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Abstract
Computing global illumination by finite element techniquesusually generates a piecewise constant approximation
of the radiosity distribution on surfaces. Directly displaying such scenes generates artefacts due to discretization
errors. We propose to remedy this drawback by considering the piecewise constant output to be samples of a (piece-
wise) smooth function in object space and reconstruct this function by applying a binary subdivision scheme. We
design custom taylored subdivision schemes with quadraticprecision for the efficient refinement of cell- or pixel-
type data. The technique naturally allows to reconstruct functions from non-uniform samples which result from
adaptive binary splitting of the original domain (quadtree). This type of output is produced, e.g., by hierarchical
radiosity algorithms. The result of the subdivision process can be mapped as a texture on the respective surface
patch which allows to exploit graphics hardware for considerably accelerating the display.

1. Introduction

Radiosity elements are a well-known technique to compute
global illumination in a diffuse environment10. Let a scene
be given byn patchesPi some of which emit radiosityBe

i by
themselves (light sources) and others only reflect a certain
portionρi of incoming light. The radiosity equation charac-
terizes the radiosity equilibrium in the scene, i.e., the state
when alln2 patch-to-patch interactions have a constant flow
of energy. This flow is controlled byform factors Fi; j which
describe the fraction of the radiosity emitted by patchPj that
is received byPi . With Bi the total radiosity ofPi , the equi-
librium is given by

[Bi ]i = [Be
i ]i +diag(ρi) [Fi; j ]i; j [B j ] j ; (1)

where we implicitly assume thatBi , Be
i andρi are constant

across the patches.

However, for image synthesis this assumption is not ap-
propriate. To achieve realistic visual appearance it is not
sufficient to compute the total amount of radiosity which
is transported between (large) patches but it is also neces-
sary to obtain more detailed information about its local dis-
tribution. Hence, one has to derive anoraclewhich estimates

how close to constant the true radiosity functionBi over the
receiving patchPi is. If the function varies by more than a
prescribed tolerance,Pi is split and interactions between its
children and the other patches yield an improved approxi-
mation ofBi which is piecewise constant on each sub-patch
(element). Further recursive splits are possible.

The form factor integralFi; j is usually estimated by a low
order cubature formula. In order to improve this approxima-
tion, the sending patch may be split as well. The ostensible
asymmetry in our exposition, i.e., that the receiver is subdi-
vided to improve the approximation ofBi (more samples on
Pi) while the sender is subdivided to improve the accuracy
of those samples, is balanced by the fact that the radiosity
transport between patches is bidirectional and whileFi; j de-
scribes the flow fromPj to Pi, Fj;i accounts for the opposite
direction.

Once the radiosity distributionsBi have been computed,
rendering the scene is done by mapping the illumination in-
formation either directly onto the geometric model or onto
its projection into image space. To accomplish this at inter-
active rates, a host of techniques12; 25; 23; 18; 19; 20; 11 to maxi-
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mize the visual quality with a minimum number of elements
has been proposed.

We distinguish pre- and post-processing techniques, i.e.,
methods which modify the tesselation of the patchesPi be-
fore solving the system (1) and other methods which use
the solution of (1) without interference and reconstruct the
true distribution as reliable as possible. A third class of tech-
niques improves the approximation power for individual el-
ements by using a representation for theBi with higher order
basis functions (wavelet radiosity).

The discontinuity meshing approach18; 19 tries to identify
the non-smooth features of a piecewise smooth distribution
Bi and subdivides patches non-uniformly to separate smooth
regions. Although this approach leads to good results and
improves the quality of the approximation compared to uni-
formly refining schemes, a post-processing stage becomes
necessary to handle the non-uniform meshes.

Typical post-processing methods construct a tesselation of
the patchesPi from the radiosity equation’s solutionBi with
a color value assigned to each node. Smooth color transi-
tions across each patch are then obtained by piecewise lin-
ear interpolation either in the object space or in image space.
While the linear interpolation is usually performed by to-
day’s graphics hardware, the tesselation still has to be done
by a software post-processor.

