
Robust and Efficient Photo-Consistency
Estimation for Volumetric 3D Reconstruction

Alexander Hornung and Leif Kobbelt

Computer Graphics Group, RWTH Aachen University
{hornung, kobbelt}@cs.rwth-aachen.de

Abstract. Estimating photo-consistency is one of the most important
ingredients for any 3D stereo reconstruction technique that is based on
a volumetric scene representation. This paper presents a new, illumina-
tion invariant photo-consistency measure for high quality, volumetric 3D
reconstruction from calibrated images. In contrast to current standard
methods such as normalized cross-correlation it supports unconstrained
camera setups and non-planar surface approximations. We show how
this measure can be embedded into a highly efficient, completely hard-
ware accelerated volumetric reconstruction pipeline by exploiting current
graphics processors. We provide examples of high quality reconstructions
with computation times of only a few seconds to minutes, even for large
numbers of cameras and high volumetric resolutions.

1 Introduction

Volumetric multi-view stereo reconstruction, originally introduced by Seitz et
al. [1, 2], has recently been shown to produce 3D models from photographs or
video sequences with fairly high quality [3, 4]. The basic principle in volumet-
ric reconstruction is to find a classification for all elements (voxels) within a
discretized volume whether they belong to the surface of the 3D object or not.

Probably the most central aspect of all these techniques is the estimation of
the so called photo-consistency of a given voxel. The fundamental idea is that
only voxels intersected by the object’s surface have a consistent appearance in the
input images, while other voxels project to incompatible image patches (Fig. 1).
Currently there are two major approaches to this problem, either focusing on
efficient computability or quality of the reconstruction.

Originally photo-consistency was measured based on the color variance of a
voxel [1], assuming perfectly Lambertian and well textured surfaces under con-
stant illumination conditions. Despite these restrictions this method is still widely
used [5, 6] because of its computational efficiency and the often acceptable quality,
e.g., for time-critical applications such as new view synthesis [7]. Since then the
original approach has been improved in several ways. Bonet et al. [8] suggested ex-
tensions considering transparency. Zýka and Sára [9] present a statistical method
for reliable outlier rejection. A probabilistic framework for space carving was pre-
sented by Broadhurst et al. [10]. Histogram-based color consistency tests were in-
troduced by Stevens et al. [11], and Yang et al. [12] addressed the problems of
textureless regions and specular highlights.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 179–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



180 A. Hornung and L. Kobbelt

Fig. 1. An example for our improved photo-consistency measure for 3D reconstruction
from images (a). Cuts through the computed consistency volume from a front and a
side view for the warrior model are shown in (b) and (c) respectively. Darker colors
indicate higher consistency values. The clear maximum at the actual surface location
allows for reconstructed 3D models of high quality (d).

In recent work focusing on the quality of the reconstructed 3D model, photo-
consistency is commonly evaluated based on more sophisticated consistency mea-
sures such as sum-of-squared-differences (SSD) or normalized cross-correlation
(NCC) [13] of image patches instead of color variances. This greatly reduces am-
biguous color configurations and accounts for changes in illumination because
of the involved normalization step. Esteban et al. [3] present a technique based
on deformable models, while Vogiatzis et al. [4] use global graph-cut optimiza-
tion to find an optimal surface within a discretized volume that satisfies photo-
consistency as well as smoothness constraints. Both methods achieve a very high
quality of the reconstructed models. However both papers point out several open
issues of NCC-based consistency estimation such as the question whether to use
planar model- or image-aligned surface patches. In both cases projective warp-
ing can introduce a considerable matching error already for medium-baseline
and non epipolar-aligned images. Our work resolves these restrictions based on
a new, color normalized supersampling approach and specifically supports these
recent optimization-based reconstruction techniques [3, 4].

