Interactive Multi-Resolution Modeling on Arbitrary Meshe S

Leif Kobbelt* Swen Campagna

Jens \Vorsatz Hans-Peter Seidel

University of Erlangen—Nurnberg

Abstract

During the last years the concept of multi-resolution modghas
gained special attention in many fields of computer graphits
geometric modeling. In this paper we generalize powerfultimu
resolution techniques to arbitrary triangle meshes witheguiring
subdivision connectivity. Our major observation is that therar-
chy of nested spaces which is the structural core elemenibost m
multi-resolution algorithms can be replaced by the seqeiefién-
termediate meshes emerging from the application of incnémhe
mesh decimation. Performing such schemes with local frasde ¢
ing of the detail coefficients already provides effectivd afficient
algorithms to extract multi-resolution information fronmsiruc-
tured meshes. In combination with discrete fairing techegyi.e.,
the constrained minimization of discrete energy functisnae ob-
tain very fast mesh smoothing algorithms which are abledoce
noise from a geometrically specified frequency band in aimult
resolution decomposition. Putting mesh hierarchies, | lreane
coding and multi-level smoothing together allows us to ps#p
a flexible and intuitive paradigm for interactive detaieperving

meshes are already sufficiently close to the smooth limdtr afinly
a few refinement steps.

Within a multi-resolution framework, subdivision schenpee-
vide a set of basis functiong ; = ¢(2' - —j) which are suitable to
build a cascade of nested spaves spari[@ j];) [4, 33]. Since the
functions@ j are defined by uniform refinement of a given control
meshMy 22\, the space¥; have to be isomorphic to mesh@4
with subdivision connectivity

While being much more flexible than classical (tensor-potdu
spline techniques, the multi-resolution representat@sed on the
uniform refinement of a polygonal base mesh is still rathgidri
When analyzing a given mesh, i.e., when decomposing the
mesh into disjoint frequency band$ = Vi1 \ Vi, we have tanvert
the uniform refinement operatidf — Vi 1. Hence, the input mesh
always has to be topologically isomorphic to an iterativelfined
base grid. In general this requires a global remeshingfrpisag
of the input data prior to the multi-resolution analysis. [Kore-
over, if we want to fuse several separately generated sisbativ
meshes (e.g. laser range scans) into one model, restictmpat-
ibility conditions have to be satisfied. Hence, subdivissahemes

mesh modification. We show examples generated by our meshge aple to deal with arbitratppologybut not with arbitrarycon-

modeling tool implementation to demonstrate its functiibpa

1 Introduction

Traditionally, geometric modeling is based on piecewisky/mm
mial surface representations [8, 16]. However, while sgiquoly-
nomial basis functions are well suited for describing andlifye
ing smooth triangular or quadrilaterphtches it turns out to be
rather difficult to smoothly join several pieces of a comosur-
face along common (possibly trimmed) boundary curves. As fle
ible patch layout is crucial for the construction of nomvial geo-
metric shapes, spline-based modeling tools do spend mtarhtef
maintain the global smoothness of a surface.

nectivityt

Thescalesof subdivision based multi-resolution mesh represen-
tations are defined in terms of topological distances. Savesy
vertexp; ; on each level of subdivisiofif represents the weight
coefficient of a particular basis functiagj with fixed support, its
region of influence is determined by topological neighbochin
the mesh instead of geometric proximity. Being derived fritwe
regular functional setting, the refinement rules of statigrsubdi-
vision schemes only depend on the valences of the vertidasobu
on the length of the adjacent edges. Hence, surface astifact
occur when the given base mesh is locally strongly distorted

Assume we have a subdivision connectivity mesh and want to
apply modifications on a specific scale The usual way to im-
plement this operation is to run a decomposition schemeraleve

Subdivision schemes can be considered as an algorithmic gen steps until the desired resolution level is reached. On lévil

eralization of classical spline techniques enabling adntreshes
with arbitrary topology [2, 5, 6, 18, 22, 39]. They providesga
access to globally smooth surfaces of arbitrary shape bstively
applying simple refinement rules to the given control mestseA
guence of meshes generated by this process quickly cosverge
smooth limit surface. For most practical applications, tned
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the mesh4; is modified and the reconstruction starting witf
yields the final result. The major draw-back of this procedarthe
fact that coarse basis functions exist for the coarse-medices
only and hence all low-frequency modifications have taligned
to the grid imposed by the subdivision connectivity. Sthiftew-
frequency modifications can be faked by movirgreupof vertices
from a finer scale simultaneously but this annihilates ththeraat-
ical elegance of multi-resolution representations.

A standard demo example for multi-resolution modeling is
pulling the nose tip of a human head model. Depending on the
chosen scale either the whole face is affected or just the ®s
elongated. On uniformly refined meshes this operation ormlskss
if a coarse-scale control vertex happens to be located agtite
nose tip. However, for aautomaticremeshing algorithm it is very
difficult, if not impossible, to place the coarse-scale ieeg at the
semantically relevant features of an object.

In this paper we present an alternative approach to multi-
resolution modeling which avoids these three major diffies] i.e.
the restriction to subdivision connectivity meshes, thgrietion to
basis functions with fixed support and the alignment of piadén
coarser-scale modifications.



The first problem is solved by using mesh hierarchies which
emerge from the application of a mesh decimation schemeedn S
tion 2 we derive the necessary equipment to extract mutieion
information from arbitrary meshes and geometrically erecoetail
information with respect to local frames which adapt to theal
geometry of the coarser approximation of the object.

