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Quality control is an important issue in computational geem
try. Since analytical properties like the differentiatyilof a bound-
ary representation are often not sufficient to fully judge guality
of an object, additional criteria measured in terms of scadéued
functionals have to be verified. Energy functionals in thetegt of

fairing are just one example where the global smoothness of a sur-

face is rated by one single value, e.g., the total amountpiaied)
curvature. More “industrial” examples are the computatibphys-

ical propertieslike the surface area or the volume of an object, its

center of gravity, or the moments of inertia.

Let an objectX of arbitrary topology be given by a closed
boundary representatiob : {Q;} — R®. The functionals we
consider, have the form

P(X) = 2/ F(®,&,,,) dudv (1)
i Y

whereF : R® — R does not depend on the geometry3af Hence,
once the functionaP characterizing the property under investiga-
tion is found, the problem reduces to the numerical appration

of a bivariate integral. A closed form solution féris usually not
known — even ifX is a polyhedron with® being piecewise linear.

width h exists, the value of this polynomial A&t= 0 can be com-
puted by extrapolating approximate resdliswith step widthsh;.
Romberg-quadrature specifically uses the trapezoid quadraile
and the step widtha; = 27'. FromT;; := T; we recursively
compute a tableau of valugs ; by

Y T —Tij—

Tij = L1

@)

[Bul66] shows that the error of the extrapolated valig, with
respect to the exact solutidn, can be bounded by

|Tor — Too| < o|Th,k — Tok—1] 3)
for an appropriaté < o < 1.

The major draw-back of this approach is the exponentially in
creasing number of function evaluations that are necedsao-
tain an approximation on the next refinement level. Slighejuc-
ing the prescribed error tolerance may increase the runimmegby
the factor4. Hence, one introduceselectiverefinement, i.e., only
those parameter regions are refined where large local ercors.
Although this contradicts the assumption of nested unifgrids

In this paper we suggest solutions for the key steps of an algo Which is crucial for extrapolation schemes [SIu82], we coralthe

rithm which performs the task of approximately evaluatity gn
a parametric surface. The efficiency of the algorithm resisim
the adaption of powerful quadrature techniques to the qudati
geometric setting. The robustness of the algorithm is dwexaat
arithmetic operations.

Non-uniform Romberg-quadrature

Iterative algorithms to approximately evaluate (multisge) inte-
grals use amdaptiverefinement approach. The integrand function
is sampled on an initial uniform grid and a simple cubaturenida
is applied. A posteriori error estimates decide whethegtigehas
to be refined in order to meet prescribed error tolerance&lBt
The different approximations to the exact solution whicle aib-
tains by this iterative process can be subject to an exia#ipal
scheme that allows to further reduce the approximatiorr §8to83].
Romberg-quadrature [Bul67] efficiently computes the Ridha
son-extrapolation by a Neville-type scheme. If a polyndreia
pansion of the approximation error as a function of the gritép
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two opposite concepts in a scheme that allows to use sedbcta-
fined grids for a modified Romberg-quadrature.

Consider a triangular parameter dom&in The exact trape-
zoidal sumd; ; stem from a uniform subdivision &t into 4" sub-
triangles. Selectively refining onlgomesub-triangles yields an

approximate valu’;1,;+1 which is the sum of local results from
different grid levels. Our goal is to bound the error of thérap-

olated valuedy . = Ty . This allows the application of (2) with
(3) replaced by a modified error estimate.

Due to the exponential increase of parameter trianglest afios
the effort is spent on the finest level. Reducing the compjent
this level has the heaviest impact on the total running tifhe
algorithm. The geometric background of the functionalsiess a
regular behavior of the integrand function. Since the lacaiver-
gence of the trapezoid rule@(h*), the probability that a selective
refinement algorithm picks a triangle from leviek 1 before all
level i triangles are subdivided, is low (the local error would have
to differ by more than the factds).