A further important aspect besides the quality of a photo-consistency mea-
sure is its efficiency. Computation times up to several hours are common even
in recent NCC-based work [3, 4] due to the much higher computational com-
plexity. Although this could be considered acceptable with respect to the very
high quality of the reconstructions, it is often still time-consuming to find op-
timal parameter settings in practice. Szeliski [14] addressed performance us-
ing adaptively refined grids. Partially hardware accelerated implementations of
space carving were presented by Prock et al. [15] and Sainz et al. [16]. Solu-
tions for hardware accelerated visual hulls and improved voxel visibility estima-
tion have been discussed in [7, 17, 18]. Li et al. [7] presented a first completely
hardware-based solution, Yang et al. [19] described a hardware-based SSD es-
timation for real-time stereo. However, these works either have conceptual



Robust and Efficient Photo-Consistency Estimation 181

limitations in their applicability to recent optimization based approaches, or
they have restrictions concerning the accuracy of the results or the complexity
of the input data.

To resolve the above mentioned restrictions this paper presents a new im-
plementation of the complete volumetric reconstruction pipeline. Most impor-
tantly, this includes a new approach to compute the photo-consistency of a voxel.
Our consistency measure combines the advantages of the two above mentioned
approaches, resulting in an illumination invariant, computationally efficient
photo-consistency estimation for high quality 3D reconstruction. It improves
robustness by resolving the problem of matching between surface samples even
for completely unconstrained camera configurations, and is not restricted to pla-
nar surface approximations. We show how this consistency measure as well as
all the other important stages of the volumetric reconstruction pipeline, namely
visual hull and visibility determination, can be implemented in a highly efficient
way by exploiting current graphics hardware, without any restrictions concern-
ing the volumetric resolution, the number of images, nor the computational
accuracy.

2 Photo-Consistency Estimation

Assuming fully calibrated, foreground segmented input images Ij of an object
the general volumetric reconstruction pipeline consists of the following steps:

For each voxel v within a discretized volume one first has to determine whether
it is contained in the visual hull of the object or if it lies in irrelevant parts of
the volume. Voxels projecting to the background in one of the images Ij can be
instantly marked as unoccupied space and skipped by further computations. We
present an efficient background rejection test to estimate the object’s visual hull
in Sect. 3.1.

As emphasized by Vogiatzis et al. [4] the next important step is to use an initial
geometry proxy such as the visual hull to determine whether a voxel v is visible
in an input image Ij , or if it is occluded by other voxels. For basic visibility
information one can compute approximate normals for each v by estimating
tangent planes at the visual hull boundary and propagating the resulting normal
directions inwards through the remaining volume. However, one additionally has
to account for occlusions caused by other voxels. We present an efficient solution
for this problem in Sect. 3.2.

After these initial steps we know in which images Ij a voxel v is visible. There
exist two major approaches for the actual photo-consistency estimation which
we will briefly introduce here to motivate our modified consistency measure.

Generally the photo-consistency φ(v) of a voxel is computed by comparing
image patches Pj resulting from projecting v into images Ij , j ∈ {0, . . . , N − 1}
where v is visible according to the above mentioned visibility estimation. The
original space carving approach [2] computes the color of a voxel v in image Ij

as the average color cj of all pixels pi
j ∈ Pj , and computes φ(v) by applying a

transfer function f to the color variance:



182 A. Hornung and L. Kobbelt

cj =
1

|Pj |
∑

i

Ij(pi
j), c =

1
N

∑

j

cj , φ(v) = f

⎛

⎝ 1
N

∑

j

(cj − c)2

⎞

⎠ . (1)

This variance-based photo-consistency measure supports efficient computation
and unconstrained camera setups. However, it is quite sensitive in practice to
non-Lambertian, weakly textured surfaces, and varying illumination.