To overcome the problems arising from the fixed support and
aligned distribution of subdivision basis functions, wemrthe
structural concept of considering a surface in space to leearl
combination of scalar-valued basis functions. On eacH Iefveée-
tail, the lower-frequency components of the geometric shae
simply characterized by energy minimizatidaifing). In Section 3
we overview the discrete fairing technique [19, 38] and show a
combination with the non-uniform mesh hierarchy leads ghlyi
efficient mesh optimization algorithms. Due to the local sthing
properties of the fairing operators, we are able to defigeamet-
ric threshold for the wavelength up to which a low-pass filteustho
remove noise.

With an efficient hierarchical mesh smoothing scheme aviaila
we propose a flexible mesh modification paradigm in Section 4.
The basic idea is to let the designer freely define the region-o
fluence and the characteristics of the modification whicln loain
be adapted to the surface geometry instead of being detedrbin
the connectivity. The selected region defines the "frequeoicthe
modification since it provides the boundary conditions faroa-
strained energy minimization. Nevertheless the detadrmftion
within the selected region is preserved and does changeditgo
to the global modification. Exploiting the efficient schenfiesn
Section 3 leads to interactive response times for modgrateh-
plex models.

In the literature on mesh decimation we find many examples for
hierarchies built on arbitrary meshes [11, 15, 20, 24, 27,35
The key is always to build the hierarchy top-down by elimiimgt
vertices from the current mesm¢remental reduction, progressive
meshels Running a mesh decimation algorithm, we can stop, e.g.,
every time a certain percentage of the vertices is removkd.if-
termediate meshes can be used as a level-of-detail repmdean
[15, 23].

In both cases, i.e., the bottom-up or the top-down generatio
of nested (vertex-) grids, the multi-resolution concepigally at-
tached to topological entities. This makes sense if hibrascare
merely used to reduce the complexity of the representatiothe
context of multi-resolution modeling, however, we want tierar-
chy not necessarily to rate meshes according to tlogirsenesbut
rather according to thegmoothnesécf. Fig 1).

We will use multi-resolution hierarchies for two purposésst
we want to derive highly efficient algorithms for mesh optiat
tion. In Section 3 we will see that topologically reduced hessare
the key to significantly increase the performance (levelsoafrse-
ness). On the other hand, we want to avoid any restricticatsie
imposed by topological peculiarities. In particular, whaterac-
tively modifying a triangle mesh, we do not want any alignmen
The supportof a modification should have no influence where
this modification can be applied (levels of smoothness).

To describe the different set-ups for multi-resolution reep
sentation uniformly, we define a generic decomposition mehe
A = (Ao]Ay)T (analysi$ as a general procedure that transforms a
given meshM; into a coarser/smoother ofig_ 1 = Ag M plus de-
tail coefficients?D;_; = Ap 9. In the standard wavelet setting the
cardinalities satisfy #,_1 +#M;_1 = #M; since decomposition is

Throughout the paper, we consider a modeling scenario where a proper basis transform.

a triangle mes with arbitrary connectivity igiven (no from-
scratch design). All modifications just alter the positidriree ver-
tices but not their adjacency. In particular, we do not cdesiad
infinitum subdivision to establish infinitesimal smoothsiesThe
given meshM = My represents per definition the finest level
detail.

of

2 Multi-resolution representations

Most schemes for the multi-resolution representation aodifica-
tion of triangle meshes emerge from generalizing harmamityais
techniques like the wavelet transform [1, 23, 30, 33]. Sthesfun-
damentals have been derived in the scalar-valued funttetting
RY - R, difficulties emerge from the fact that manifolds in space
are in general not topologically equivalent to simply carted re-
gions in R,

The philosophy behind multi-resolution modeling on suefc
is hence to mimic the algorithmic structure of the relatedcfu
tional transforms and preserve some of the important ptieger
like locality, smoothness, stability or polynomial preeis which
have related meaning in both settings [9, 12, 40]. Accollgijrthe
nested sequence of spaces underlying the decompositimralist
joint frequency bands is thought of being generated bottprfrom
a coarse base mesh up to finer and finer resolutions. Thisampli
that subdivision connectivity is mandatory on higher levef de-
tail. Not only the mesh has to consist of large regular regjiwith
isolated extra-ordinary vertices in between. Additiopale have
to make sure that the topological distance between the Isirigu
ties is the same for every pair of neighboring singularitied this
topological distance has to be a power of 2.

Such special topological requirements prevent the schéoas
being applicable to arbitrary input meshes. Global renmegshind
resampling is necessary to obtain a proper hierarchy whigsg
rise to alias-errors and requires involved computatiohs [7

Luckily, the restricted topology is not necessary to defiife d
ferent levels of resolution or approximation for a trianghesh.

If a (bi-orthogonal) wavelet basis is not known, we have to
store more detail information @#_; + #M;_, > #M;) since the
reconstruction operatok 1 might be computationally expensive
or not even uniquely defined. Well-known examples for thisdki
of decomposition with extra detail coefficients are the bajan-
pyramid type of representation in [40] and the progressiesim
representation [15].

WhenAg is merely a smoothing operator which does not change
the topological mesh structure 6f; we haveAy = Id — Ap and
#Di_1 = H#M_1 = #M;.

