figure 4. An anchor point of a image-sample P is obtained by the
intersection of a ray through p with the initial face template S*.

From image-samples to 3D trajectories. Section 3.1
describes how to fit a face template to the first frame of
a video stream. Assume the face template to be S'. For
each image-sample 1311,0 we introduce an anchor point on
the surface of S' by shooting a ray through p; . and de-
termining the intersection with S;. This intersection is lo-
cated within a triangle 7" and has barycentric coordinates
[v0, 71, 2] with respect to T (see Figure 4). An image-
sample f)f . can be reconstructed in 3D by using the Surfel
Fitting approach of Section 2. Given a face template S7—!
that was already fitted to frame f — 1, a good initial solution
for the Surfel position is obtained by evaluating the linear
combination of the triangle vertices of T € S/~! weighted
with [vo, 71, ¥2]- The normal of this triangle is also the ini-
tial plane normal for the Surfel. As a reference image, we
select the view c that the image-sample was initially placed
in. Since the fitted template of the frame f — 1 is already
a good approximation, this mesh is wellsuited for visibil-
ity tests to determine the set of (multiple) comparison im-
ages. If the Surfel Fitting succeeded, the reconstructed point
p{c € R3 is stored in a list denoted by Succ(f).

Deformation of the template mesh. In order to deform
the mesh we treat the pzf’ . as handles which drag the surface
S!. We define two objective functions. The first function
measures the squared distance between the Laplace vectors
of S' and those of the deformed surface S/

B =Y AV - AV |2
ves
Here, A denotes the discrete Laplace operator using the
cotangent weights evaluated on the surface S;. The sec-

ond function penalizes large deviation of the anchor point
from the reconstructed point and can be denoted as

Ec= Y

pESucc(p)

|| p — anchor(p) ||2

where the anchor point anchor(p{c) is calculated by inter-

polating the vertices of the triangle 7" associated with pf .

using the precomputed barycentric coordinates:

anchor(p{ic) = Z Y- vl
v €T

To obtain the new vertex positions of a mesh S¥, we solve
E=Fp+ ME¢

in the least-squares sense and repeat the whole procedure
for the next frame f + 1.

It is worth mentioning that this procedure can also help
improve the estimated surface S! of the first frame. At the
end of the process described in Section 3.1, a new point
cloud can be extracted by Surfel Fitting. For each Surfel,
we can compute an anchor point as the closest point on S*
w.r.t. the Surfel. These pairs can then be used to deform the
face template S!, asdescribed above. The deformed surface
does not lie in the space spanned by the morphable model
and is used as the input surface for all subsequent steps of
the pipeline.

4. Results

We generated all our results using a 2.6Ghz Intel Core i7
CPU. During 2D mesh tracking, the computation of the 2D
displacements for five views of one frame took an average
time of 52 seconds. The average time for the Surfel Fitting
of one frame, where we optimized about 8K samples from
all five views, was 50 seconds, leading to an overall com-
puting time of less than 2 minutes per frame. We collected
sequences of 5 different subjects each performing different
facial expressions for a duration of approximately 2 to 4 sec-
onds. In Figure 5 we present five examples. It shows one of
the input images together with the reconstruction of the neu-
tral face (left column). The middle column shows the result
of the deformation step where the surfels act as handles to
deform the neutral face (see the closeup images). Since we
decided to use a predefined face template with a fixed mesh
topology, further modelling steps, like e.g. the placement
of eyes, can be performed automatically. The right column
shows the same expression as in the middle with eyes and
simple lids modeled as triangle meshes. In all these exam-
ples, we left the parameters at a fixed setting. We observed
that the Surfel Fitting sometimes produces strong outliers if
the Surfel is only visible by two cameras, which usually oc-
curs at the face template’s boundary. This problem could be
solved by adding more cameras to the rig. In regions with
large specular reflection, which normally lie on the nose or
the cheek of a subject, Surfel Fitting does not produce reli-
able results. If such a Surfel was not discarded, it is possible
that it has still a large influence in the modeling step, since
we solve the system in the least squares sense. This might
produce a wrongly reconstructed surface. In future work
we would like to use RANSAC [8] methods to find outliers
more robustly.



Figure 5. Reconstruction Results. The Left column shows input images of neutral faces and their reconstructions. The extracted Surfels
and their anchor points define constraints in a modelling step to deform the surface. This is possible because we established temporal
correspondences by using the 2D mesh tracking algorithm. The deformation and the Surfels can be seen in the middle column. Since we
use a predefined face template automatic placements of e.g. eyes is easy (right column).

5. Discussion and Conclusion

Standard 3D reconstruction approaches from sparse fea-
ture points are generally quite sensitive to noise. The rea-
son for this is that in the energy function to be minimized
only a small local image region is considered. We over-

come this problem by using a simple morphable model of
neutral faces to estimate the more global appearance of the
face seen in the first image. This generates a surface similar
to the one being reconstructed, which strongly increases the
robustness of the Surfel Fitting.



In general a spatio-temporal correspondence can be ob-
tained by tracking features between views and frames. We
mainly had two problems using feature tracker like the KLT
tracker introduced in [21] or deriving correspondences by
using SIFT features proposed by Lowe [19]: First, the tem-
poral tracking does not take the neighboring features into
account. Because of that, it often produces trajectories
which slide past each other. These foldovers inducing high
distortions in the tracked face template. To correct this, we
chose the proposed 2D mesh tracking because we can con-
trol the global smoothness and prevent the features from
sliding. Second, tracking features between views produces
only a very sparse set of 3D features, which do not provide
enough constraints for the modeling step to get reliable re-
sults. In our proposed method, we distribute a large set of
(redundant) image-samples, so we are able to omit wrongly
reconstructed image-samples but still end up with a large set
of constraints for the modeling phase. Since each image-
sample is considered independently, the 3D reconstruction
is simple. Combining it with a simple modeling approach
which fulfils each constraint in the least squares sense, a
smooth surface can be produced and the robustness of the
reconstruction method can be increased (visibility, good ini-
tial solutions), while simultaneously maintaining full corre-
spondence between frames and subjects.

In this paper we introduced a system for markerless re-
construction of dynamic faces. Our system is able to estab-
lish inter-subject correspondence as well as temporal cor-
respondence. We presented reasons why we combined dif-
ferent algorithms from the field of mesh modeling and com-
puter vision and showed in numerous examples that our sys-
tem performs well.
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