A more sophisticated approach used in recent work [3, 4] is to compare the
intensity functions resulting from projecting v to images Ij and Ik by (normal-
ized) cross-correlation (NCC). Suppose we approximate the unknown surface s
intersecting voxel v by a planar surface patch (Fig. 2 a). The respective intensity
functions can be compared by placing m object space samples p0 to pm−1 on
this patch, and evaluating their respective image space projections pi

j and pi
k,

0 ≤ i < m in images Ij and Ik. Since s is unknown one generally computes an
approximate solution by doing a pixel-wise comparison of simple, image-aligned
patches Pj and Pk instead:

cj = (Ij(p0
j) − cj , . . . , Ij(pm−1

j ) − cj)T , ĉj = cj

‖cj‖ , φ(v) = f
(
ĉT

j · ĉk

)
, (2)

with pi
j ∈ Pj , m = |Pj |, cj as defined in (1), and f being a transfer function

applied to the NCC of Pj and Pk. This method strongly reduces potential color
ambiguities and accounts for changes in illumination due to the involved nor-
malization step. But despite these advantages there remains a number of open
issues with this approach.

While the NCC is computed for pairs of image patches only, one has to com-
bine results for more than two images to compute the actual photo-consistency φ.
Vogiatzis et al. [4] propose to compute the average NCC for all image pairs,
while Esteban et al. [3] compute the NCC with a single reference image. But
more importantly one of the main problems of the above approach is the fact
that pixels pi

j and pi
k in the images Ij and Ik respectively might not correspond

to the same surface sample in object space. Hence image-aligned patches pro-
vide acceptable results only for medium baseline, epipolar-aligned images while
setups with arbitrary camera configurations are difficult to handle. On the other
hand as mentioned by Esteban et al. [3] more sophisticated planar model-aligned
patches provide valid results only if the approximation is already quite close to
the true object surface (Fig. 2 a).

2.1 Voxel Supersampling

To overcome the aforementioned problems we propose a new approach to create
consistent object space samples pi such that the matching error does not depend
on the quality of the current surface approximation or view alignment but only
on the volumetric resolution of the voxel grid.

Photo-consistency can be considered as a function φ(x, y, z) defined in con-
tinuous 3-space where the scene to be reconstructed is embedded. This function
vanishes for points (x, y, z) lying exactly on the surface s, has small values in
its immediate vicinity, and has larger positive values (which however do not



Robust and Efficient Photo-Consistency Estimation 183

Fig. 2. For previous patch based methods the sampling error strongly depends on the
approximation quality of the planar geometry proxy to the surface s (a). Our photo-
consistency estimation is based on spatially supersampling a voxel v (b). The samples
pi are weighted equally since the exact position and orientation of s cannot be predicted
at sub-voxel accuracy. At higher resolutions our approach allows us to use non-planar
surface approximations at v (c) for the photo-consistency estimation.

necessarily increase for larger distances) everywhere else. If we do not have any
reliable information about the exact location of the surface s within a given
voxel, the best consistency indicator that we can check is to simply integrate
the function φ(x, y, z) over the whole interior of the voxel. The value of this
integral is expected to be relatively small in those voxels that are intersected by
the surface. Obviously the integration of φ has to be done numerically, i.e., by
supersampling the considered voxel at sub-voxel resolution (Fig. 2 b).

Within each voxel v we therefore uniformly distribute m equally weighted
samples pi in object-space and compute the colors for each of these samples
separately by projecting them into the respective input images. This approach
effectively eliminates the matching problem between the different images and
samples even for completely unconstrained camera positions. To preserve the
illumination invariance of the NCC-based approach we apply a similar color
normalization step ci

j → ĉi
j as in (2) to the colors of all 3D samples p0 to pm−1

in a particular image Ij .
Instead of a pairwise correlation estimation which can either be biased by the

reference camera [3] or which introduces an O(n2) complexity to evaluate all
pairs [4] for each sample pi, we compute a weighted variance of the normalized
colors ĉi

j over all images. This allows us to take a weighted contribution of all
images into account simultaneously, with the possibility to respect effects such as
blurring at grazing viewing angles. We weigh the contribution of each image Ij

to a voxel v using a Gaussian weight wj (with
∑

j wj = 1) of the angle between
the approximate voxel normal and the voxel-to-camera direction in 3D space.

