
Eurographics Symposium on Point-Based Graphics (2005)
M. Pauly, M. Zwicker, (Editors)

Progressive Splatting

Jianhua Wu Zhuo Zhang Leif Kobbelt

Computer Graphics Group, RWTH Aachen University, Germany

Abstract

Surface splatting enables high quality and efficient rendering algorithms for dense point-sampled datasets. How-
ever, with increasing data complexity, the need for multiresolution models becomes evident. For triangle meshes,
progressive or continuous level of detail hierarchies have proven to be very effective when it comes to (locally)
adapt the resolution level of the 3D model to the application-dependent quality requirements. In this paper we
transfer this concept to splat-based geometry representations. Our progressive splat decimation procedure uses
the standard greedy approach but unlike previous work, it uses the full splat geometry in the decimation criteria
and error estimates, not just the splat centers. With two improved error metrics, this new greedy framework offers
better approximation quality than other progressive splat decimators. It comes even close to the recently proposed
globally optimized single-resolution sub-sampling techniques while being faster by a factor of 3.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid and
object representations

1. Introduction

Point-based geometry receives more attention in recent years
and much work has been dedicated to efficient acquisi-
tion, modeling, processing and rendering of point primi-
tives [GPZ∗04, KB04]. The main advantage of discrete point
sets over "standard" polygonal meshes is their simplicity and
flexibility, i.e. they do not need to preserve any connectivity
information.

In order to visually fill the gap between point samples,
point-based models are usually generalized to splat rep-
resentations that sample and approximate the surface ge-
ometry, and almost all available high quality and efficient
point-based rendering systems today are adopting splat-
ting techniques either in object space or in image space
[RL00, ZPBG01, RPZ02, BK03, ZRB∗04, BSK04]. From a
geometric point of view, splats (oriented 3D ellipses) are no
more than linear surface elements with finite spatial extent
overlapping in C−1 fashion, opposed to the well established
C0piecewise linear polygonal meshes. Most important, the
conceptual flexibility of point-based representations that we
can exploit is largely preserved for surface splats, i.e. better
optimization techniques can be applied to splat models more
easily than polygonal meshes, thus leading to higher quality
algorithms (eg. [WK04]).

Thanks to the evolution of modern 3D photography and
3D scanning systems, the data size of point models are
ever increasing drastically nowadays [LPC∗00]. Despite
the fast rendering speed of point models on up-to-date
GPUs [DVS03, BK03], their sheer data size has increased
so fast that they have brought great challenges for subse-
quent processing tasks like modeling and rendering. And this
would be even more critical for low-end hardware environ-
ments like mobile phones or PDAs. In this sense, progressive
splat representations that can freely adjust the data complex-
ity are of the same importance as the well-studied progres-
sive representation for standard polygonal meshes [GGK02],
as progressive or continuous level of detail hierarchies have
proven to be very effective when it comes to locally adapt
the resolution level of the 3D model to the application-
dependent quality requirements.

As most previous work to generate progressive splat-
based geometry has utilized the straightforward hierarchi-
cal space partitioning method or only focused on infinitesi-
mal isolated points (centers of splats), they usually produce
poor outputs at coarser approximation levels which could de-
grade the visual appearance of level of details rendering in
the very beginning. In this paper we transfer the concept of
the well-known progressive meshes [Hop96] from triangle

c© The Eurographics Association 2005.

J. Wu, Z. Zhang & L. Kobbelt / Progressive Splatting

Figure 1: Progressive splatting of Charlemagne model (600K points) from left to right with 2K,10K,70K and 600K splats.

meshes to splat-based geometry representations. Our pro-
gressive splat decimation procedure uses the standard greedy
approach but unlike previous work it uses the full splat ge-
ometry (both center and its extent) in the decimation criteria
and error estimates and not just the splat centers. As we will
demonstrate later, with two improved error metrics gener-
alized from [CSAD04], this new greedy framework offers
much better quality than other progressive splat decimators.
Therefore it is preferable for those progressive applications
like rendering and transmission. The quality that we obtain
is coming close to the recently proposed single-resolution
high-quality sub-sampling techniques which are based on
global optimization [WK04] while being much faster by an
average factor of 3.

