
Robust and Efficient Evaluation of Functionals
on Parametric Surfaces

Leif Kobbelt

Computer Sciences Department (IMMD IX), University of Erlangen - Nürnberg

Am Weichselgarten 9, 91058 Erlangen, Germany

kobbelt@informatik.uni-erlangen.de

Quality control is an important issue in computational geome-
try. Since analytical properties like the differentiability of a bound-
ary representation are often not sufficient to fully judge the quality
of an object, additional criteria measured in terms of scalar valued
functionals have to be verified. Energy functionals in the context of
fairing are just one example where the global smoothness of a sur-
face is rated by one single value, e.g., the total amount of (squared)
curvature. More “industrial” examples are the computationof phys-
ical propertieslike the surface area or the volume of an object, its
center of gravity, or the moments of inertia.

Let an objectX of arbitrary topology be given by a closed
boundary representation� : f

i

g ! IR3. The functionals we
consider, have the form

P (X) :=

X

i

Z

i

F (�;�

u

;�

v

) du dv (1)

whereF : IR3

! IR does not depend on the geometry ofX. Hence,
once the functionalP characterizing the property under investiga-
tion is found, the problem reduces to the numerical approximation
of a bivariate integral. A closed form solution forP is usually not
known – even ifX is a polyhedron with� being piecewise linear.

In this paper we suggest solutions for the key steps of an algo-
rithm which performs the task of approximately evaluating (1) on
a parametric surface. The efficiency of the algorithm results from
the adaption of powerful quadrature techniques to the particular
geometric setting. The robustness of the algorithm is due toexact
arithmetic operations.

Non-uniform Romberg-quadrature

Iterative algorithms to approximately evaluate (multivariate) inte-
grals use anadaptiverefinement approach. The integrand function
is sampled on an initial uniform grid and a simple cubature formula
is applied. A posteriori error estimates decide whether thegrid has
to be refined in order to meet prescribed error tolerances[Str71].
The different approximations to the exact solution which one ob-
tains by this iterative process can be subject to an extrapolation
scheme that allows to further reduce the approximation error [Sto83].

Romberg-quadrature [Bul67] efficiently computes the Richard-
son-extrapolation by a Neville-type scheme. If a polynomial ex-
pansion of the approximation error as a function of the grid’s step

Copyright c

1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part

or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or direct commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/ora fee.
Request permissions from Publications Dept., ACM Inc., fax+1 (212) 869-0481, or (permissions@acm.org).

width h exists, the value of this polynomial ath = 0 can be com-
puted by extrapolating approximate resultsT

i

with step widthsh
i

.
Romberg-quadrature specifically uses the trapezoid quadrature rule
and the step widthsh

i

= 2

�i. FromT

i;i

:= T

i

we recursively
compute a tableau of valuesT

i;j

by

T

i;j

:=

4

j�i

T

i+1;j

� T

i;j�1

4

j�i

� 1

: (2)

[Bul66] shows that the error of the extrapolated valueT

0;k

with
respect to the exact solutionT

1

can be bounded by

jT

0;k

� T

1

j � � jT

1;k

� T

0;k�1

j (3)

for an appropriate0 < � � 1.
The major draw-back of this approach is the exponentially in-

creasing number of function evaluations that are necessaryto ob-
tain an approximation on the next refinement level. Slightlyreduc-
ing the prescribed error tolerance may increase the runningtime by
the factor4. Hence, one introducesselectiverefinement, i.e., only
those parameter regions are refined where large local errorsoccur.
Although this contradicts the assumption of nested uniformgrids
which is crucial for extrapolation schemes [Slu82], we combine the
two opposite concepts in a scheme that allows to use selectively re-
fined grids for a modified Romberg-quadrature.

Consider a triangular parameter domain
. The exact trape-
zoidal sumsT

i;i

stem from a uniform subdivision of
 into 4

i sub-
triangles. Selectively refining onlysomesub-triangles yields an
approximate valueeT

i+1;i+1

which is the sum of local results from
different grid levels. Our goal is to bound the error of the extrap-
olated valueseT

0;k

� T

0;k

. This allows the application of (2) with
(3) replaced by a modified error estimate.