The final photo-consistency is simply computed as the sum of normalized
color variances per sample:

φ(v) =
1
m

∑

i

φ(pi), φ(pi) = VARj(wj ĉi
j) =

∑

j

wj(ĉi
j)

2 −

⎛

⎝
∑

j

wj ĉi
j

⎞

⎠
2

. (3)

If we want to consider the full three channel color space instead of just one
intensity channel, the number of input images n simply increases to 3n.



184 A. Hornung and L. Kobbelt

2.2 Surface Sampling

The above supersampling approach provides a robust consistency measure as
long as the projection of a voxel covers at least a few pixels in the input images.
However, if the object space voxels are too small relative to the pixel resolution
of the images this method tends to become unstable due to alias errors, e.g.,
when applying bilinear interpolation of color values (Fig. 5 c). Hence we have
to enlarge the integration domain in this case by adding neighboring voxels. If
we have additional information about which neighboring voxels are probably
intersected by the surface, e.g., in an iterative optimization setting, we are in
fact able to use non-planar geometry proxies for the consistency estimation.

Once an initial surface approximation is available it is straightforward to
compute the k-nearest neighbor voxels which are intersected by the surface.
E.g., for a technique such as [4] we can easily compute a signed distance field
from the current surface within the remaining volume. Then the corresponding
k-nearest neighbors for each voxel are found among its neighbors lying on the
same level set.

Instead of supersampling a single voxel v we can now create samples pi for
each of the m closest neighbor voxels (Fig. 2 c) and simply compute the photo-
consistency as described in Sect. 2.1. While this is conceptually similar to the
patch-based NCC, we can exploit a non-planar surface approximation in contrast
to planar patches using NCC. Again, the matching problem is implicitly avoided.
This approach results in smooth surface reconstructions even at high volumetric
resolutions relative to the resolution of the input images (Fig. 5).

3 Efficient GPU-Based Implementation

In comparison to the most simple form of NCC-based approaches our method
introduces additional computational overhead since we have to compute the
projections of each of the object space samples pi instead of only the voxel center.
In this section we will show how to compensate this overhead by exploiting the
capabilities of programmable commodity graphics hardware.

The main benefit of using GPUs as general purpose processors is their inherent
parallel processing capability. As we will show, our presented photo-consistency
measure as well as further important steps during volumetric reconstruction can
be effectively parallelized, resulting in significantly reduced processing times by
using current GPU-features [20] such as vertex and fragment shader, floating
point support, and efficient multi-resolution texture processing.

The underlying idea when transferring an arbitrary algorithm to the GPU is
to exploit the possibility to execute a custom program for each generated vertex
and fragment independently and in parallel instead of using the standard 3D
rendering pipeline. Because of the floating point support of recent GPUs even
quite complex input data can be processed by encoding it in the color channels
of one or more textures. By simply drawing a screen-sized quad we generate
w × h fragments on which a custom algorithm is executed. This means we ef-
fectively run this algorithm on the texture encoded input data w × h-times in



Robust and Efficient Photo-Consistency Estimation 185

one single rendering pass. The output data of the algorithm can then be ac-
cessed by reading it from the color channels of the framebuffer. The following
sections present our implementation of a fully hardware accelerated reconstruc-
tion pipeline. Our OpenGL-based shader implementations are available on our
webpage http://www.rwth-graphics.de.

In the following we assume that the volumetric scene representation is based
on an adaptively refined grid (adaptive octree), and that we have pre-computed
a multi-resolution pyramid of each input image [13]. Although the following
algorithms explicitly address the multi-resolution capabilities of modern GPUs,
they can be easily simplified to single resolution versions.

3.1 Visual Hull Estimation

For efficient voxel rejection based on segmented images we use a floating point
texture Tp to encode the 3D position p for each voxel v in the (r,g,b)-channels
of a single texture element (texel). Furthermore we initialize a texture Tb with
a false-entry for each v as a boolean background mask. To avoid the complex
estimation of a voxel’s projected area Pj we load a texture mipmap TI for each
image Ij to the GPU and perform a single multi-resolution texture lookup in
TI such that |Pj | ≈ 1. Projection matrices and the voxel size are transferred as
environment parameters.