1.1. Related Work

Considerable work has been presented during the last years
relating to point-based graphics research. A complete sur-
vey to many other available point-based techniques is be-
yond the scope of this paper, while the readers are referred
to [GPZ∗04, KB04] for the same purpose.

To construct multiresolution point-based models, most
previous work has adopted the hierarchical space partition-
ing strategy aiming at efficient visualization of complex
datasets. The input point set is clustered within a hierar-
chical space partitioning data structure and representative
points or splats are created in each node by analyzing the
local surface properties. Rusinkiewicz and Levoy [RL00]
used bounding sphere hierarchies to perform recursive
point rendering. Piecewise constant average points are com-
puted for all spheres in the structure. This idea was fol-
lowed in [DVS03] and the pre-computed hierarchy was re-
arranged into a sequential format that can be efficiently pro-
cessed by nowadays graphics hardware. Many other pa-
pers also used octrees as underlying hierarchical struc-
tures [BWK02, Paj03, KV03]: while [KV03] only concen-
trated on C−1 piecewise constant points, [BWK02, Paj03]
can also generate multlresolution C−1 piecewise linear splat

geometry. More recently [SPL04] converted the output of
[Paj03] to multiple continuously stored harddisk files to ren-
der large splat samples in an out-of-core fashion. In general,
hierarchial space partitioning techniques are straightforward
and efficient. However, due to the lack of algorithmic flexi-
bility, they are often not able to produce progressive models
of sufficient quality especially in coarse approximation lev-
els. This results in poor splat representations in the beginning
phases of progressive splatting (cf. Fig. 2).

Figure 2: Hierarchical space partitioning will lead to non-
uniform splat sizes (left) or splats connecting two distant
parts (right) in the coarse level due to the less flexible global
partitioning. Splats are shown as thick lines and displaced
for clear illustration, surfaces as dotted curves. Further sub-
division (dashed lines, right) could improve these problems
but 1-to-n partitioning prevents the granularly resolution
control of progressive models.

To achieve better quality, the well established greedy op-
timization schemes used in mesh simplification has been
adapted by various works [Lin01, PGK02, FACOS03] to
simplify point-sampled geometry. Their results can naturally
lead to a progressive surface format for progressive splat-
ting. Unfortunately, they all focused only on the relation-
ships between splat centers and hence require extra effort to
estimate the actual splat spatial extent. On the contrary, tak-
ing the full geometry of surface splats into account, Wu and
Kobbelt [WK04] presented an optimal splat sub-sampling

c© The Eurographics Association 2005.

J. Wu, Z. Zhang & L. Kobbelt / Progressive Splatting

algorithm that performs a greedy phase followed by a post
global relaxation optimization step. The output quality of
this method is superior compared to most other similar
schemes, which has inversely compromised its progressive
capability due to its non-continuous single-resolution sub-
sampling property.

2. Overview

Targeting at progressive splatting, we introduce an iterative
greedy splat decimation framework working directly on C−1

piecewise linear surface splats. Intuitively, it functions as the
counterpart of the well-known progressive meshes [Hop96]
in the C0 piecewise linear polygonal meshes setting and the
iterative point simplification [PGK02] in the C−1 piecewise
constant points setting.

Specifically, given the input point set, initial splats are
first created for all point samples. Then all possible splat
merge operators are arranged in a priority queue according
to an error metric measuring errors caused by respective op-
erators with top element having minimum error. Iterative op-
erations are usually performed repeatedly with applying the
top operator and updating possibly affected operators in the
queue until the desired number of splats is reached. More
details will be discussed in the upcoming sections.

3. Initial Splat Creation

The input of our algorithm is a set of unstructured points
P = {pi} sufficiently sampling and describing a smooth
manifold boundary surface S of a given 3D object. Each out-
put splat Ti is a general 3D ellipse given by its center ci, its
unit normal vector ni, and two additional non-unit vectors ui
and vi defining its major and minor axes.