2.1 Local Frames

In a multi-resolution representation of a geometric object M,

the detail coefficientd,_1 describe the difference between two ap-
proximations#_1 and 4 having different levels of detail. For
parametric surfaces, the detail coefficients, i.e., th&éadacation

of the vertices in4; have to be encoded relative to the local ge-
ometry of the coarser approximatiov_1. This is necessary since
modifications on the coarser level should have an intuitifeceon
the geometric features from finer scales.

First proposed by [10] it has become standard to derive local
coordinate frames from the partial derivative informatiointhe
coarse representatich| ;. Since we do not assume the existence
of any global structure or auxiliary information in the seque of
meshes;, we have to rely on intrinsic geometric properties of
the triangles themselves. Depending on the intended apioiic
we assign the local frames to the triangles or the vertice®;of;.

A detail vector is then defined by three coordinate valuesg n|
plus an index identifying the affine framé&; = [p;,U;, Vi, Ni] with
respect to which the coordinates are given.

2.1.1 Vertex-based frames

We can use any heuristic to estimate the normal védtat a vertex
pi in a polygonal mesh, e.g., taking the average of the adjadent
angle normals. The vecttl; = E — (ET N;)N; is obtained by pro-
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Figure 1: The well-known Stanford-Bunny. Although the araj mesh does not have subdivision connectivity, meshuaimon algorithms
easily generate a hierarchy of topologically simplified hess On the other hand, multi-resolution modeling alsoiregthierarchies of
differently smoothapproximations. Notice that the meshes in the lower row deetical connectivity.

jecting any adjacent eddeinto the tangent plane ail:= N; x U;.
The data structure for storing the mesf_; has to make sure that
E is uniquely defined, e.g. as the first member in a list of neighb

2.1.2 Face-based frames

It is tempting to simply use the local frame which is given it
triangle edges and their cross product. However, this willead to
convincing detail reconstruction after modifying the cEarlevel.
The reason for this is that the local frames would be rigitigched
to one coarse triangle. In fact, tracing the dependency swearal
levels of detail shows that the original mesh is implicitiriitioned
into sub-meshes being assigned to the same coarse tribngle-
plying a transformation t@ implies the same transformation for all
vertices being defined relative To This obviously leads to artifacts
between neighboring sub-meshes in the fine mesh.

A better choice is to use local low order polynomial integras
or approximants that depend on more than one single triahgle
Po, P1, andp, be the vertices of a triangl€ € M;_; andps, pa,
andps be the opposite vertices of the triangles adjacert¥ @f.
Fig. 2). To construct a quadratic polynomial

u? V2
F(uv) = fufy+ vy + = fuut uvuy+ 5 fu

approximating thep; we have to define a parameterization first.
Note that the particular choice of this parameterizationtr@ds the
quality of the approximant. Since we want to take the geametr
constellation of thep; into account, we define a parameterization
by projecting the vertices into the supporting pland of

Exploiting the invariance of the polynomial interpolanthwie-
spect to affine re-parameterizations, we can reqei0) := po,
F(1,0) := p1, andF(0, 1) := p2 which implies

f = po
fu = p1—po— % fuu
fv = p2—po— % fuv.

@)

Let the verticeps, p4, andps be projected tdus, v3), (ug,Vvs), and
(us, V) according to the framfpg, p1,p2]. To additionally stabilize
the interpolation scheme, we introduce a tension parametég, 1]
which trades approximation error g, p4, andps for minimizing
the bending energfg, + 2f2, + 2,. Using (1) we obtain

lug(us—1) uzvs 3vs(vs—1)

Jus(us—1) usva Lva(va-—1) fu
Jus(us—1) UsVs Lvs(vs—1) ( fuv ) =
T 0 0 fuv

0 21 0
0 0 T
(P3—Ppo) + U3 (Po—P1) + V3 (Po—P2)
(P4 —pPo) +Ua (Po—P1) +Va (Po —P2)
(Ds—po)+U5(I006p1)+V5(I00—p2)
0
0

which has to be solved in a least squares sense.

To compute the detail coefficien8, v, h| for a pointq with re-
spect toT, we start from the centéo,v) = (%, %) and simple New-
ton iteration stepsu,v) < (u,v) + (Au,Av) with d = g — F(u,Vv)

(FJFU FJFV> <Au> - <F3d>

FIFv FIF )\ Av Fid

quickly converge to the poirfe((, V) with the detail vectod per-
pendicular to the surfacE(u,v). The third coefficient is then
h=sign(d" (Fux Fy)) ||d]!.

Although the parameter valuég, V) can lie outside the unit tri-
angle (which occasionally occurs for extremely distortedfigu-
rations) the detail coefficien, v, h is still well-defined and recon-
struction works. Notice that the scheme might produce @tint
intuitive results if the maximum dihedral angle betwdeand one
of its neighbors becomes larger thgnn this case the parameter-



ization for ps, p4, andps could be derived by rotation aboiits
edges instead of projection.

Figure 2: Vertex labeling for the construction of a locahfia

Obviously, the detail coefficierifi, v, h] is not coded with respect
to a local frame in the narrow sense. However, it has a siraédar
mantics. Recovering the vertex positighrequires to construct the
approximating polynomiaF'(u,v) for the possibly modified ver-
ticesp], evaluate af(, V) and move in normal direction by. The
distanceh is a measure for the "size” of the detail.

In our current implementation on a SGI R10000/195 MHz work-
station the analysig — [, V, h] takes about 20Swhile the recon-
struction|[(, ¥, h] — g takes approximately|&S Since a progressive
mesh representation introduces two triangles per vertktx 8ps
means that for the reconstruction of a mesh with ttlangles, the
computational overhead due to the local frame representatiess
than half a second.