Due to the exponential increase of parameter triangles, most of
the effort is spent on the finest level. Reducing the complexity on
this level has the heaviest impact on the total running time of the
algorithm. The geometric background of the functionals ensures a
regular behavior of the integrand function. Since the localconver-
gence of the trapezoid rule isO(h

4

), the probability that a selective
refinement algorithm picks a triangle from leveli + 1 before all
level i triangles are subdivided, is low (the local error would have
to differ by more than the factor16).

Assume that the valuesT
i;i

with i = 0; : : : ; k�1 are exact and
e

T

k;k

= T

k;k

+ " since not all triangles from generationk� 1 have
been subdivided yet. Applying (2) yields

e

T

0;k

= T

0;k

+

k

Y

i=1

4

i

4

i

� 1

!

":

1

Hence, no matter whatk, eT
0;k

deviates fromT
0;k

by less than3
2

"

and the analogue holds foreT
1;k

. Taking into account thateT
0;k�1

=

T

0;k�1

, we have

j

e

T

0;k

� T

1

j � � j

e

T

1;k

�

e

T

0;k�1

j + 3 " (4)

This estimate allows to use the resulteT
0;k

extrapolated from a se-
lectively refined grid to approximate the exact solutionT

1

. The
bound (4) gives an estimate of the current approximation error while
" is bounded by summing the local approximation errors over those
parameter triangles which are still from generationk � 1. In-
verse Richardson-extrapolation allows to compute the difference
j

e

T

1;k

�

e

T

0;k�1

j without actually generating the table entrieseT
j;k

[Kob92].

Exact Arithmetics

The reliable evaluation of algebraic expressions is an important is-
sue in current research on computational geometry [For96],[Gui96].
Many computational geometers have proposed algorithms to per-
form exact arithmetic operations. [For93] and [She96] observe
that most geometricpredicatescan be formulated as determinants.
[Dek71] and [FW93] consider more elementary operations which
allow to build code for the exact evaluation of fairly general formu-
lae (assuming exact floating-point input data). However, the com-
plexity of these solutions increases faster than the complexity of
the formulae themselves.

When evaluating the functionals (1) either by a uniform or a
selective refinement approach, the most unstable operationis the
summation (destillation) of the local results. Both approaches,
yield an increasing number oflocal estimates which have to be
added up in order to obtain theglobal result. Eventually, one has
to accumulate a huge number of local approximations, each within
some prescribed tolerance to the exact value. Obviously, the round-
ing errors during this step can lead to invalid answers because they
are usually not covered by error bounds emerging from numerical
integration theory.

In practice one encounters situations where further refinement
of the grid makes the approximation of the integral worse because
of this effect. Consider a selective refinement cubature algorithm.
The current approximationT is stored as the accumulated sum of
the local valuesT

i

. Local refinement means replacing one local
valueT

i

by T 0
i;1

; : : : T

0

i;r

and updating

T T � T

j

+ T

0

j;1

+ : : :+ T

0

j;r

:

Hence, with every refinement step, the uncertainty ofT increases.
Notice that during the computation of the integral, this update op-
eration might be performed several million times! Otherwise, if
the sumT is not updated in every step but only computed once in
the end, the current approximation is not available for extrapolation
and error estimation.

There are several approaches todestillationwhich turns out to
be an important step in almost any numerical algorithm. A whole
family of algorithms perform a more or less strict pre-sorting step to
order the elements by their magnitude and compute the sum by ex-
ploiting this special configuration [Kul81, Pri92]. These algorithms
always have aO(n log n) time complexity. Another draw-back is
that in order to apply such algorithms, alln elements have to be
stored and cannot be processed on the fly.

A second class of algorithms uses special high precision fixed
point arithmetics to compute the sum and project the result back
into floating point representation [Boh90]. Those approaches are
usually machine dependent – in the extreme they are designedfor
hardware implementation. More portable algorithms shouldbe for-
mulated relative to a specific floating point arithmetics standard

(e.g. IEEE 754) and can work on any computer providing this stan-
dard [Kob94].