Assume that the valués ; withi =0, ...,k —1 are exact and

Tk,k = T.r + € since not all triangles from generatién- 1 have
been subdivided yet. Applying (2) yields

k .
~ 4
Toj = Tox+ (H m) g

i=1



Hence, no matter what, To,k deviates fronilp ;, by less than% €

and the analogue holds fﬁ,k. Taking into account thdl”No,k,l =
To,k—1, We have

|f0,k' —-Tw| < o |fl,k - fo,k—1| +3¢ (4)
This estimate allows to use the resﬁbﬁ, « extrapolated from a se-
lectively refined grid to approximate the exact solutiBn. The
bound (4) gives an estimate of the current approximatiaor evhile
¢ is bounded by summing the local approximation errors oveseh
parameter triangles which are still from generation- 1. In-
verse Richardson-extrapolation allows to compute theedifice

|1~’1,;C — fo,k_1| without actually generating the table entriEs,;C
[Kob92].

Exact Arithmetics

The reliable evaluation of algebraic expressions is an tapbis-
sue in current research on computational geometry [FofG6]96].
Many computational geometers have proposed algorithmegnto p
form exact arithmetic operations. [For93] and [She96] obxse
that most geometripredicatescan be formulated as determinants.
[Dek71] and [FW93] consider more elementary operationsctvhi
allow to build code for the exact evaluation of fairly gerdoamu-
lae (assuming exact floating-point input data). However,dbm-
plexity of these solutions increases faster than the cotitplef
the formulae themselves.

When evaluating the functionals (1) either by a uniform or a
selective refinement approach, the most unstable operiatitire
summation destillation) of the local results. Both approaches,
yield an increasing number dbcal estimates which have to be
added up in order to obtain thggobal result. Eventually, one has
to accumulate a huge number of local approximations, eatttirwi
some prescribed tolerance to the exact value. Obviougyoind-
ing errors during this step can lead to invalid answers tethey
are usually not covered by error bounds emerging from nuaaleri
integration theory.

In practice one encounters situations where further refamem
of the grid makes the approximation of the integral worseabse
of this effect. Consider a selective refinement cubaturerdkgn.
The current approximatio’ is stored as the accumulated sum of
the local valuedl;. Local refinement means replacing one local
valueT; by T} , ... T} , and updating

T« T-Tj+Tj1+...+Tj,.

Hence, with every refinement step, the uncertainty’ aficreases.
Notice that during the computation of the integral, this atedop-
eration might be performed several million times! Otheryif

the sumT is not updated in every step but only computed once in
the end, the current approximation is not available forapdtation
and error estimation.

There are several approachegastillationwhich turns out to
be an important step in almost any numerical algorithm. Aleho
family of algorithms perform a more or less strict pre-swtstep to
order the elements by their magnitude and compute the sum-by e
ploiting this special configuration [Kul81, Pri92]. Thedgaithms
always have & (n logn) time complexity. Another draw-back is
that in order to apply such algorithms, allelements have to be
stored and cannot be processed on the fly.

A second class of algorithms uses special high precision fixe
point arithmetics to compute the sum and project the readkb
into floating point representation [Boh90]. Those apprescare
usually machine dependent — in the extreme they are desfgned
hardware implementation. More portable algorithms shbeltbr-
mulated relative to a specific floating point arithmeticandtad

(e.g. IEEE 754) and can work on any computer providing tleia-st
dard [Kob94].

We present a simple algorithm which allows to compute arbi-
trarily large sums without any rounding errors by just usstan-
dard IEEE arithmetic. The scheme has linear time compleéXity)
with a small constant+¢ and does not depend on custom designed
long integer arithmetics. It is an improved version of [Kdh9lts
software implementation only needs a small amount of ingelim
ate storage and its simplicity makes it also a candidatedmivaare
realization.

The basic idea of the proposed algorithm can be described as
follows. A floating point number is given by a signpéebit man-
tissa, and an exponent (all being integer). It can be obdeha
the addition (or subtraction) of two floating point numbeogs not
produce any roundoff error if both have the same exponenbatid
mantissae have the same parity. For subtraction this ialtgince
subtraction on the same scale is simply integer arithmédti por-
malization. Adding twap-bit integers yields &p + 1)-bit integer
which is subject to rounding (back gebits). However, since both
addends have the same parity, their sum will be an even number
and the rounding step cuts off a zero.