2.2 Decomposition and reconstruction

To complete our equipment for the multi-resolution set-ugphave
to define the decomposition and reconstruction operatidnishw
separate the high-frequency detail from the low-frequesttgpe
and eventually recombine the two to recover the originallmes
We apply different strategies depending on whether deceitipo
generates a coarser approximation of the original geonuetry
smoother approximation.

In either case the decomposition operaas applied to the orig-
inal mesh?; and the detaile);_1 are coded in local frame coordi-
nates with respect t@4_1. Since the reconstruction is an extrapo-
lation process, it is numerically unstable. To stabilize dperation
we have to make the details as small as possible, i.e., wreaden
ing the spatial position of a poift e R we pick that local frame
on %;_1 which is closest tq].

Usually the computational complexity of generating theadet
coefficients is higher than the complexity of the evaluatioming
reconstruction. This is an important feature since forraxttve
modeling the (dynamic) reconstruction has to be done intieed
while the requirements for the (static) decomposition arteas de-
manding.

2.2.1 Mesh decimation based decomposition

When performing an incremental mesh decimation algoritewch
reduction step removes one vertex and retriangulates thaime
ing hole [15, 31]. We use a simplified version of the algorithm
described in [20] that controls the reduction process irotd op-
timize the fairness of the coarse mesh while keeping theatykb-
proximation error below a prescribed tolerance.

The basic topological operation is thelf edge collapsevhich
shifts one vertey into an adjacent verteg and removes the two
degenerate triangles. In [20] a fast algorithm is presetdateter-
mine that trianglél in the neighborhood of the collapse which lies

closest to the removed vertgx The position ofp is then coded
with respect to the local frame associated with this triangl

The inverse operation of an edge collapse isvigrex splif15].
Since during reconstruction the vertices are insertedénéekierse
order of their removal, it is guaranteed that, wieis inserted, the
topological neighborhood looks the same as when it was atlet
and hence the local frame to transform the detail coeffidienp
back into world coordinates is well-defined.

During the iterative decimation, each intermediate mesiidco
be considered as one individual level of detail approxioratHow-
ever, if we want to define disjoint frequency bands, it is osable
to consider a whole sub-sequence of edge collapses as ani ato
transformation from one levelf to 44 ;.

There are several criteria to determine which levels maek th
boundaries between successive frequency bands. One ifiyssib
is to simply define?; to be the coarsest mesh that still keeps a
maximum tolerance of less than sogeto the original data. Al-
ternatively we can require the number of verticegifL; to be a
fixed percentage of the number of verticesify. This simulates
the geometric decrease of complexity known from classiadtim
resolution schemes. We can also let the human user decide whe
a significant level of detail is reached by allowing her tovise
through the sequence of incrementally reduced meshes.

In order to achieve optimal performance with the multi-leve
smoothing algorithm described in the next section, we dgrid
our implementation to distribute the collapses evenly dvemesh:
When a collaps@ — q is performed, all vertices adjacentdcare
locked for further collapsing (independent set of colla)séf no
more collapses are possible, the current mesh defines théenek
of detail and all vertices are un-locked. One pass of thisatéoh
scheme removes about 25% of the vertices in average.

2.2.2 Mesh smoothing based decomposition

For multi-resolutiormodelingwe have to separate high frequency
features from the global shape in order to modify both irtivi
ally. Reducing the mesh complexity cannot help in this césees

coarser meshes do no longer have enough degrees of freedom to

be smooth, i.e., to have small angles between adjacengkesn
Hence, the decomposition operatdg becomes a mere smooth-
ing operator that reduces the discrete bending energy imtgh
without changing the topology (cf. Section 3).

A natural way to define the detail coefficients would be toestor
the difference vectors between the original vertex pasiticand
the shifted positiorg’ with respect to the local frame defined at
g’. However, in view of numerical stability this choice is nqi-o
timal. Depending on the special type of smoothing operatgr
the vertices can move "within” the surface such that anotkeeiex
p' € Mi_1 = AgpM; could lie closer tay thang’ (cf. Fig. 3).

Figure 3: Although the bending energy minimizing smoothipg
eratorAg is applied to lanetriangulation, the vertices are moved
within the plane since linear operators always do the fgivith re-
spect to a specific parameterization (cf. Section 3).

To stabilize the reconstruction, i.e., to minimize the knof the
detail vectors, we apply a simple local search procedurentbtfie



nearest vertex' € M_1 to g and express the detail vector with
respect to the local frame pt or one of its adjacent triangles. This
searching step does not noticeably increase the computtie
(which is usually dominated by the smoothing operatiag) but
leads to much shorter detail vectors (cf. Fig 4).
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Figure 4: The shortest detail vectors are obtained by reptiegy
the detail coefficients with respect to the nearest locahé&dleft)
instead of attaching the detail vectors to the topologjcetirre-
sponding original vertices.

3 Discrete fairing

From CAGD it is well-known that constrained energy minintiaa
is a very powerful technique to generate high quality s@$48, 13,
25, 28, 37]. For efficiency, one usually defines a simple catadr

energy functionalE(f) and searches among the set of functions

satisfying prescribed interpolation constraints for thatction f
which minimizesE.

Transferring the continuous concept of energy minimizatom
the discrete setting of triangle mesh optimization leadhéodis-
crete fairing approach [19, 38]. Local polynomial integouls are
used to estimate derivative information at each vertex biddd
difference operators. Hence, the differential equatioaratteriz-
ing the functions with minimum energy is discretized intare&r
system for the vertex positions.