In this paper we propose a post-processing algorithm to
reconstruct smooth radiosity distributions from hierarchical,
piecewise constant, illumination data. We especially con-
sider quadtree-type data obtained through the Hierarchical
Radiosity algorithm. A radiosity texture is generated which
can be mapped onto the patches in real time by appropri-
ate graphics hardware that is no longer left to expensive
high-end workstations but can be found on current semi-
professional PCs as well. We believe that the texture based
approach is more promising than Gouraud-shading tech-
niques since it allows to increase the level of shading de-
tail without increasing the complexity of the scene, i.e., the
number of triangles.

Besides the presented application, our method which is
based on the adaption of stationary subdivision techniquesto
non-uniform hierarchical data, can be applied to more gen-
eral reconstruction tasks. In fact, it can be expected to per-
form well on any set of quadtree data where deep refinement
indicates regions of steep gradient and high frequency detail.

2. Hierarchical Radiosity

Hierarchical radiosity (HR)14 is an efficient algorithm to ap-
proximate the solution of the radiosity equation. The resolu-
tion up to which it computes the interactions between each
pair of patches is individually adapted to the gradient of the
corresponding form factor kernel. HR generates a quadtree
for every original patchPi with each node corresponding to a

sub-region ofPi (a finite element) which collects the contri-
butions of those sendersPj (or their sub-regions) whose form
factor is considered sufficiently constant across that element.

To update the radiosity functionsBi on all levels, the ra-
diosity scattered over each quadtree is firstpusheddown-
wards, i.e., each node’s radiosity is added to its four children.
This operation is reasonable because each node’s radiosityis
assumed to be constant (otherwise the oracle would have de-
cided to split). After this step has been performed only the
leaves of the quadtree carry some radiosity and, patched to-
gether, they represent the currently best (piecewise constant)
approximation of the true radiosity functionBi within the
patchPi .

To obtain a complete multi-resolution representation of
the radiosity functions, pushing is followed by apull step.
This operation estimates the total radiosity of each node as
a function of its children’s values. This step is necessary to
allow each patch to interact on all levels.

2.1. Degrees of Freedom

The general set-up for HR leaves several degrees of freedom.
The most important ones are the particular way how form
factors are computed and the design of the oracle.

Form Factors Let Ai be the area of patchPi. Neglecting
occlusions and assuming equal distribution, the amount of
radiosity which is transported from patchPj to Pi is deter-
mined by the form factor

Fi; j =

1
Ai

Z

Pi

Z

Pj

cosθi cosθ j

π r2 dAj dAi ; (2)

where for two pointsp andq on Pi andPj respectively, the
anglesθi andθ j are spanned by the connecting raypq and
the surface normals, andr is the distancekp�qk.

Since the evaluation of (2) is computationally quite com-
plex one usually approximatesFi; j by differently careful
heuristics. In the simplest caseFi; j is approximated by a one
point cubature formula

Fi; j � A j
cosθi cosθ j

π r2 ; (3)

where the angles and the distance are measured from the
centers of both patchesPi andPj . This approximation is ac-
curate if the sizes of both patches are small compared to their
distance and if their radiosity is approximately constant.

If one of these assumptions does not hold, we obtain a
better approximation if at least one of the integrals is ap-
proximated by a higher order cubature formula, i.e.,

Fi; j �
A j

Ai

Z

Pi

cosθi cosθ j

π r2 dAi (4)

accounts for variation of the kernel on the receiver and

Fi; j �

Z

Pj

cosθi cosθ j

π r2 dPj (5)
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Figure 1: Original control meshP0 and the four times subdivided meshP4 as an approximation ofP∞.

for the sender respectively. In either case the interactions are
assumed to happen between one patch and the center of the
other.

Although the differential form factors (4) and (5) seem to
be analogue, there is a fundamental difference in their inter-
pretation: Speaking in terms of radiosity-energies Ei =Ai Bi ,
the integral (4) stands for thecollectionof incoming energy
onPi while the integral (5) is anaveragingof emitted energy
from Pj (hence the asymmetric normalization in (2)).