As described above we can execute a custom fragment program for each voxel
v by drawing a screen-sized quad such that each v is represented by a sin-
gle fragment f . The 3D position of each v is retrieved by a texture lookup
p := Tp(f). Then the projected position pj and footprint size sj of v in Ij

are computed and a texture lookup bj := TI(pj , sj) is used to check whether
v is projected to the background in Ij . The results for all images are accumu-
lated by updating the boolean background mask Tb(f) := bj ∨ Tb(f) which is
finally evaluated on the CPU. Since combined reading and writing to a tex-
ture is not supported on current GPUs the accumulation step is implemented
using OpenGL framebuffer objects and two textures as alternating rendering
targets [20].

The amount of voxels which can be encoded into a texture is limited by the
maximum available texture size. Thus we run this algorithm repeatedly until all
voxels are processed. For n images, v voxels, and a texture size of w × h, this
algorithm needs v/wh iterations with n image uploads for each pass.

3.2 Visibility Estimation

The next important step is the voxel visibility estimation based on the visual
hull boundary V . The following approach is inspired by the ideas of GPU-
based splat rendering by Botsch et al. [21] and uses techniques similar to their
splat-based shadow-mapping, resulting in reduced processing times by several
orders of magnitude in comparison to a standard approach such as ray-casting
(Table 1).

The difficulty lies in choosing a proper occlusion surface for computing the
visibility of voxels v ∈ V , since the thickness of V is more than one voxel. How-



186 A. Hornung and L. Kobbelt

Fig. 3. For the visibility estimation of a voxel v in image Ij we first store the depth
values of all backfacing voxels vb in a depth map Td (a). The visibility of each v can
then be evaluated by a depth comparison of v and the corresponding entry in Td (b).

ever this problem can be effectively solved using only the backfacing boundary
of V . After computing the visual hull and normals as described in Sect. 2 we
set the OpenGL projection matrix to the corresponding projection matrix of Ij

and render all backfacing v ∈ V as splats (circular discs in object space) into
the depth buffer Td. The splat radius is set in correspondence to the voxel size.
The result is a dense depth map (Fig. 3 a) of all outer boundary voxels on the
backside of surface s as seen from image Ij . Then the visibility for all v in Ij

can be computed efficiently by a simple depth comparison.
Similar to Sect. 3.1 a fragment program loads for each fragment f the corre-

sponding voxel position p := Tp(f). The depth d of p in eye-space can then be
compared to the depth value dV of the front-most boundary voxel projecting to
the same image position using a simple texture lookup in Td (Fig. 3 b). Then v
is visible iff d < dV . The number of necessary iterations is identical to Sect. 3.1.

3.3 Photo-Consistency Estimation

The GPU-based photo-consistency estimation is slightly more involved than the
previous steps because of the supersampling and color normalization. Assume
we create m samples pi per voxel v (Fig. 2). We encode the data of each sample
in a separate texel such that a single voxel v is represented by a sequence of
m texels (Fig. 4). In addition to the 3D positions pi we also store the normal
directions in another texture Tn to compute individual camera weights wj . Aux-
iliary attributes such as the range of texture coordinates for each v are stored
in Ta. The visibility computed in Sect. 3.2 is stored in an occlusion texture To.
Finally, the image Ij , the corresponding projection matrix, and the voxel size
are transferred to the GPU as a texture mipmap TI and additional environment
parameters. Similar to Sect. 3.1 color integration is avoided by a lookup in the
corresponding mipmap level of TI such that |Pj | ≈ 1. The accumulated color
values for solving (3) are stored in a texture Taccum. A fragment f is generated
for every sample pi of each voxel. Then, for all images Ij and fragments f , we
run the following algorithm:

1. Projection pass:
(a) Compute sample color ci

j := TI(pi
j , s

i
j)

(b) Compute camera weight wj based on Tn and To

(c) Store color and weight Tc(f) := (ci
j , wj)



Robust and Efficient Photo-Consistency Estimation 187

Fig. 4. Our hardware accelerated photo-consistency estimation is based on a three step
rendering process. Using texture-encoded input data, we first compute projected color
values for each sample pi. These colors are then normalized and finally accumulated
for the final consistency estimation.