Since this system is global and sparse, we apply iterativingp
algorithms like the GauRR-Seidel-scheme. For such algostbne
iteration step merely consists in the application of a seriptal
averaging operator. This makes discrete fairing an eassaitie
technique for mesh optimization.

3.1 The umbrella-algorithm

The most prominent energy functionals that are used in theryh
and practice of surface design are the membrane energy

Eu(f) = /fu2+fv2 (2)

which prefers functions with smaller surface area and theglate
energy

Erp(f) = /f5u+2fgv+fvzv 3)

which punishes strong bending. The variational calculasideto
simple characterizations of the corresponding minimunngngur-
faces

Af = fuu+fvv =0 (4)

or
N2 = fuuuut 2 fuuw+ foww = 0 %)

respectively. Obviously, low degree polynomials satisithdiffer-

ential equations and hence appropriate (Dirichlet-) bampdondi-

tions have to be imposed which make the semi-definite funatio
Em and Erp positive-definite.

The discrete fairing approach discretizes either the gremy-
tionals (2—-3) [19, 38] or the corresponding Euler-Lagrangaa-
tions (4-5) [17, 36] by replacing the differential operatarith di-
vided difference operators. To construct these operat@save to
choose an appropriate parameterization in the vicinityachever-
tex. In [38] for example a discrete analogon to the expoakntap
is chosen. In [17] thembrella-algorithmis derived by choosing a
symmetric parameterization

i i .

(ui,vi) = (cos(2nn),sm(2nn)), i=0,....,.n—1 (6)
with n being the valence of the center verfexcf. Fig 5). This pa-
rameterization does not adapt to the local geometric cthatste
but it simplifies the construction of the corresponding etifince
operators which are otherwise obtained by solving a Vandeda
system for local polynomial interpolation. With the spégaram-
eterization (6) the discrete analogon of the Laplaciainturns out
to be the umbrella-operator

1 n-1

Up) = ﬁiZOpi -p

with p; being the direct neighbors @f (cf. Fig. 5). The umbrella-
operator can be applied recursively leading to

W (p) =

n-1
S um) - up)

g

as a discretization of\2f.
P

1

F 1
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Pn—l

Figure 5: To compute the discrete Laplacian, we need the 1-

neighborhood of a vertex (— umbrella-operator).

The boundary conditions are imposed to the discrete problem

by freezing certain vertices. When minimizing the discretesion

of Ev we hold a closed boundary polygon fixed and compute the

membrane that is spanned in between. For the minimizatid pf
we need two rings of boundary vertices, i.e., we keep a clesgd
of triangles fixed. This imposes a (discre®)boundary condition
to the optimization problem (cf. Fig 6). All internal vertis can
be moved freely to minimize the global energy. The propehly-c
sen boundary conditions imply positive-definiteness ofghergy
functional and guarantee the convergence of the iteratixéng
algorithm [29].

The characteristic (linear) system for the correspondimgpo-
strained minimization problem has rov#(p;) = 0 or U?(p;) =0
respectively for the free verticgg. An iterative solving scheme
approaches the optimal solution by solving each row of tistesy
separately and cycling through the list of free verticedl argtable
solution is reached. In case of the membrane engggyhis leads
to the local update rule

Pi <+ pi+ U(pi) )



and for the thin plate energ¥yp , we obtain
1 5
Pi ¢ pi— 5 U(pi) ®)

with the "diagonal element”

wheren; andn; j are the valences of the center verpgand itsjth
neighbor respectively.

Figure 6: A closed polygon or a closed triangle strip provitfe
or C! boundary conditions for the discrete fairing. On the leé th
triangle mesh minimize%y on the right it minimizesErp.

Although the rule (8) can be implemented recursively, théqpe
mance is optimized if we use a two step process where all ukabre
vectors?(p;) are computed in a first pass aff(pj) in the sec-
ond. This avoids double computation but it also forces uswin
fact a plain Jacobi-solver since no intermediate updates freigh-
boring vertices can be used. However thet 2) : 2 speed-up for
a vertex with valence amortizes the slower convergence of Jacobi
compared to Gaul3-Seidel.

3.2 Connection to Taubin’s signal processing ap-
proach

The local update operator (7) in the iterative solving sobhdar
constrained energy minimization is exactly the Laplaceatimiog
operator proposed by Taubin in [34] where he derived it (slsbe
context of mesh smoothing) from a filter formalism based arege
alized Fourier analysis for arbitrary polygonal meshesismpaper,
Taubin starts with a matrix version of the scaled update ([le
[pi] = (I+A 1) [pi]
where is a damping factor and formally rewrites it by using a
transfer function notation

f(k) := 1Ak

with respect to the eigenbasis of the (negative) Laplaceabpe
Since no proper boundary conditions are imposed, the agdin

Obviously, the update rule for the difference equatiofp;) =0
which characterizes meshes with minimum membrane eneirgy co
responds to a special low-pass filter with transfer funcfigik) =
(1—Kk). For the minimization of the total curvature, charactatize
by U?(p;i) = 0, the iteration rule (8) can be re-written in transfer
function notation as

1 1
NORASIYC

which corresponds to a combined Laplace filter of the form (9)
with pass-band frequendypg = 0. Although this is not optimal
for reducing the shrinking effect, we observe that the fierfsinc-
tion happens to have a vanishing derivativekat 0. From sig-
nal processing theory it is known that this characterizeximeal
smoothness [26], i.e., among the two step Laplace filtees7tf
filter achieves optimal smoothing properties. To stabitfeefilter

we might want to introduce a damping factokQo < %v into the
update-rule

fop(k) = (1fék2) = (1+ k)

o
Pi P, w?(pi)

3.3 Multi-level smoothing

A well-known negative result from numerical analysis isttha
straight forward iterative solvers like the Gau3-Seiddlesue are
not appropriate for large sparse problems [32]. More soighied
solvers exploit knowledge about te&uctureof the problem. The
important class of multi-grid solvers achieve linear rungntimes

in the number of degrees of freedom by solving the same proble
on grids with different step sizes and combining the appnate
solutions [14].