We can use the exponent of a floating point number combined
with its mantissa’s parity bit as a hashing key. Storingratbiming
addends into a hash table, we know that if a collision ocdies,
two numbers can be processed without rounding error. THe tab
has to be large enough to hold two times the number of valid-exp
nents of floating point numbers. In IEEE standard this meames,
need2 KByte (single precision) 082 KByte (double precision) to
store the whole accumuator table.

insert(value x,table t)
{ i = parity(x) + 2 * exponent (x)
while (t[i] !'= 0.0)
{ x X + t[i]
t[i] 0.0
i parity(x) + 2 * exponent(x) }
t[i] =x1}

The hashing takes constant time per access: Parity and expo-
nent of a floating point number can be isolated by masking out
the corresponding bit-fields. Once all addends are insestetiave
a table, with a few remaining entries orderd according t@ #ve
ponent’s magnitude. In [Dek71] it is shown that for two floati
point numbersz andb with |a| > |b| the rounding error of the
floating point operatiom + b can be computed exactly (in floating
point arithmetic) byp — ((a + b) — a). This remains true as long
as the exponent af is not smaller than the exponentif Hence
we can add the hashtable’s two top entries and store thet sssul
well as the exact rounding error back into the table. By répga
this operation, we obtain the best approximation to the sum
which is representable as a floating point number togethir avi
expansion of the approximation error (the remaining esitrie

sun(table t)

{ i = search_downwards_from TOP) % first
j = search_downwards_fron(i-1) % second
whi l e (j >=BOTTOM)

it (t[i] + t[j] !'=t[i])

{ a=t[i] +1t[j] _
b =t[j] - (a- t[i])
delete t[i],t[j]
insert(a,t)
insert(b,t)
i = search_downwards_fron{i+3) }

el se
{i=j1}

j = search_downwards_from(i-1) }
sear ch_downwar ds_f rom TOP)
j sear ch_downwar ds_fron(i - 1)
return t[i]+t[j] }



The destillation algorithm has linear complexity since na-a
illiary additions are necessary. To summamumbers, a minimum

[Bul67]

of n — 1 additions is always necessary. While hashing the addends [Dek71]

we occasionally perform additions and end up withremaining
numbers in the table. Hence,— m additions have taken place
so far. The only computational overhead stems from the avalu
tion of the hashing function. The number does not depend on

n but rather on the orders of magnitude which are covered by the
addends. Summing up the remaining numbers i©am) process
with m < n.

Reformulation of Physical Properties as Functionals

The Divergence Theorem provides a tool to transform themelu
based physical properties into proper integral expressainthe
form (1):

/VGda:dydz :/ GTN do (5)
A% ov

where N : 9V — R? is the unit-length outer normal vector on
oV andG : R® — R®is an arbitrary vector field (cf. [TS80]).
Replacing NV by the cross product of the partial derivativesd®f
and transforming (5) into an integral over the parameteraom
Q= Ui Q; yields

/VG dedydz = /G(<I>)T[<I>u,><<1>v] du dv.
\4 Q

which reduces the reformulation of physical propertiehtdon-
struction of a functiorG such thatV G fits to the volume integral
which defines the property.

The volume of an object is given by the integral o¥eG = 1
and a suitable (symmetric) choice @& := % (z,y,z). Analo-
gously, we may chos€' := % (x2,0,0) for the center of gravity’s
z-coordinate YV G = x) and for the other coordinates respectively.
To compute the moments of inertia with respect to tkexis, we
use@ := 1 (z°,4%0),i.e, VG = 2” + y°, and for ther- and
y-axis respectively.

Conclusion

The ingredients presented in this paper yield a framewoiiknto
plement a robust and efficient algorithm for the numericalev
ation of functionals on surfaces. Efficiency is obtaineatigh a
modification of the Romberg-quadrature which does not redoi
subdivide the domain uniformly but allows to use a seleatime-
ment strategy. Volume based physical properties are reflated
as surface integrals which strongly reduces the complexitye
implementation becomes reliable and robust by includinglgo-
rithm to sum up the intermediate results without roundingrst
This exact arithmetic does not affect the performance oftbe-
rithm significantly but it prevents the quadrature algaritfrom
accumulating rounding errors. This is important for engnireg
applications since rounding errors are not covered by &aands
emerging from numerical integration theory.
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