Similar to [PGK02] and [WK04], in order to analyze local
surface properties as well as the associated initial splat Ti of
a point sample pi, the k-nearest neighbors Nk(pi) have to be
computed beforehand. Then a least square plane L can be
found for pi and Nk(pi) defining the normal ni of Ti, with
center ci = pi. As we set all initial splats to be circles, initial
ui and vi can be any two orthogonal vectors parallel to L with
same length r,

r = max
∥

∥

∥
(p j − ci)−nT

i (p j − ci)ni

∥

∥

∥
,

for all p j ∈ Nk(pi).

In the meantime, a virtual graph N = (P,E), where the
edge (i, j) belongs to E iff p j ∈Nk(pi), is also formed to rep-
resent the above neighborhood relationship. This graph N
will be the supporting dynamic topology during the iterative
splat merge operations, i.e., as an extension of the common
edge collapse operator [GGK02], a splat merge operator Φ
will merge two splats Tl and Tr associated with endpoints pl
and pr of an edge e ∈ E into one larger splat Tm. Thus the
ordering queue will initially contain splat merge operators

corresponding to all edges in E. Once an operator Φ is ap-
plied, e and other degenerated edges will be removed from
the edge set E and pl and pr will be replaced by a new point
pm = cm in the point set P.

4. Error Metrics and Splat Merge Operators

In order to ensure similar approximation quality as that of
the established mesh cases, two different error metrics mea-
suring distance deviation and normal deviation respectively
are also generalized and embedded into the new splat deci-
mation framework. As splat merge operators heavily depend
on specific error metrics, we also introduce their detail infor-
mation at same time in this section.

4.1. L2 Metric

The L2 error metric is based on Euclidean distance measure-
ment. To be able to compute the deviation error caused by a
splat merge operator Φ with respect to the original point set,
an additional array of indices { fi} to the original points is
kept for each splat Ti and initialized with a single index {i}
referring to the initial point pi. When merging two splats,
their index arrays will be united and assigned to the new
splat. Then for a merge operator Φ, to merge splat Tl and Tr
to new splat Tm, the approximation error is defined as:

εΦ = ‖e‖· ∑
f∈{ fm}

|dist(p f ,Tm)|2, { fm}= { fl}+{ fr}. (1)

Note that the above error metric has been weighted by the
length of the edge e measuring the distance between two
merged splat centers to penalize merging two distant splats
which otherwise would produce over-sized splats.

Given the L2 error metric (1) and two splats Tl and Tr to
be merged, the new splat Tm can be determined by applying
Principle Component Analysis (PCA [Jol86]) to the point set
Pm = {p f }, f ∈ { fm} in 3D directly rather than the projected
point set in 2D as [Paj03]. Afterwards, we will have the av-
erage point p̄ as well as three real eigenvalues λ1 ≥ λ2 ≥ λ3
and the corresponding eigenvectors v1, v2, v3. Then for Tm,
center cm = p̄, normal nm = v3, and two axes um and vm
will have direction v1 and v2 respectively with a length ratio
√

λ1/λ2. The final axis lengths are scaled simultaneously so

�� ��

��

��

��

��
��

��

��

�� ��

Figure 3: Splat merge operators according to L2 error met-
ric (left) and L2,1 metric (right).

c© The Eurographics Association 2005.

J. Wu, Z. Zhang & L. Kobbelt / Progressive Splatting

Figure 4: Igea model (134K points) coarsified to same num-
ber of 13K splats using L2 error metric (left) and L2,1 metric
(right) with respective run time 52 sec. and 31 sec. and rel-
ative Hausdorff distance error 0.017% and 0.022%.

that the elliptical splat Tm covers all points Pm in 2D when
they are projected onto the splat plane (cf. Fig. 3).

Once a splat merge operator Φ is applied, the graph N
will be updated as we have mentioned in Section 3. Similar
to standard mesh simplification, all neighboring merge oper-
ators to Tl and Tr in the ordering queue have to be updated
with new merge errors or removed from the queue if they are
degenerated and not valid any more.