For difference £ discrete differential) equations of elliptic type
the Gaul3-Seidel iteration matrices have a special eigeniste that
causes high frequencies in the error to be attenuated vécklgu
while for lower frequencies no practically useful rate oheer-
gence can be observed. Multi-level schemes hence solveea giv
problem on a very coarse scale first. This solution is usedadigt
initial values for a solution of the same problem on the nefibe-
ment level. If these predicted values have only small denat
from the true solution in low-frequency sub-spaces, thenf3sa
Seidel performs well in reducing the high-frequency errdihe
alternating refinement and smoothing leads to highly effiararia-
tional subdivision schemes [19] which generate fair higbetution
meshes with a rate of several thousand triangles per setinadr(
complexity!).

As we saw in Section 2, the bottom-up way to build multi-
resolution hierarchies is just one of two possibilities. get rid
of the restriction that the uniform multi-level approachfairing
cannot be applied to arbitrary meshes, we generate therdtigra
top-down by incremental mesh decimation.

A complete V-cycle multi-grid solver recursively appliegera-
tors ®; = WP ®;_; RY where the first (right}¥ is a generic (pre-
)smoothing operator — a Gaul3-Seidel scheme in our dase.a
restriction operator to go one level coarser. This is whieeentesh
decimation comes in. On the coarser level, the same scheape is

filtering by (k) leads to severe shrinking and hence he proposes plied recursively,®;_;, until on the coarsest level the number of

combined filters

f(k) := (1—AK)(1—pk) 9
whereA andp are set in order to minimize the shrinking. A feasible
heuristic is to choose pass-band frequency

11
kpg = 5+ € [00L..0

A

and sef\ andp while observing the stability of the filter.

degrees of freedom is small enough to solve the system lifect
any other stopping criterion is met). On the way back-up pttee
longation operatoP inserts the previously removed vertices to go
one level finer againP can be considered as a non-regular subdi-
vision operator which has to predict the positions of théizes in
the next level’s solution. The re-subdivided mesh is an @gpra-
tive solution with mostly high frequency error. (Post-)sttong
by some more iteration® removes the noise and yields the final
solution.

Fig 7 shows the effect of multi-level smoothing. On the lefty
see the original bunny with about 70K triangles. In the celetf,



Figure 7: Four versions of the Stanford bunny. On the leftathiginal data set. In the center left the same object aft@ri@dations of the

non-shrinking Laplace-filter. On the center right and fghtithe original data set after applying the multi-level uaila filter with three or
six levels respectively.

0o
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we applied the Laplace-filter proposed in [34] wkhk= 0.6307 and
nw= —0.6732. The iterative application of the local smoothing op-
erator

Pi < pi + AW U(pi) (10)

removes the highest frequency noise after a few iteratiohddes

not have enough impact to flatten out the fur even after selvara
dred iterations. On the right you see the meshes after agphyi
multi-level smoothing with the following schedule: Hiechay lev-

els are generated by incremental mesh decimation wherdeasth
has about 50% of the next finer level’'s vertices. The pre-shiog
rule (8) is applied twice on every level before going dowrngar
and five times after coming back up. On the center right model
we computed a three level V-cycle and on the far right model a
six level V-cycle. Notice that the computation time of theltiu
level filters (excluding restriction and prolongation) i@sponds to
about(2+5)(1+ 0.5+ 0.52 +...) < 14 double-steps of the one-
level Laplace-Filter (10).

3.4 Geometric filtering

The bunny example in Fig. 7 is well suited for demonstratimg t
effect of multi-level smoothing but we did not impose any hdu
ary conditions and thus we applied the smoothing as a meee filt
and not as a solving scheme for a well-posed optimizatiot-pro
lem. This is the reason why we could use the number of levels to
control the impact of the smoothing scheme on the final reBoit
constrained optimization, it does not make any sense to th®p
recursion after a fixed number of decimation levels: we atvay
duce the mesh down to a small fixed number of triangles. Pisoper
chosen boundary condition will ensure the convergencedartie
solution and prevent the mesh from shrinking.

Nevertheless, we can exploit the effect observed in Fig.deto
fine more sophisticated geometric low-pass filters. Sineestip-
port of the Laplace-filters is controlled by the neighborthoelation
in the underlying mesh, the smoothing characteristics afmed
relative to a "topological wavelength”. Noise which affe@very
other vertex is removed very quickly independent from thregie
of the edges while global distortions affecting a largermgsh are
hardly reduced. Fogeometricfilters however we would like to set
the pass-band frequency in terms of Euclidian distancesobiup
lating that all geometric features being smaller than sdweshold
€ are considered as noise and should be removed.

variance in the lengths of the edges. For the bunny exampleaw
keep the standard deviation from the average edge lengitv logle
percent for incremental decimation down to about 5K triaag|

By selecting the lowest leveMy down to which the V-cycle
multi-level filtering iterates, we set the threshald= €(Mp) for
detail being removed by the multi-level smoothing schemée T
thresholding works very well due to the strong local and gobal
convergence of the iterative update rule (8). Fig. 8 showdtse
meshes for the multi-level smoothing during the computatitthe
two right bunnies of Fig. 7.
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Figure 8: Base meshes where the V-cycle recursion stopped wh
generating the right models in Fig. 7. The final meshes doausd
significant detail (watch the silhouette). Notice how in kb ex-
ample the fur is removed but the bunny’s body preserved while
the right example the leg and the neck start to disappear.