We further observe that while both formulae (4) and (5)
were solely introduced to improve the approximation ofFi; j
and to cope with the singularity of the kernel in special con-
figurations, formula (5) can be considered as a point sam-
ple functional of the radiosity function. The assumption of
equally distributed radiosityB j on the sending patchPj im-
plies in this case thatFi; j B j represents theexactradiosity
received on an infinitesimal region around the center ofPi .
The value obtained by this point evaluation is then taken to
be the average value overPi .

We will exploit this fact, i.e. that the radiosity values ob-
tained by (5) are more reliable at the element’s centers, later
when we reconstruct a smooth radiosity function. Notice that
the pull operation of HR eventually destroys this property of
the values computed by (5). Hence, we have to omit thelast
pulling step if we want to use non-leaf data of HR’s output
for interpolatory reconstruction. The push operation doesnot
affect the accuracy if the oracle works correctly since this
guarantees that only the constantly distributed fraction of the
radiosity is moved down through pushing.

Oracle This procedure decides whether the radiosity
emitted by the current senderPj is to a sufficient degree
equally distributed across the current receiverPi. If the or-
acle answers affirmative then no further subdivision is nec-
essary (for this interaction) and the HR recursion stops. If
the oracle advises to refine then HR splits either the receiver
or the sender whichever is expected to have more impact on
the approximation of the form factor integral. Formulae to
compute the gradient of the form factor kernel exactly can
be found in13.

In 14 this oracle is implemented by simply testing whether
the differential form factor (4) is below some thresholdε.

This oracle works correctly ifPi andPj are small compared
to their distance.

A more reliable way to estimate the local variation of ra-
diosity is to sampleFi; j according to (5) at several locations
in Pi and approximate the gradient of the radiosity function
by an appropriate divided difference scheme17. The addi-
tional computational costs can be minimized if the samples
lie on a uniform grid and can be re-used on the next refine-
ment level.

3. Uniform Subdivision Schemes

Subdivision schemes are classically used for the efficient
generation of smooth surfaces7; 16; 15. Starting with control
points p0

i; j 2 IR3 which form an initial (regular) mesh of

verticesP0 = [p0
i; j ], we iteratively compute refined meshes

Pm = [pm
i; j ] with vertices becoming more and more dense. If

the rules by which the new verticespm+1
i; j are computed from

pm
i; j , are chosen appropriately, the sequencePm converges to

a smooth limit surfaceP∞. However,Pm for a moderatem
usually provides a sufficient accurate approximation of that
surface (cf. Figure 1 where the scheme of15 is used).

For our application, we are not exactly interested in sur-
face design but the subdivision paradigm ofreconstructing
a smooth function by iterative refinementis still applica-
ble. The initial control data are radiosity samplesc0

i; j and
a smooth surface corresponds to a smooth transition over the
patch (which is the domain of the radiosity function).

Consider a patchPi which is uniformly split into 2m�2m

elements each carrying an amount of radiositycm
i; j . A sub-

division operator maps the “mesh” of elements (or cells)
Cm = [cm

i; j ] to a refined meshCm+1 with 2m+1
�2m+1 cells,

i.e., each cellcm
i; j is split into cm+1

2i;2 j , cm+1
2i+1;2 j , cm+1

2i;2 j+1, and

cm+1
2i+1;2 j+1 (cf. Figure 2).

We derive the refinement rules for the subdivision
schemes by taking the tensor product of appropriate uni-
variate schemes. A univariate scheme is defined by a finite
sequence of coefficients[αi ]. To subdivide thesequenceof
valuesCm = [cm

i ], thecm+1
j are computed by

cm+1
j := ∑

i
α j�2i cm

i : (6)

c
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cm+1

2i+1,2j+1

c2i,2j

m+1
c2i,2j+1

m+1

cm+1

2i+1,2j

c i,j

m

Figure 2: Applying subdivision to cell data splits each cell
into four children.

This definition contains two individual rules triggered by the
parity of j 8. Since the sequence[αi ] is finite, the sum in (6)
is finite as well, i.e., every new value is a linear combina-
tion of old values from a local vicinity. At the boundaries
some of the neighboringcm

i might be undefined. In this case
we have to estimate them by extrapolation, e.g.cm

�1 can be
found by evaluating the lowest order polynomial interpolat-
ing cm

0 ; : : : ;cm
k .