4.2. L2,1 Metric

L2,1 error metric measures the deviation of normal direc-
tions and is extended from the original metric first presented
in [CSAD04]. In this case, the error computation is simpler
and we do not need to keep the index array either. Given the
splat merge operator Φ, the respective area |Tl | and |Tr| of
two splats Tl and Tr to be merged, similar to (1), the edge-
length weighted error is calculated as:

εΦ = ‖e‖ · |Tl | · |Tr| · ‖nl −nr‖
2 . (2)

According to the L2,1 metric, the geometry of new splat
Tm is defined as center

cm =
|Tl | · cl + |Tr| · cr

|Tl | + |Tr|
;

and normal

nm =
|Tl | ·nl + |Tr| ·nr

|Tl | + |Tr|
.

The extent of splat Tm is computed in the same way as for the
L2 metric with the only difference that rather than projecting
the point set Pm (which we do not keep), we uniformly sam-
ple n points (usually 8 is enough) on both boundaries of splat
Tl and Tr and project all of them to the splat plane of Tm to
find the main axis directions and proper scaling (cf. Fig. 3).

Figure 5: Progressive splatting of Dragon model (438K
points) from top to bottom with 2K,6K and 20K splats.

We have compared the effects of the different L2 and L2,1

error metrics in Fig. 4. It is not surprising that we have simi-
lar observations as [CSAD04]: L2,1 metric can better capture
the anisotropy of the surface geometry, while L2 metric will
generate a more uniform splat distribution. Due to its sim-
ple computational efforts, algorithms using L2,1 metric nat-
urally run much faster than those using L2 metric. Because
the error is measured as one-sided maximum Hausdorff dis-
tance from the original point set to coarser splat approxima-
tions (the percentage of the major bounding box diagonal
length), it is also clear to see that this distance-based error
measurement favors distance-based L2 metrics over normal-
based L2,1 metrics.

5. Progressive Splats Format

The sequence of splat merge operators {Φi} can be recorded
during the splat decimation procedure. Together with the re-
maining coarse base splat set TB, the splat merge operators
{Φi} and their straightforward inverses, splat split operators,
form a progressive splats format in the similar way as pro-
gressive meshes [Hop96] with the major difference that pro-
gressive splats do not maintain topology information.

c© The Eurographics Association 2005.

J. Wu, Z. Zhang & L. Kobbelt / Progressive Splatting

Looking into details, the progressive splats format is com-
posed with a base splat set TB and a set of continuous de-
tail operators {Ψi}. Each single detail operator Ψi is derived
from corresponding recorded splat merge operator Φi and
will contain three splat indices l,r,m and the geometry of
three splats Tl ,Tr,Tm. The data storage is amount to 48 Bytes
per operator under single floating point precision. For refine-
ment, the splat of index m will be split and replaced with
two smaller splats Tl and Tr; For coarsification, two splats
of respective indices l and r will be merged and replaced
with a larger splat Tm. Note that by utilizing this progres-
sive splats format we can perform both up-streaming and
down-streaming without any extra data storage, and thus can
produce splat models at arbitrary resolution. This also will
support efficient applications like progressive rendering and
transmission of surface splats.

6. Results

We have tested our progressive splatting algorithm with var-
ious point-based datasets on a standard Linux PC with 2.8
GHz CPU and 2 GB main memory. If not otherwise spec-
ified, k-nearest neighbors is always set to k = 8 and the
L2,1 error metric is applied to produce the reported results.
Shaded results to show the overall visual quality can already
be found in Fig. 1 and Fig. 5, where splats are also shrinked
to demonstrate their shapes and distribution.

6.1. Comparison to Splat Decimation Methods

We conduct comparative analysis of our progressive splat-
ting algorithm (denoted as PSP) with the other two typ-
ical progressive splat decimators, the LOD point ren-
dering (LOD) [Paj03] and iterative point simplification
(IPS) [PGK02], and the single-resolution optimal splat sub-
sampling scheme (OSS) [WK04] respectively. For LOD,
splats in the same Octree levels will be collected and for
IPS, an extra step is necessary to convert its point-based out-
put to the splat representation using a strategy similar to the
one discussed in Section 3.