4 Multi-resolution modeling on triangle
meshes

In this section we describe a flexible and intuitive mulsekition
mesh modeling metaphor which exploits the techniques ptede
in the last two sections. As we discussed in the introductoam
goal is to get rid of topological restrictions for the mesh hlso
to get rid of difficulties emerging from the alignment of thasis
functions in a hierarchical representation and the rigabshof the
basis function’s support.

From a designer’s point of view, we have to distinguish tleee
manticlevels of detail. These levels are defined relative to a fipeci
modeling operation since, of course, in a multi-resolugoriron-

Such filters can be implemented by using an appropriate meshment the features that are detail in a (global) modificatiecome

reduction scheme that tends to generate intermediate sestie
strong coherence in the length of the edges. In [20] we pmwpos
mesh decimation scheme that rates the possible edge @&dlaps
cording to some generic fairness functional. A suitablesclije
function for our application is to maximize tlleundnesof trian-
gles, i.e., the ratio of its inner circle radius to its longedge. If
the mesh decimation scheme prefers those collapses thedvenp
the global roundness, the resulting meshes tend to havdititdy

the global shape for a minute adjustment.

e Theglobal shapaés that part of the geometry that is the subject
of the current modification. Intuitively, the designer stdea
piece of the global shape and applies a transformation to it.

e Thestructural detailare features that are too small to be mod-
ified by hand but still represent actual geometry. This detai
should follow the modification applied to the global shapa in
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Figure 9: The wooden cat mod@y (178K triangles, left) is in progre

ov - o

S
ssive mesh represembatiThe high resolution is necessary to avoid

alias errors in the displacement texture. The center leflehd/ (23K triangles) is extracted by stopping the mesh reductiben a
prescribed complexity is reached. On this level interactivesh modification is done which yields the mo@él (center right). The final
resultay (right) is obtained by running the reconstruction on the ified mesh.

geometrically intuitive manner. The preservation of stneel
detail during interactive modeling is crucial for plausihi-

sual feed-back (cf. the eyes and ears of the wooden cat model
in Fig. 9).

Thetextural detaildoes not really describe geometric shape.
It is necessary to let the surface appear more realisticand i
often represented by displacement maps [21]. In high qual-
ity mesh models it is the source for the explosive increase in
complexity (cf. the wood texture in Fig. 9).

Having identified these three semantic levels of detail, vggest a
mesh modeling environment which provides flexible mesh firodi
cation functionality and allows the user to adapt the meshptex-
ity to the available hardware resources.

In an off-line preprocessing step, an incremental mesheci
tion algorithm is applied and the detail coefficients areeslavith
respect to local frames as explained in Section 2.2.1. Taist
forms the highly complex input model into a progressiveimgpe
multi-resolution representation without any remeshingegam-
pling. The representation allows the user to choose an pppte
number of triangles for generating a mesh model that is fineigim
to contain at least all the structural detail but which i9atearse
enough to be modified in realtime. This pre-process remdwes t
textural detail prior to the actual interactive mesh modifian.

Suppose the original mesh mod# is transformed into the pro-
gressive mesh sequeng#, ..., Mp] with My being the coarsest
base mesh. If the user picks the me&ghand applies modifications
then this invalidates the subsequen8é_1, ..., Mo]. If the work-
ing resolution is to be reduced afterwardgi6 (j < i) then the in-
termediate meshes have to be recomputed by online meshaiecim
tion. The textural detail encoded in the subsequéfte. .., M 1]
however remains unchanged since it is stored with respdotd
frames such that reconstruction starting from a modifiedhnmes
leads to the intended resuit,. Fig. 9 shows an example of this
procedure.

4.1

The most important feature in the proposed multi-resotuti@sh

modeling environment is the modification functionalityeifymod-

eling metaphoywhich hides the mesh connectivity to the designer.
The designer starts by marking an arbitrary region on thehmes

4. In fact, she picks a sequence of surface points (not nedgssa

vertices) on the triangle mesh and these points are cortheither

by geodesics or by projected lines. The strip of trianglashich

are intersected by the geodesic (projected) boundary polggp-

arates an interior regiofi. and an exterior regiof¥; \ (M. U.S).

Interactive mesh modeling by discrete fairing

The interior regior, is to be affected by the following modifica-
tion.

A second polygon (hot necessarily closed) is marked witén t
first one to define thdandle The semantics of this arbitrarily
shaped handle is quite similar to the handle metaphor in [8F&n
the designer moves or scales the virtual tool, the same geome
transformation is applied to the rigid handle and the surding
mesh4/, follows according to a constrained energy minimization
principle.