From a sequence[αi ] we easily derive the matrix[βi; j ] =

[αi ]
T
[α j ] which defines a bivariate subdivision scheme by

the four rules

cm+1
k;l := ∑

i
∑

j
βk�2i;l�2 j cm

i; j (7)

again depending on the parity ofk andl .

The limit functionC∞ generated by iteratively applying
a subdivision scheme[βi; j ] can be represented as a linear
combination of (shifted)scaling functions, each associated
with one cell of the original meshC0. The support of this
scaling function is the region of non-vanishing values inC∞
when the scheme is applied to the Dirac-type input[c0

i; j ] =

δi δ j . The support of the scaling function describes the region
of C∞ which is influenced by a single cellc0

i; j .

3.1. Some Useful Schemes

The smoothness of the limit curves or surfaces of a subdivi-
sion scheme can be derived from certain conditions on the
coefficients[αi ]. This has been thoroughly investigated in2.
We do not go into the details of the analysis of subdivision
schemes but we just give three examples for schemes which
are useful in the context of our application. More material
about subdivision schemes can be found in8.

Quadratic B-Splines If we choose the mask[αB
i ] =

1
4 [1;3;3;1], the limit function C∞ will be the piecewise
quadratic B-spline curve which is defined by the control ver-
ticesP0 1. The corresponding tensor product scheme is given
by the matrix

[βB
i; j ] =

1
16

0

B

B

@

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

1

C

C

A

:

This notation has to be read as follows: According to (7) we
select, depending on the parity of the indicesk andl , the odd
or even rows and columns of the matrix[βB

i; j ]. This will leave
four non-vanishing coefficients for each subdivision rule:

cm+1
2i;2 j :=

1
16

(9cm
i; j +3cm

i�1; j +3cm
i; j�1+ cm

i�1; j�1)

cm+1
2i+1;2 j :=

1
16

(9cm
i; j +3cm

i; j�1+3cm
i+1; j + cm

i+1; j�1)

cm+1
2i;2 j+1 :=

1
16

(9cm
i; j +3cm

i�1; j +3cm
i; j+1+ cm

i�1; j+1)

cm+1
2i+1;2 j+1 :=

1
16

(9cm
i; j +3cm

i+1; j +3cm
i; j+1+ cm

i+1; j+1)

Due to the symmetry of[βB
i; j ] the rules for the four children

are obtained by rotation aboutcm
i; j .

The B-spline scheme has only positive coefficients and
minimal support which makes it numerically very stable. No
additional oscillations are introduced (variation diminishing
property). However, the scheme is not interpolatory and the
deviation of the limit functionC∞ from the initial data may
be significant. Hence, this scheme should be applied in situ-
ations where the samplesc0

i; j are biased by noisy errors.

Polynomial Interpolation Better interpolatory properties
provide schemes which are derived from a heuristic based
on local polynomial interpolation4. We derive a univariate
scheme where the cellcm

i of the unrefined sequenceCm is
split into cm+1

2i and cm+1
2i+1. Cell values are represented by

point samples at the center. To obtain the values for the new
cells, we construct the quadratic polynomialfi which uni-
formly interpolatesfi( j) = cm

i+ j for j = �1;0;1. This in-

terpolant is then evaluated atcm+1
2i := fi(�

1
4) andcm+1

2i+1 :=

fi(
1
4). More precisely, we get the interpolantfi(x) = a+

bx+cx2 by solving the Vandermonde system
0

@

1 �1 1
1 0 0
1 1 1

1

A

0

@

a
b
c

1

A

=

0

@

cm
i�1

cm
i

cm
i+1

1

A

and obtaincm+1
2i := fi(� 1

4) by

cm+1
2i := (1;�

1
4
;

1
16

)

0

@

1 �1 1
1 0 0
1 1 1

1

A

�10

@

cm
i�1

cm
i

cm
i+1

1

A

=

1
32

(5cm
i�1+30cm

i �3cm
i+1)