Quality The result quality of different methods is estimated
in the following aspects:

• Error measurement captures the statistical distances be-
tween decimated splat approximations and the original
point model. Fig. 7 compares the three progressive splat
decimators while in Fig. 8 errors caused by our progres-
sive PSP algorithm and discrete OSS scheme are reported.

• Visual quality depends on the rendering effects as well as
the splat shapes and distribution (see Fig. 8 and Fig. 10).

• Area ratio between the area sum of splat approximations
and the mesh surface area of the original point model (see
Tab. 1). With same number of splats, the smaller the ratio,
the smaller the area of splats to be rasterized in the frag-
ment shader of GPU, and the faster the rendering speed.

nsplat PSP LOD IPS OSS

415 2.18 2.34 4.14 1.63
2591 2.52 2.71 4.12 2.15
11588 3.23 3.22 4.23 3.13

Table 1: Area ratio for different splat decimation methods,
normalized to the initial surface area of the triangle mesh.
This factor measures how much overdraw occurs in the ras-
terization of the splats.

0 1 2 3 4 5 6

x 10
5

0

200

400

600

800

Num of splats

Time (sec.)

LOD
IPS
PSP (L2,1)
PSP (L2)
OSS

Bu
nn

y
D

in
os

au
r

Ig
ea

Is
is

M

ax

Dragon

Charlemagne

Figure 6: Computation times for different splat decimation
methods where for PSP, OSS and IPS, times are measured
for a simplification to 1% of the input model size and LOD
is its whole structure creation time.

Considering of all above three criteria in combination, it is
not difficult to tell that, among the three progressive splat
decimators, our PSP algorithm always performs better than
both LOD and IPS. Especially on coarser scales, we find
that because LOD merely adopted octree space partition-
ing scheme and IPS only considered points, i.e. splat centers
rather than whole splats (one reason for its large area ratio
too), they could not produce as promising results as ours.
In addition, although the single-resolution OSS usually pro-
duces best quality due to its global optimization, OSS can
not create progressive splat representations and even in some
aspects (e.g. error measurement) our PSP method comes
quite close to the best OSS solution already.

Timing Computation times of different splat decimation
methods are shown and compared in Fig. 6 as functions of
input model size. No wonder that LOD runs fastest as it has
a quite simple algorithmic structure. Although both using
the same greedy framework, our PSP algorithm is slower
than IPS which has adopted efficient quadric error metric
(QEM) [GH97], as it has to compose and solve least-square
systems in each splat merge step. And it is not a surprise that
the best-quality OSS needs most running time because of its
complex global optimization techniques. Nonetheless, since
high computational costs have been traded with improved
output quality, and since all splat decimation schemes are
pre-processing procedures, the amount of running time we
have reported is always endurable.

c© The Eurographics Association 2005.

J. Wu, Z. Zhang & L. Kobbelt / Progressive Splatting

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

Num of splats

Error %

LOD
IPS
PSP

Figure 7: Error comparisons on bunny model (35K points)
for different progressive splat decimators.

Figure 8: Bunny model (cf. Fig. 10) decimated to similar
number of splats by progressive PSP (left, 2591) and single-
resolution OSS (right, 2577) algorithms. Although PSP and
OSS have quite close errors (0.103% to 0.092%), being able
to concentrate more splats on regions of high curvatures,
OSS gives better splat shapes and distribution than PSP.

Discussion In general, LOD and IPS run very fast while
producing results of inferior quality. On the contrary, OSS
can create output with best quality but is significantly slower.
Our progressive PSP algorithm is intended to fill this gap: it
runs only a little slower than LOD and IPS while much faster
than OSS, and it offers result quality very close to the best
OSS. In fact, what we have provided here is also a practical
guide to choose different splat decimation strategy based on
the specific quality-time tradeoff.

6.2. Comparison to Mesh Simplification

We also compare in Fig. 9 our PSP splat decimation algo-
rithm to QEM mesh simplification method [GH97] that can
produce progressive meshes [Hop96]. The two methods can
produce quite similar results due to the same greedy piece-
wise linear approximation nature, but it is also worth to men-
tion the lower approximation error of our results as splats are
more flexible and can overlap with each other while triangles
are rigidly connected in a C0 fashion.