The freedom to define the boundary stsipnd the handle geom-
etry allows the designer to build "custom tailored” basisdtions
for the intended modification. Particularly interestinghie defini-
tion of aclosedhandle polygon which allows to control the char-
acteristics of a bell-shaped dent: For the same reg@ifna tiny
ring-shaped handle in the middle causes a rather sharp fekskav
bigger ring causes a wider bubble (cf. Fig 10). Notice thattiesh
vertices in the interior of the handle polygon move accaydothe
energy minimization.
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Figure 10: Controlling the characteristics of the modifimaby the
size of a closed handle polygon.

Since we are working on triangle meshes, the energy minimiza
tion on 9, is done by discrete fairing techniques (cf. Section 3).
The boundary triangles provide the correcE! boundary condi-
tions for minimizing the thin plate energy functional (3).

The handle imposes additional interpolatory constraintthe
location only — derivatives should not be affect by the handl
Hence, we cannot have triangles being part of the handle geom
try. We implemented the handle constraint in the followingyw
like the boundary polygon, the handle polygon defines a stfrip
triangles being intersected by it. Whether the handle molyis
open or closed, we find two polygons of mesh edges on either sid
of that strip. We take any one of the two polygons and collget e
ery other mesh vertex in a set bandle vertices Keeping these
handle vertices fixed during the mesh optimization is thetexil
interpolatory constraint.



The reason for freezing only every other handle vertex is tha
three fixed vertices directly connected by two edges builiia r
constellation leaving no freedom to adjust #reglebetween them.
During discrete optimization this would be the source ofesiced
artifacts in the smooth mesh.

With the boundary conditions properly set we perform the thi
plate energy minimization by using the umbrella algorithey d
scribed in Section 3.1. To obtain interactive response gjmes
exploit the multi-level technique: a mesh decimation atpaon is
applied to the mesh£, U .S to build up a hierarchy. Then starting
from the coarsest level, we apply thi& smoothing filter alternat-
ing with mesh refinement. This process is fast enough tombtai-
eral frames per second when modeling with meshesiéf # 5K
triangles (SGI R10000/195MHz). Typically, we set the ratidhe
complexities between successive meshes in the hierarchyZor
1: 4 and iterate the smoothing filter 3 to 5 times on each level.

During the interactive mesh smoothing we do not compute the
full V-cycle algorithm of Sect. 3.3. In fact, we omit the pre-
smoothing and always start from the coarsest level. Whermr-a ve
tex is inserted during a mesh refinement step we place iiyiti
at its neighbor’s center of gravity unless the vertex is alfe@wer-
tex. Handle vertices are placed at the location prescrilyethd®
designer’s interactiorh@ndle interpolation constraiit Hence the
mesh is computed from scratch in every iteration insteadsifiyp-
dating the last position. This is very important for the modg
dialog since only the current position, orientation andescé the
handle determines the smoothed mesh and not the wholeyhigtor
movements.

For the fast convergence of the optimization procedureritstu
out to be important that the interpolation constraints isgubby the
handle vertices show up already on rather coarse levelgim#sh
hierarchy. Otherwise their impact cannot propagate faugho

through the mesh such that cusps remain in the smoothed mesh

which can only be removed by an excessive number of smoothing
iterations. This additional requirement can easily betidel into

the mesh reduction scheme by lowering the priority rankihcpt
lapses involving handle vertices.

4.2 Detail preservation

If the modified meshM, is merely defined by constrained energy
minimization, we obviously loose all the detail of the ongily
selected submesh,. Since only the boundary and the handle ver-
tices put constraints on the mesh, all other geometric featare
smoothed out.

To preserve the detail, we use the multi-resolution repitase
tion explained in Section 2.2.2. After the boundarand the han-
dle polygon are defined but before the handle is moved by the de
signer, we apply the multi-level smoothing scheme oncehalgh

the original mest\f, and the smoothed mesH, are topologically
equivalent, they do have different levels of (geometricptation
and hence constitute a two-scale decomposition based gmgar
levels of smoothness. We encode the differefitebetween the
two meshes, i.e., the detail coefficients for the vertiges M. by
storing the displacement vectors with respect to the loeahé as-

sociated with the nearest triangle, .

When the designer moves the handle, the bottom-up mesh

smoothing is performed to re-adjust the mesh to the newgater

lation conditions. On the resulting smooth mekf, the detailD.

is added and the final mesit! is rendered on the screen. Due to
the geometric coding of the detail information, this leadisituitive
changes in the surface shape (cf. Figs. 11, 12). The "frexyliai
the modification is determined by the size of the area, iythb
boundary conditions and the fact that thepporting mesis opti-
mal with respect to the thin-plate functional.

5 Conclusions and future work

We presented a new approach to multi-resolution mesh repres
tation and modeling which does not require the underlyirentr
gle mesh to have subdivision connectivity. By adapting meitel
technigues known from numerical analysis to the non-regee#
ting of arbitrary mesh hierarchies, we are able to approtéiya
solve constrained mesh optimization in realtime. Comlgrtime
two results allows us to present a flexible metaphor for autve
mesh modeling where the shape of the modification is coettoll
by energy minimization while the geometric detail is preedrand
updated according to the change of the global shape.

Our current implementation of an experimental mesh model-
ing tool already provides sufficient functionality to appgphis-
ticated realtime modifications to arbitrary input meshethwip to
100K triangles. However, all changes do affect geemetryof the
meshes only. So far we did not considepologicalmodifications
of triangle meshes. In the future, when modifying a given mes
we would like new vertices to be inserted where the mesh @lipc
stretched too much and, on the other hand, we would likeogti
to be removed when strong global modification causes lodhal se
intersection of the reconstructed detail.
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