:
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The analog refinement rule forcm+1
2i+1 is

cm+1
2i+1 :=

1
32

(�3cm
i�1+30cm

i +5cm
i+1)

due to symmetry. Merging both rules, we get the coefficients

[αP
i ] =

1
32

[�3;5;30;30;5;�3]

and the matrix

[βP
i; j ] =

1
1024

0

B

B

B

B

B

B

@

9 �15 �90 �90 �15 9
�15 25 150 150 25�15
�90 150 900 900 150�90
�90 150 900 900 150�90
�15 25 150 150 25�15

9 �15 �90 �90 �15 9

1

C

C

C

C

C

C

A

for the bivariate tensor product scheme. Each individual rule
uses a symmetric neighborhood of 3� 3 cells aroundcm

i; j

to compute its four childrencm+1
2i;2 j , cm+1

2i+1;2 j , cm+1
2i;2 j+1, and

cm+1
2i+1;2 j+1. Again the rules are rotations of each other.

Although this scheme is derived from polynomial inter-
polation, the limit function obtained by iterative application
of the subdivision operator, does not interpolate the origi-
nal data exactly. The reason for this is that cell values are
assigned to the centers of the cells and the midpoint of
cm

i; j is not a midpoint of any cell from a finer subdivision
level. Nevertheless the approximation error can be bounded
to about 3% of the true function value.

We can reduce the approximation error to less than 10�5

by enlarging the subdivision mask[βP
i; j ] to 8�8 without af-

fecting the polynomial precision of the scheme. The con-
struction is based on the idea to add a pertubation-scheme
which vanishes on data sampled from quadratic polynomi-
als. The simplest candidate for this is the third forward dif-
ference operator. Scaling the pertubation yields an additional
degree of freedom which can be exploited to minimize the
interpolation error. The resulting univariate scheme is given
by

[αP+
i ] =

1
32

[λ;�3�λ;5�3λ;30+3λ;30+3λ;5�3λ;�3�λ;λ]

with λ � �0:31158. The corresponding bivariate scheme is
obtained by[βP+

i; j ] = [αP+
i ]

T
[αP+

j ].

Average Interpolation This scheme was first proposed
in 5 and it is based on the assumption that the given val-
ues represent averages or integrals of the sampled function.
Interpolatory subdivision in this context has to guarantee
cm

i = cm+1
2i + cm+1

2i+1, i.e., the energy is distributed but its total
amount is conserved. Again, we construct a quadratic poly-
nomial fi which interpolates the given data

Z j+1

j
fi(x)dx = cm

i+ j ; j =�1;0;1

and the new values on the refined level are given by

cm+1
2i :=

Z 1=2

0
fi(x)dx; cm+1

2i+1 :=
Z 1

1=2
fi(x)dx:

Explicitly computing the coefficients leads to

[αA
i ] =

1
16

[�1;1;8;8;1;�1]

and

[βA
i; j ] =

1
256

0

B

B

B

B

B

B

@

1 �1 �8 �8 �1 1
�1 1 8 8 1 �1
�8 8 64 64 8 �8
�8 8 64 64 8 �8
�1 1 8 8 1 �1

1 �1 �8 �8 �1 1

1

C

C

C

C

C

C

A

Remark There is a fundamental difference between the
four proposed schemes. For[βB

i; j ], [β
P
i; j ] and [βP+

i; j ] the data

cm
i; j are function values and for[βA

i; j ] the cm
i; j are integrals

(which is average function valuetimes the size of the in-
terval). Hence, if the input data is constant,cm

i; j = 1 for all

i; j then the schemes[βB
i; j ], [β

P
i; j ] and [βP+

i; j ] will generate

cm+1
i; j = 1 for all i; j while [βA

i; j ] generatescm+1
i; j =

1
4 since bi-

nary subdivision splits every element into four equally sized
children.

3.2. Approximation power

To measure the approximation power of the subdivision
schemes when reconstructing the radiosity function, we run
tests on data sampled from a known reference function and
analyze the asymptotic behaviour of the approximation er-
rors. The used reference function is the illumination of a
square by a point light source placed above it.

All proposed schemes have quadratic precision but only
the interpolatory one,[βP+

i; j ], can be expected to have cubic

convergenceO(h3
). The B-spline scheme[βB

i; j ] is known to

have quadratic convergenceO(h2
)which is the rate by which

a B-spline’s control polygon converges to the curve under
subdivision21.