2. Normalization pass:
(a) Loop over all samples ck

j , 0 ≤ k < m (using Ta) and normalize ci
j → ĉi

j

(b) Store normalized color and weight Tnc(f) := (ĉi
j , wj)

3. Accumulation pass:
(a) Get (ĉi

j , wj) := Tnc(f)
(b) Add wj

(
ĉi

j

)2, wj ĉi
j , and wj to the accumulation buffer Taccum

Since we have three color channels per ĉi
j we accumulate the 3 + 3 + 1 values

computed in step 3b in two output buffers using multiple render targets [20].
The evaluation of these buffers and the summation over samples i in (3) is done
in software since a GPU implementation would generate redundant summations
for all fragments f corresponding to the samples of a single voxel. For n images,
v voxels, m samples per voxel, and a texture size of w × h, this algorithm needs
vm/wh passes with n image uploads for each pass.

4 Results

The following section presents our evaluation of the presented method in terms
of quality and efficiency. Our reference system for performance evaluation is a
Linux-based Intel Pentium 4 with 3.2 GHz, 2 GB of main memory, and a NVIDIA
GeFore 6800. We captured video sequences of the Warrior- (Fig. 1) and Leo-
model (Fig. 5) with an uncalibrated turn-table setup and an image resolution
of 1024 × 768. The Bahkauv-statue (Fig. 5) was captured using a hand-held
video camera with an image resolution of 720× 576. We pre-processed the video
streams using standard structure-from-motion and segmentation techniques. All
models were reconstructed by an iterative multi-resolution implementation of [4]
consisting of our proposed volumetric reconstruction pipeline and a graph-cut
based surface extraction at a volumetric resolution of 5123.

The number of samples for each voxel was set to m = 33 for all experiments,
approximately corresponding to a 5 × 5 image patch for NCC-based techniques.



188 A. Hornung and L. Kobbelt

Fig. 5. Image (a) shows one of the original 46 input images of the Leo-model. The 3D
model (b) was obtained using a graph-cut based technique [4]. Small oscillations and
artifacts can occur for supersampled voxels projecting to less than a few pixels (c).
Our surface sampling using neighboring voxels significantly improves the results (d).
The approximate image size of the Leo-head is 1402 pixels. The 30 images used for
the reconstruction of the Bahkauv-statue (e) were captured using a hand-held video
camera. We are able to reconstruct a quite detailed model (f) despite the specular
surface and other illumination artifacts.

For lower values of about 23 samples particularly difficult areas such as the
quite deep concavities of the Warrior’s arms or small features such as the ears
of the Leo model could not be properly reconstructed. For higher resolutions we
did not observe a significant improvement of the reconstruction quality. How-
ever, our proposed surface sampling approach which includes neighboring voxels
as discussed in Sect. 2.2 significantly improves reconstruction results for high
voxel resolutions, so that one can achieve highly detailed, smooth reconstruc-
tions (Fig. 5) without the use of high resolution cameras. In our experiments
we applied the surface sampling approach for volumetric resolutions, where a
single voxel projects to less than 52 pixels. The reconstruction of the Bahkauv
shows that a reconstruction is possible even under difficult lighting conditions
with non-Lambertian, weakly textured surfaces.

Table 1 shows the performance of our GPU-based implementation in com-
parison to our CPU-based reference implementation. Although there is a certain
overhead associated with loading images and voxel data to the GPU we achieve
acceleration factors of 3 to 85. Using our multiresolution implementation of [4]
the overall reconstruction time for all presented models was less than 10 minutes.
Please note that computation times reported in related work [4, 3] range from
about 40 minutes to several hours for comparable target resolutions and hard-
ware. Our input data and results are available at http://www.rwth-graphics.de.



Robust and Efficient Photo-Consistency Estimation 189

Table 1. Comparison of computed voxels per second for our hardware-based method
and our software implementation (in parentheses) for different input complexities.