We present a simple algorithm which allows to compute arbi-
trarily large sums without any rounding errors by just usingstan-
dard IEEE arithmetic. The scheme has linear time complexityO(n)

with a small constant1+" and does not depend on custom designed
long integer arithmetics. It is an improved version of [Kob94]. Its
software implementation only needs a small amount of intermedi-
ate storage and its simplicity makes it also a candidate for hardware
realization.

The basic idea of the proposed algorithm can be described as
follows. A floating point number is given by a sign, ap-bit man-
tissa, and an exponent (all being integer). It can be observed that
the addition (or subtraction) of two floating point numbers does not
produce any roundoff error if both have the same exponent andboth
mantissae have the same parity. For subtraction this is trivial since
subtraction on the same scale is simply integer arithmetic plus nor-
malization. Adding twop-bit integers yields a(p + 1)-bit integer
which is subject to rounding (back top-bits). However, since both
addends have the same parity, their sum will be an even number
and the rounding step cuts off a zero.

We can use the exponent of a floating point number combined
with its mantissa’s parity bit as a hashing key. Storing all incoming
addends into a hash table, we know that if a collision occurs,the
two numbers can be processed without rounding error. The table
has to be large enough to hold two times the number of valid expo-
nents of floating point numbers. In IEEE standard this means,we
need2 KByte (single precision) or32 KByte (double precision) to
store the whole accumuator table.

insert(value x,table t)
{ i = parity(x) + 2 * exponent(x)
while (t[i] != 0.0)

{ x = x + t[i]
t[i] = 0.0
i = parity(x) + 2 * exponent(x) }

t[i] = x }

The hashing takes constant time per access: Parity and expo-
nent of a floating point numberx can be isolated by masking out
the corresponding bit-fields. Once all addends are inserted, we have
a table, with a few remaining entries orderd according to their ex-
ponent’s magnitude. In [Dek71] it is shown that for two floating
point numbersa and b with jaj � jbj the rounding error of the
floating point operationa+ b can be computed exactly (in floating
point arithmetic) byb� ((a + b) � a). This remains true as long
as the exponent ofa is not smaller than the exponent ofb. Hence
we can add the hashtable’s two top entries and store the result as
well as the exact rounding error back into the table. By repeating
this operation, we obtain the best approximation to the truesum
which is representable as a floating point number together with an
expansion of the approximation error (the remaining entries).

sum(table t)
{ i = search_downwards_from(TOP) % first
j = search_downwards_from(i-1) % second
while (j>=BOTTOM)

{ if (t[i] + t[j] != t[i])
{ a = t[i] + t[j]

b = t[j] - (a - t[i])
delete t[i],t[j]
insert(a,t)
insert(b,t)
i = search_downwards_from(i+3) }

else
{ i = j }

j = search_downwards_from(i-1) }
i = search_downwards_from(TOP)
j = search_downwards_from(i-1)
return t[i]+t[j] }

2

The destillation algorithm has linear complexity since no aux-
illiary additions are necessary. To sum upn numbers, a minimum
of n� 1 additions is always necessary. While hashing the addends
we occasionally perform additions and end up withm remaining
numbers in the table. Hence,n � m additions have taken place
so far. The only computational overhead stems from the evalua-
tion of the hashing function. The numberm does not depend on
n but rather on the orders of magnitude which are covered by the
addends. Summing up the remaining numbers is anO(m) process
with m� n.

Reformulation of Physical Properties as Functionals

The Divergence Theorem provides a tool to transform the volume
based physical properties into proper integral expressions of the
form (1):

Z

V

rG dxdy dz =

Z

@V

G

T

N d� (5)

whereN : @V ! IR3 is the unit-length outer normal vector on
@V andG : IR3

! IR3 is an arbitrary vector field (cf. [TS80]).
ReplacingN by the cross product of the partial derivatives of�

and transforming (5) into an integral over the parameter domain

 =

S

i

i

yields

Z

V

rG dxdy dz =

Z

G(�)

T

[�

u

� �

v

] du dv:

which reduces the reformulation of physical properties to the con-
struction of a functionG such thatrG fits to the volume integral
which defines the property.

