Fast Image-Based Localization using Direct 2D-to-3D Matching

Supplementary Material

Torsten Sattler, Bastian Leibe, Leif Kobbelt RWTH Aachen University

{tsattler@cs, leibe@umic, kobbelt@cs}.rwth-aachen.de

In this supplementary material we present further details on the results of the experiments carried out in the paper. The material consists of three parts. The first part (Tables A-C) gives additional information for the Rome and Vienna dataset that complement Table 2 of the paper. The second part (Figure 1) details the effect of N_t on the inlier ratios of the registered query images and in the last part (Table E) we examine the experiment of trying to register query images from the other datasets against a model.

As mentioned in the paper, the behavior of tree-based and vocabulary-based prioritized search (VPS) methods is similar on all datasets. Therefore, only detailed results for the Dubrovnik dataset were given in Table 2 of the paper. Detailed results of the experiments for the Rome and Vienna dataset can be found in Tables B and C. Besides using the FLANN library [3] for kd-tree search, we also experimented with the ANN library written by David M. Mount and Sunil Arya [1]. Results for using ANN with different limits on the maximal number of leaf nodes visited during the search can be found in Tables A- C for the three datasets. Although ANN also is able to register significantly more images than the indirect method proposed by Li *et al.* [2], it performs slightly worse than FLANN.

We mentioned in the paper that the average time spent on pose estimation inside a RANSAC loop does not change significantly for choosing a value $N_t \ge 100$ for the threshold on the maximal number of correspondences (c.f. Table 3 in the paper, listed for reference as Table D in the supplementary material). From this observation we deduced that the choice of N_t does not affect the average inlier ratio for the registered images too much. We concluded that the threshold N_t on the number of correspondences does not bias the correspondence search towards false correspondences. To support this conclusion, we analyze the effect of different values for N_t on the distribution of inlier ratios over the registered query images, with R set to 0.2. Figure 1 shows these distributions, obtained by averaging the histograms of the inlier ratios over 10 repetitions of the experiment, for the different datasets and the VPS methods all descriptors and integer mean per vw. Although the distributions are slightly shifted towards lower inlier ratios, there is little difference when choosing a finite value for N_t on both the Dubrovnik and the Rome dataset. While there is a noticeable difference between the distributions for the Vienna dataset, the difference is only significant for higher inlier ratios where it has a smaller impact on the runtime of RANSAC. The results confirm our conclusion that the choice of N_t does not bias the correspondence search towards false correspondences.

The last part of the supplementary material deals with the experiment of trying to register query images from other datasets against a 3D model. While no image from another dataset could be registered, significantly fewer correspondences are found for these images as can be seen in Table E. As evident by the mean number of correspondences found, 12/N > R = 0.2 holds for query images from other datasets, with N being the number of correspondences found. As a consequence, the RANSAC-based pose estimation is accelerated and thus the rejection time reduced. Notice that the mean number of correspondences found for rejected images is lower than the threshold $N_t = 100$ and thus the prioritized search considers all features in the query image. The slight deviations in the mean rejection time for images from another dataset are caused by the random nature of RANSAC. The number of rejected images fluctuates for images from the same dataset (c.f. Table D). Therefore, the deviation in the rejection time for these images is also affected by the time spent on the linear search.

References

- S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. *J. ACM*, 45(6):891–923, 1998.
- [2] Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition using prioritized feature matching. In *ECCV*, 2010.
- [3] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISAPP, 2009.

		Dubrovnik							
			rejected						
		# reg.	# corr.	inlier	corr.	RNSC.	total	time	
	Method	images		ratio	[s]	[s]	[s]	[s]	
	flann 50 leaves	789	545.3	0.60	1.29	0.34	1.63	8.92	
	flann 100 leaves	793	581.8	0.62	1.64	0.39	2.04	11.54	
	flann 200 leaves	794	609.9	0.64	2.40	0.31	2.71	12.21	
ed	flann 300 leaves	795	620.1	0.64	3.11	0.30	3.40	14.45	
bas	flann 500 leaves	794	629.1	0.65	4.55	0.21	4.76	23.86	
e-l	ann 50 leaves	768	432.4	0.56	1.53	0.68	2.21	11.18	
tr	ann 100 leaves	779	488.7	0.59	2.07	0.46	2.53	4.27	
	ann 200 leaves	786	541.2	0.62	3.04	0.37	3.41	8.91	
	ann 300 leaves	790	568.5	0.63	3.97	0.53	4.51	9.16	
	ann 500 leaves	792	598.6	0.63	5.72	0.32	6.04	11.64	
	all descriptors	785	537.0	0.64	0.66	0.15	0.81	2.19	
	mean	774	472.9	0.62	1.08	0.53	1.61	2.36	
S	medoid	762	412.5	0.62	0.50	0.34	0.84	1.58	
[V	mean per vw	782	523.8	0.64	0.99	0.32	1.31	5.25	
	integer mean per vw	783	523.0	0.64	0.56	0.31	0.87	5.35	
	medoid per vw	778	480.7	0.63	0.52	0.14	0.66	4.34	
P2F [2]		753	-	-	-	-	0.73	2.70	