Figure 9: Isis mesh (188K points) decimated by our PSP
algorithm (left two) and QEM simplification (right two) to
same 2K splats and vertices with respective run time 31 sec.
and 28 sec. and relative error 0.51% and 0.63%.

7. Conclusions

Multiresolution representations are always necessary to deal
with large datasets. Previous work on progressive splat dec-
imation usually utilizes a hierarchical space partitioning
strategy to create corresponding multiresolution formats, or
adopts a greedy framework with the strategy of focusing
only on the relationships between splat centers. As we have
shown in the paper, although running very fast, these two
strategies can not produce plausible results at the coarse ap-
proximation level. This may be problematic in some cases,
e.g. during progressive rendering from low resolution to
higher one, much lower rendering quality will appear in the
very beginning (cf. Fig. 10). In this paper we have presented
a greedy progressive splat decimation algorithm which uti-
lized the full splat geometry in the decimation criteria and
error estimates not just the splat centers. It offers much bet-
ter quality than other progressive splat decimators and also
comes quite close to the recently proposed globally opti-
mized single-resolution sub-sampling techniques while runs
much faster. In summary, our splat decimation algorithm can
be a new candidate to generate progressive splat models with
a good time-quality tradeoff.

One of the most obvious future steps would be the out-of-
core implementations of the proposed method like stream-
ing processing for polygonal meshes [WK03] as they are
essential to deal with those massive point models. In addi-
tion, because our current progressive splat format still needs
quite a lot storage space, the simplification of progressive
structures is always important for applications like progres-
sive data transmission. Progressive geometry compression
schemes [GD02, AG05] could also be employed in our splat

c© The Eurographics Association 2005.

J. Wu, Z. Zhang & L. Kobbelt / Progressive Splatting

Figure 10: Visual comparisons of LOD (top row), IPS (top middle), our algorithm PSP (bottom middle) and OSS (bottom)
where the bunny model (35K points) is approximated with same number of 415 (left), 2591 (middle) and 11588 (right) splats
for LOD, IPS and PSP and 419, 2577 and 11564 splats for OSS respectively.

setting to further reduce the data size. Finally selective LOD
splat rendering systems need to be developed based on this
progressive splatting techniques.

Acknowledgements

We would like to thank the anonymous reviewers for their
insightful comments and Martin Habbecke for proofreading
the paper. Datasets used in the paper are courtesy of the Stan-
ford Graphics Group and the Cyberware website.

References

[AG05] ALLIEZ P., GOTSMAN C.: Recent advances
in compression of 3d meshes. In Advances

in Multiresolution for Geometric Modelling
(2005), Springer-Verlag, pp. 3–26. 6

[BK03] BOTSCH M., KOBBELT L.: High-quality
point-based rendering on modern GPUs. In
Proceedings of Pacific Graphics 2003 (2003),
pp. 335–343. 1

[BSK04] BOTSCH M., SPERNAT M., KOBBELT L.:
Phong splatting. In Eurographics Symposium
on Point-Based Graphics (2004), pp. 25–32. 1

[BWK02] BOTSCH M., WIRATANAYA A., KOBBELT L.:
Efficient high quality rendering of point sam-
pled geometry. In Eurographics Workshop on
Rendering (2002). 2

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN

c© The Eurographics Association 2005.

J. Wu, Z. Zhang & L. Kobbelt / Progressive Splatting

M.: Variational shape approximation. ACM
Transactions on Graphics. Special issue for
SIGGRAPH conference 23, 3 (2004), 905–914.
2, 4

[DVS03] DACHSBACHER C., VOGELGSANG C.,
STAMMINGER M.: Sequential point trees.
ACM Transactions on Graphics 22, 3 (SIG-
GRAPH 2003), 657–662. 1, 2

[FACOS03] FLEISHMAN S., ALEXA M., COHEN-OR D.,
SILVA C. T.: Progressive point set surfaces.
ACM Transactions on Graphics 22, 4 (2003),
997–1011. 2

[GD02] GANDOIN P.-M., DEVILLERS O.: Progres-
sive lossless compression of arbitrary simpli-
cial complexes. ACM Transactions on Graph-
ics 21, 3 (SIGGRAPH 2002), 372–379. 6