We generated a 29
� 29 grid of exact function values as

the reference radiosity. Then we subsampled this data on
a 2k

� 2k grid an performed 9� k refinement steps by the
respective subdivision scheme. TheL2 approximation er-
ror ek was computed by comparing the result of the sub-
division scheme to the reference data. Figure 3 shows the
results for the three schemes[βB

i; j ], [β
A
i; j ], and [βP+

i; j ]. The
shown values are estimates of the approximation orders, i.e.,
log2(ek+1=ek).

4. Reconstructing Hierarchical Data Using Subdivision
Schemes

We implement the algorithm to reconstruct the radiosity
function as a post-processing step. The HR algorithm puts

c
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2

3

1 2 3 4 5 6 7 8

B-Spline 3x3

2

3

1 2 3 4 5 6 7 8

Average 3x3

2

3

1 2 3 4 5 6 7 8

Interpolating 4x4

Figure 3: Convergence rates for the approximation errors of reconstructions by the quadratic B-Spline scheme[βB
i; j ] (left), the

average interpolating scheme[βA
i; j ] (center), and the interpolating scheme[βP+

i; j ] (right).

out a quadtree for every original patch of the scene. Depend-
ing on which formula we used to approximate the form fac-
tors, different subdivision schemes apply.

If we use (3) then the form factor has been approximated
very coarsely and the scheme[βB

i; j ] is appropriate since it
reduces the artefacts that result from low quality sampling.
Formula (4) gives good estimates of the total radiosity col-
lected over the whole area of the receiving patch and hence
the average interpolating scheme[βA

i; j ] is well suited. Fi-
nally, (5) provides accurate samples of the local radiosity
at the centers of the elements and therefore the interpolatory
schemes[βP

i; j ] and[βP+
i; j ] are the best choice.

Subdivision schemes as described in Section 3 perform
uniform subdivision on uniform meshes. Hence, we have
to modify the basic algorithm to allow non-uniform input
meshes as well. Within our application, we can restrict the
type of non-uniformity to adaptively refined quadtree data.

An intuitive attempt for the reconstruction algorithm is the
following:

We refine the quadtree level by level, i.e. we fill in the
missing nodes in a breadth first order. At any time the col-
lection of the leaves represent the currently best available
reconstruction of the radiosity function. After all existing
leaves at levelmhave been split, we proceed to the next level.
The children of a levelm node are computed by the subdi-
vision rules[βi; j ] if they do not already exist. The necessary
information from neighboring nodes (on the same level) is
always available due to the above assumption on the order
by which the split operations are performed. If a node from
level m has been split by HR then the data stored in its child
nodes are considered to be the true values and no further
computations are necessary.

It turns out that the above algorithm leads to surprisingly
poor results (cf. Figure 4). To explain this effect we have to
investigate the consequences of the push/pull operation in
more detail.

For every quadtree representing a patchPi, the push op-
eration propagates the radiosity down to the leaves of the
tree. This actually accumulates all the information about the

radiosity distributionsBi as computed by HR. The pull step
then computes a complete pyramid of down sampled approx-
imations. This transformation implicitly assumes a decom-
position of the radiosity function into box-functions (charac-
teristic functions of the elements). Such a pre-reconstruction
obviously conflicts with our post-reconstruction based on a
smoothing subdivision scheme.

In order to reconstruct the radiosity function properly, we
have to make sure that the influence of the input data is re-
stricted to a fixed sized neighborhoodon the same level. The
source for the artefacts in Figure 4 is that the scaling func-
tions resulting from the schemes of Section 3.1 have a larger
support than the box-functions.

Consider a quadtree leafcm
i; j at level m. It should influ-

ence the reconstructed function exactly on that part of the
domain which is covered by the corresponding scaling func-
tion’s support. If we perform “pull” to estimate the value
cm�1

i=2; j=2 at the(m�1)st level then the actual region which is
affected bycm

i; j becomes twice as big: it is the support of the

scaling function associated withcm�1
i=2; j=2. To reconstruct the

radiosity function correctly, we therefore have to omit thefi-
nal pull step (earlier pull steps are necessary for HR to work
correctly).