Table A: Comparison of different direct 2D-to-3D matching approaches on the Dubrovnik dataset. We list the number of successfully registered images (#reg. images), as well as the average time needed to register / reject an image. We furthermore report for successfully registered images the average number of correspondences (#corr.), the average inlier ratio, the average time needed to compute the correspondences (corr.) and the average time RANSAC needs to estimate the pose (RNSC.).

		Rome							
			rejected						
		# reg.	# corr.	inlier	corr.	RNSC.	total	time	
	Method	images		ratio	[s]	[s]	[s]	[s]	
	flann 50 leaves	978	462.0	0.72	2.09	0.58	2.66	5.36	
	flann 100 leaves	978	494.1	0.75	2.39	0.44	2.82	8.52	
	flann 200 leaves	981	518.4	0.76	2.98	0.51	3.49	5.69	
eq	flann 300 leaves	983	526.8	0.77	3.59	0.38	3.97	6.27	
bas	flann 500 leaves	985	535.0	0.77	4.83	0.45	5.28	3.28	
	ann 50 leaves	970	350.5	0.67	1.99	0.55	2.54	8.07	
ţ	ann 100 leaves	976	397.3	0.71	2.39	0.36	2.75	7.57	
	ann 200 leaves	979	442.0	0.74	3.20	0.49	3.70	8.28	
	ann 300 leaves	981	465.6	0.75	4.01	0.42	4.43	12.50	
	ann 500 leaves	980	493.9	0.76	5.40	0.53	5.92	14.52	
	all descriptors	979	493.9	0.75	1.00	0.53	1.53	4.07	
	mean	972	405.4	0.75	1.65	0.48	2.13	1.28	
PS	medoid	961	347.5	0.74	0.71	0.34	1.05	3.74	
Γ	mean per vw	976	475.3	0.75	1.64	0.58	2.23	6.50	
	integer mean per vw	976	474.0	0.75	0.74	0.59	1.33	5.92	
	medoid per vw	972	424.0	0.75	0.75	0.42	1.17	7.27	
P2F [2]		921	-	-	-	-	0.91	2.93	

Table B: Details for the Rome dataset to complement Table 2 of the paper.

	Vienna							
			rejected					
		# reg.	# corr.	inlier	corr.	RNSC.	total	time
	Method	images		ratio	[s]	[s]	[s]	[s]
	flann 50 leaves	218	447.3	0.60	1.16	1.36	2.52	8.84
	flann 100 leaves	219	463.2	0.63	1.62	0.62	2.25	4.64
	flann 200 leaves	219	470.8	0.67	2.49	0.12	2.61	2.93
eq	flann 300 leaves	220	471.5	0.68	3.34	0.09	3.44	2.72
oas	flann 500 leaves	220	472.3	0.69	4.99	0.07	5.06	3.65
e-l	ann 50 leaves	210	399.6	0.52	1.31	2.54	3.85	15.94
μ	ann 100 leaves	215	417.9	0.57	1.89	2.00	3.89	9.23
	ann 200 leaves	218	439.9	0.62	2.94	0.60	3.54	4.96
	ann 300 leaves	217	454.5	0.64	3.93	0.59	4.53	4.53
	ann 500 leaves	218	465.8	0.67	5.80	0.12	5.92	4.81
	all descriptors	211	414.7	0.59	0.42	1.41	1.83	9.95
	mean	210	370.7	0.57	0.65	1.40	2.05	9.19
S	medoid	203	339.6	0.55	0.34	1.89	2.23	9.40
Ń	mean per vw	212	399.1	0.58	0.59	1.87	2.46	6.87
	integer mean per vw	211	395.0	0.58	0.32	1.71	2.02	7.59
	medoid per vw	211	375.3	0.57	0.35	1.46	1.81	8.25
	P2F [2]	204	-	-	-	-	0.55	1.96

Table C: Details for the Vienna dataset to complement Table 2 of the paper.