The volume of an object is given by the integral overrG = 1

and a suitable (symmetric) choice isG :=

1

3

(x; y; z). Analo-
gously, we may choseG :=

1

2

(x

2

; 0; 0) for the center of gravity’s
x-coordinate (rG = x) and for the other coordinates respectively.
To compute the moments of inertia with respect to thez-axis, we
useG :=

1

3

(x

3

; y

3

; 0), i.e.,rG = x

2

+ y

2, and for thex- and
y-axis respectively.

Conclusion

The ingredients presented in this paper yield a framework toim-
plement a robust and efficient algorithm for the numerical evalu-
ation of functionals on surfaces. Efficiency is obtained through a
modification of the Romberg-quadrature which does not require to
subdivide the domain uniformly but allows to use a selectiverefine-
ment strategy. Volume based physical properties are reformulated
as surface integrals which strongly reduces the complexity. The
implementation becomes reliable and robust by including analgo-
rithm to sum up the intermediate results without rounding errors.
This exact arithmetic does not affect the performance of thealgo-
rithm significantly but it prevents the quadrature algorithm from
accumulating rounding errors. This is important for engineering
applications since rounding errors are not covered by errorbounds
emerging from numerical integration theory.

References

[Boh90] G. Bohlender, What do we need beyond IEEE-
arithmetics?, Comp. Arith. and Self-validating Numeri-
cal Methods, pp. 1–32, Academic Press, New York 1990

[Bul66] R. Bulirsch / J. Stoer,Asymptotic Upper and Lower
Bounds for Results of Extrapolation Methods, Numer.
Math. 8(1966) pp. 93-104

[Bul67] R. Bulirsch / J. Stoer,Numerical Quadrature by Extrap-
olation, Numer. Math. 9(1967) pp. 271-278

[Dek71] T. Dekker,A floating-point technique for extending the
available precision, Numerische Mathematik 18 (1971),
pp. 224–242

[Gui96] L. Guibas, Implementing Geometric Algorithms Ro-
bustly, Proc. Workshop on Applied Computational Ge-
ometry, pp. 15–22, Springer Verlag, 1996

[For93] S. Fortune,Progress in Computational Geometry, Direc-
tions in Geometric Computing, R.R. Martin ed. pp. 81-
128, Information Geometers Ldt. 1993

[For96] S. Fortune,Robustness issues in geometric algorithms,
Proc. Workshop on Applied Computational Geometry,
pp. 9–14, Springer Verlag, 1996

[FW93] S. Fortune / J. Van Wyk,Efficient Exact Arithmetics for
Computational Geometry, Proc. of the 9th annual sym-
posium on Computational Geometry, pp. 163–172, ACM
1993

[Kob92] L. Kobbelt, Iterative Berechnung metrischer Eigen-
schaften, Thesis, University of Karlsruhe, Germany

[Kob94] L. Kobbelt, A fast dot-product algorithm with minimal
rounding errors, Computing 52 (1994), pp. 355–369,
Springer Verlag 1994

[Kul81] U. Kulisch / W. Miranker,Computer Arithmetic in The-
ory and Practice, Academic Press, New York, 1981

[Pri92] D. Priest,On properties of floating point arithmetics,
Thesis, University of California at Berkeley, 1992

[She96] J. Shewchuk,Adaptive precision floating point arithmetic
and fast robust geometric predicates, Report CMU-CS-
96-140, Carnegie Mellon University, Pittsburgh, PA

[Slu82] A. van der Sluis,Asymptotic expansions for quadra-
ture errors over a simplex, Numerical Integration, pro-
ceedings of the conference held at the Mathematisches
Forschungsinstitut Oberwolfach Birkhäuser Verlag 1982
pp. 222-240

[Sto83] Josef Stoer,Einführung in die Numerische Mathematik I,
Springer-Verlag 1983

[Str71] A. H. Stroud,Approximate Calculation of Multiple Inte-
grals, Prentice-Hall 1971

[TS80] Timmer / Stern,Computation of global geometric prop-
erties of solid objects, Computer Aided Design 12(1980)
pp. 301-304

3