After pushing without pulling, only the leaves carry valid
data. Hence, when applying the above algorithm, me may
encounter situations where some of the neighbors of a cell
cm

i; j which is to be split next, do not carry valid data because
they are inner nodes of the original quadtree. In that case we
are not allowed to use information to be found deeper in tree
because this would be a form of pulling. Instead we have
to estimate the missing value by extrapolating data from the
same level (just as if it was the outer boundary of the original
patch). Figure 4 shows the corrected reconstruction.

Notice that the modified subdivision scheme maintains
polynomial precision on non-uniform quadtree data if we
use low order polynomials for the extrapolation. This is an
important feature since it is crucial for the approximationor-
der of the subdivision scheme (cf. Sect. 3.2).

Since the subdivision rules are applied only when the chil-
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Figure 4: Radiosity distribution with sharp shadow boundary on a quadtree partition (left). We show the corresponding radios-
ity function reconstructed by a smoothing subdivision scheme with pulling (middle) and without pulling (right).

dren’s values arenot contained in HR’s output, we automati-
cally make sure that no original information on the radiosity
distribution is pertubated. In fact, the algorithm only uses
data from the quadtree’s leaves and therefore ignores data
generated by the final pull step of HR. Hence, our recon-
struction works as an independent post-processing step and
no modification of the HR implementation is necessary.

Remark We emphasize on the observation that HR uses
adaptive splitting to refine the sampling rate of the radios-
ity distribution only in regions with relevant detail. Conse-
quently, at edges where elements from different generations
meet, the level of detail (of the radiosity function) changes.
Our reconstruction algorithm guarantees that information
propagates across these edges only on the finer of the scales
while larger basis functions are chopped off. By this we are
able to smoothly interpolate the data while preserving sharp
detail according to the local level of detail.

5. Implementation

If we use one of the subdivision schemes proposed in Sec-
tion 3.1, it is sufficient to know the values of the eight direct
neighborscm

i�1; j�1 when splitting the cellcm
i; j . We implement

a single split operation by a proceduresplit(N). If one of
the nodes which are needed to compute the linear combi-
nations (7) does not carry valid information, i.e., if it is an
inner node of the HR quadtree, we substitute it by the value
cm

i; j (constant extrapolation) or by a value obtained through
least squares linear extrapolation of the valid data among the
cm

i�1; j�1.

The whole reconstruction algorithm can be implemented
by a procedurereconstruct(N,i) which subdivides
the nodes of a quadtreeN down to the leveli. This procedure
has to be called for each quadtree andi = 0;1; : : : ;M� 1
(breadth first). Its output is a uniformly refined quadtree
whose leaves describe the radiosity function in a resolution
of 2M

�2M pixels. This data can be mapped as a texture on
the respective patch for display.

Compared to the computational complexity of HR, the

computing time of this post-processing step can be ne-
glected. Besides the superior quality, this algorithm is also
easier to implement than reconstruction techniques based on
Gouraud-shading since the tedious tesselation of the non-
uniformly subdivided patches is no longer necessary. As tex-
ture hardware is meanwhile available not only for high-end
graphics computers, radiosity mapping with textures could
soon replace the still often applied Gouraud-shaded trian-
gles.

6. Hierarchical vs. Wavelet Radiosity

Wavelet radiosity (WR)22; 9 is an elegant and general ap-
proach to efficiently approximate the solution of the radios-
ity equation. It is a generalization of HR and uses higher
order basis functions to approximate the form factors by a
hierarchical decomposition. By this, WR obtains a signifi-
cantly higher order of approximation which accelerates the
convergence if patches are further split. However, the com-
putational costs to evaluate a single interaction in WR are
much higher than for HR and hence (in terms of approxima-
tion error per cycle) WR beats HR only if very small error
tolerances are prescribed.

Another advantage of WR is that the reconstructed ra-
diosity function is smooth which gives visually better results
than the blocky appearance of HR’s output. This drawback
of HR is what we propose to overcome by a post-processing
subdivision scheme and thus making HR competitive to WR
up to moderate accuracy approximations — especially for
complex scenes.