		all descriptors			integer mean per vw				
N_t		# reg.	linear search [s]	RANSAC [s]	total [s]	# reg.	linear search [s]	RANSAC [s]	total [s]
lik	50	778.90 ± 1.52	0.04	0.05	0.23 ± 0.00	775.80 ± 1.48	0.03	0.05	0.21 ± 0.00
	100	783.90 ± 1.60	0.10	0.08	0.31 ± 0.01	782.00 ± 0.82	0.08	0.08	0.28 ± 0.01
10	150	783.90 ± 1.10	0.16	0.08	0.36 ± 0.01	781.80 ± 1.40	0.12	0.08	0.32 ± 0.01
llbr	200	784.40 ± 1.26	0.20	0.08	0.40 ± 0.01	782.50 ± 1.35	0.15	0.08	0.35 ± 0.01
Ω	∞	784.60 ± 1.17	0.47	0.08	0.68 ± 0.01	782.50 ± 1.08	0.34	0.08	0.54 ± 0.01
	50	972.00 ± 1.41	0.06	0.02	0.18 ± 0.00	971.30 ± 1.25	0.05	0.02	0.16 ± 0.00
Rome	100	976.90 ± 1.29	0.15	0.05	0.29 ± 0.00	974.60 ± 1.65	0.11	0.05	0.25 ± 0.00
	150	977.80 ± 1.32	0.23	0.06	0.39 ± 0.01	976.50 ± 1.51	0.17	0.06	0.33 ± 0.01
	200	979.20 ± 1.75	0.30	0.07	0.46 ± 0.01	976.90 ± 1.52	0.22	0.07	0.38 ± 0.00
	∞	980.10 ± 0.88	0.81	0.07	0.98 ± 0.00	976.90 ± 1.20	0.57	0.07	0.74 ± 0.00
	50	200.40 ± 1.26	0.02	0.13	0.28 ± 0.01	199.10 ± 1.20	0.02	0.10	0.26 ± 0.01
	100	207.70 ± 1.06	0.06	0.30	0.50 ± 0.02	206.90 ± 0.88	0.05	0.28	0.46 ± 0.02
Vienna	150	208.20 ± 0.92	0.09	0.30	0.52 ± 0.03	207.90 ± 0.74	0.07	0.29	0.50 ± 0.03
	200	208.80 ± 1.23	0.11	0.29	0.54 ± 0.04	208.20 ± 1.14	0.08	0.30	0.52 ± 0.03
	∞	207.90 ± 1.29	0.24	0.27	0.65 ± 0.03	208.20 ± 0.42	0.17	0.28	0.59 ± 0.03

Table D: Table 3 from the paper, listed for reference.

Query Images	Dubro	vnik	Rome		Vienna				
from	from avrg. #corr. avrg. time [s]		avrg. #corr.	avrg. time [s]	avrg. #corr.	avrg. time [s]			
all descriptors									
Dubrovnik (800 images)	37.79 ± 17.84	2.22 ± 0.26	12.47 ± 7.69	1.16 ± 0.01	25.48 ± 14.47	0.75 ± 0.01			
Rome (1000 images)	18.23 ± 12.85	0.59 ± 0.00	39.62 ± 29.75	1.90 ± 0.10	22.50 ± 15.21	0.68 ± 0.00			
Vienna (266 images)	28.58 ± 20.05	1.38 ± 0.00	18.51 ± 12.81	1.31 ± 0.00	42.72 ± 28.85	2.40 ± 0.06			
integer mean per vw									
Dubrovnik (800 images)	35.84 ± 17.76	1.70 ± 0.18	12.52 ± 7.65	0.86 ± 0.02	25.01 ± 14.08	0.66 ± 0.01			
Rome (1000 images)	17.67 ± 12.36	0.48 ± 0.00	39.21 ± 28.95	1.66 ± 0.10	22.24 ± 15.16	0.60 ± 0.00			
Vienna (266 images)	27.78 ± 19.49	1.22 ± 0.03	18.48 ± 12.86	1.01 ± 0.00	41.71 ± 28.80	2.43 ± 0.08			

Table E: Rejection performance for choosing $N_t = 100$ and R = 0.2. Since no query image belonging to a different dataset could be registered, we do not report the number of rejected images but only the average number of correspondences for images that were rejected (and the standard deviation in the number of correspondences) as well as the average time for rejecting an image and the deviation of that mean rejection time. Both methods find significantly fewer correspondences for query images from other datasets. As a result, the initial inlier ratio 12/N is substantially higher than 0.2, with N being the number of correspondences found for a query image. Therefore, RANSAC needs fewer steps to reject an image.

Figure 1: Effect of N_t on the inlier ratios. The figures show the distribution of inlier ratios for the registered query images for Dubrovnik using all descriptors (a) and integer mean per vw (b), for Rome using all descriptors (c) and integer mean per vw (d), and for Vienna using all descriptors (e) and integer mean per vw (f). The results confirm the conclusion made in the paper that the threshold N_t on the number of correspondences does not bias the correspondence search towards false correspondences.