[GGK02] GOTSMAN C., GUMHOLD S., KOBBELT L.:
Simplification and compression of 3d-meshes.
In Tutorials on Multiresolution in Geometric
Modeling (2002), Springer. 1, 3

[GH97] GARLAND M., HECKBERT P. S.: Surface
simplification using quadric error metrics. In
Proceedings ACM SIGGRAPH 1997 (1997),
pp. 209–216. 5, 6

[GPZ∗04] GROSS M., PFISTER H., ZWICKER M.,
ALEXA M., PAULY M., STAMMINGER M.:
Point-based computer graphics. In SIGGRAPH
2004 Course Notes 6 (2004). 1, 2

[Hop96] HOPPE H.: Progressive meshes. In Proceed-
ings of ACM SIGGRAPH 1996 (1996), Com-
puter Graphics Proceedings, Annual Confer-
ence Series, ACM, ACM Press / ACM SIG-
GRAPH, pp. 99–108. 1, 3, 4, 6

[Jol86] JOLLIFFE I.: Principle Component Analysis.
Spring-Verlag, 1986. 3

[KB04] KOBBELT L., BOTSCH M.: A survey of point-
based techniques in computer graphics. Com-
puters & Graphics 28, 6 (2004), 801–814. 1,
2

[KV03] KALAIAH A., VARSHNEY A.: Statistical point
geometry. In Eurographics Symposium on Ge-
ometry Processing (2003), pp. 107–115. 2

[Lin01] LINSEN L.: Point cloud representation. In
Technical report No. 2001-3 (2001), Faculty
for Computer Science, Universitaet Karlsruhe.
2

[LPC∗00] LEVOY M., PULLI K., CURLESS B.,
RUSINKIEWICZ S., KOLLER D., PEREIRA

L., GINZTON M., ANDERSON S., DAVIS

J., GINSBERG J., SHADE J., FULK D.: The

digital michelangelo project. In Proceedings
SIGGRAPH 2000 (2000), pp. 131–144. 1

[Paj03] PAJAROLA R.: Efficient level-of-details for
point based rendering. In Proceedings IASTED
Computer Graphics and Imaging (2003). 2, 3,
5

[PGK02] PAULY M., GROSS M., KOBBELT L.: Ef-
ficient simplification of point-sampled sur-
faces. In Proceedings IEEE Visualization 2002
(2002), pp. 163–170. 2, 3, 5

[RL00] RUSINKIEWICZ S., LEVOY M.: Qsplat: A
multiresolution point rendering system fo large
meshes. In Proceedings SIGGRAPH 2000
(2000), pp. 343–352. 1, 2

[RPZ02] REN L., PFISTER H., ZWICKER M.: Object
space EWA surface splatting: A hardware ac-
celerated approach to high quality point ren-
dering. In Eurographics 2002 Conference Pro-
ceedings (2002), pp. 461–470. 1

[SPL04] SAINZ M., PAJAROLA R., LARIO R.: Ex-
treme splatting: External memory multiresolu-
tion point visualization. In Technical Report
UCI-ICS-04-14 (2004), University of Califor-
nia Irvine. 2

[WK03] WU J., KOBBELT L.: A stream algorithm for
the decimation of massive meshes. In Graphics
Interface 2003 Proceedings (2003), pp. 185–
192. 6

[WK04] WU J., KOBBELT L.: Optimized sub-sampling
of point sets for surface splatting. Computer
Graphics Forum 23, 3 (2004), 643–652. (Proc.
Eurographics 2004). 1, 2, 3, 5

[ZPBG01] ZWICKER M., PFISTER H., BAAR J. V.,
GROSS M.: Surface splatting. In Proceedings
SIGGRAPH 2001 (2001), pp. 371–378. 1

[ZRB∗04] ZWICKER M., RÄSÄNEN J., BOTSCH M.,
DACHSBACHER C., PAULY M.: Perspective
accurate splatting. In Graphics Interface 2004
(2004), pp. 247–254. 1

c© The Eurographics Association 2005.