As a special case of WR, HR’s output can be considered
as the coefficients of the radiosity function’s representation
with respect to a basis of box-functions. However, the for-
mulae (3) and (5) indicate that those coefficients are obtained
by sampling the form factors at the centers of the elements
and assuming (by asking the oracle) that the functions do
not vary by more than a prescribed tolerance. Hence, the ap-
proximations of the function values are most reliable near
the centers of the patches.
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From this point of view it is reasonable to replace the orig-
inal box-functions by (interpolating) smooth scaling func-
tions when it comes to the reconstruction. The radiosity at
the centers of the patches will still be as computed by HR,
but the artefacts at element boundaries will be removed.

If formula (4) is used, then the same argument applies be-
cause the information contained in HR’s output (the average
radiosity in this case) is preserved while visual quality isim-
proved by smoothing.

7. Example

In this section we analyze the behavior of our reconstruction
scheme by applying it to data obtained from the lighting sim-
ulation of an office test scene. Figure 5 shows four versions
of the scene, reconstructed from the same radiosity solution.

The upper row shows the unmodified quadtree obtained
from the Hierarchical Radiosity algorithm. In the center im-
ages, radiosity is reconstructed using Gouraud-shaded trian-
gles 12 which makes a modified tesselation necessary. Due
to the linear interpolation in image space, Mach-band effects
lead to clearly visible artefacts and make the underlying tri-
angulation visible, especially along shadow boundaries.

In the lower left image, the subdivision method based
on quadratic B-Splines is used to reconstruct the radios-
ity function on the patches. The uniform radiosity grid
obtained from the algorithm is represented by a texture
and mapped on the corresponding patches. Neither Mach-
banding effects nor the underlying topological patch struc-
ture are visible. For the lower right image, the interpolation
scheme[βP+

i; j ] was used. Since the Hierarchical Radiosity al-
gorithm does not produce reliable data, especially for visibil-
ity, the smoothing B-Spline scheme produces better results
at shadow boundaries.

In a real-time animated walk through the scene of Fig-
ure 5, we could achieve frame rates of 5 frames per second
with Gouraud-shaded triangles (212 ms/frame), 10 frames
with flat shading (86 ms/frame) and 20 frames with radiosity
textures (48 ms/frame). The running times were measured on
a Silicon Graphics O2 station. The reason for the high frame
rate with radiosity textures is the minimal number of faces.

8. Conclusions and Future Work

We presented a technique to use binary subdivision schemes
known from surface design for the reconstruction of the
radiosity distribution on the patches of a globally illumi-
nated scene. The proposed algorithm can process adap-
tively refined quadtree data as produced by hierarchical ra-
diosity. The results are globally smooth radiosity functions
while sharp detail is conserved through a proper treatment
of the additional information stored in the structure of the
quadtrees. Depending on the particular approximation of the

form factors, different subdivision schemes lead to best re-
sults. The reconstructed radiosity function can be used for
texture mapping and exploiting graphics hardware acceler-
ates the display significantly.

Several custom taylored subdivision schemes are con-
structed which perform uniform refinement of cell-type data.
Particularly the new scheme[βP+

i; j ] which is interpolatory,
provides an interesting contribution of its own.

The presented refinement schemes for hierarchical
quadtree data can be applied to reconstruction tasks from any
kind of samples provided that sharp features are indicated by
adaptively refined sample grids. Especially anti-aliasingon
adaptive image data, e.g., from adaptive ray-tracing, could
be an area for future applications.

Future research to further improve the behavior of the
smoothing scheme has to address the problem that some
ringing can still be observed in regions where sharp local
detail is of the same frequency as the sampling rate induced
by the size of the leaves in the quadtree computed by HR.
We plan to remedy this difficulty by applying low pass fil-
ters whose filter shape (e.g. the stop band) is adapted to the
local level of detail.
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Kobbelt et al., Figure 5. Upper row: Radiosity solution rendered with flat shading (left), quadriliteral mesh (right). Middle
row: Same solution rendered with Gouraud shaded triangles (left) and triangle mesh (right). Bottom row: Reconstruction with

B-Splines (left) and interpolatory scheme (right).
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