Images Voxels v Visual hull v/s Visibility v/s Consistency v/s Total time

26 2M 19.4M (1.6M) 3.7M (55K) 350K (109K) 2.7m (24m)
26 4M 33.8M (1.7M) 4.6M (55K) 375K (122K) 5.1m (46m)
51 4M 42.0M (1.7M) 4.7M (56K) 423K (139K) 8.8m (87m)

126 4M 49.4M (1.8M) 4.7M (56K) 450K (139K) 20m (215m)
126 16M 50.2M (1.8M) 4.8M (56K) 450K (140K) 82m (858m)

5 Conclusion and Future Work

In this work we presented a new and efficient approach to compute the photo-
consistency of voxels for volumetric 3D stereo reconstruction. Our method re-
solves several restrictions of previous methods such as the matching of surface
patches, biased consistency estimation, and the necessity of epipolar-aligned im-
ages, while preserving important features such as illumination invariance. We
showed furthermore how this consistency test as well as other important recon-
struction steps can be efficiently implemented using commodity graphics hard-
ware, leading to a fully hardware accelerated, high quality reconstruction pipeline
for volumetric stereo.

As future work, we plan to incorporate methods to improve the handling of
non-Lambertian surfaces. Although the Bahkauv-statue could be reconstructed
with acceptable quality, we think that photo-consistency measures should explic-
itly model specularities and other surface properties [3, 12] for improved results.

Finally we could not yet exploit the full potential of our hardware implemen-
tation, since we observed a strong performance breakdown for texture sizes larger
than 20482. This is probably related to the fact that some of the more recent
OpenGL features still have open issues. Since the data transfer to and from the
GPU is the main bottleneck of our method, we expect an approximately 4 times
higher performance for texture sizes of 40962 because of the reduced number of
iterations (and hence image uploads) for each algorithm.

Acknowledgements

We would like to acknowledge the helpful discussions with Mario Botsch, Martin
Habbecke, and Volker Schönefeld.

References

1. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In:
CVPR. (1997) 1067–1073

2. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. International
Journal of Computer Vision 38 (2000) 199–218



190 A. Hornung and L. Kobbelt

3. Esteban, C.H.: Stereo and Silhouette Fusion for 3D Object Modeling from Uncali-
brated Images Under Circular Motion. PhD thesis, Ecole Nationale Supérieure des
Télécommunications (2004)

4. Vogiatzis, G., Torr, P., Cipolla, R.: Multi-view stereo via volumetric graph-cuts.
In: CVPR. (2005) 391–398

5. Sinha, S., Pollefeys, M.: Multi-view reconstruction using photo-consistency and
exact silhouette constraints: A maximum-flow formulation. In: ICCV. (2005)

6. Slabaugh, G.G., Schafer, R.W., Hans, M.C.: Image-based photo hulls for fast and
photo-realistic new view synthesis. Real-Time Imaging 9 (2003) 347–360

7. Li, M., Magnor, M., Seidel, H.P.: Hardware-accelerated rendering of photo hulls.
Computer Graphics Forum 23 (2004) 635–642

8. Bonet, J.S.D., Viola, P.A.: Roxels: Responsibility weighted 3D volume reconstruc-
tion. In: ICCV. (1999) 418–425

9. Zýka, V., Sára, R.: Polynocular image set consistency for local model verification.
In: Workshop of the Austrian Association for Pattern Recognition. (2000) 81–88

10. Broadhurst, A., Drummond, T., Cipolla, R.: A probabilistic framework for space
carving. In: ICCV. (2001) 388–393

11. Stevens, M.R., Culbertson, W.B., Malzbender, T.: A histogram-based color con-
sistency test for voxel coloring. In: ICPR. (2002) 118–121

12. Yang, R., Pollefeys, M., Welch, G.: Dealing with textureless regions and specu-
lar highlight: A progressive space carving scheme using a novel photo-consistency
measure. In: ICCV. (2003) 576–584

13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall (2002)
14. Szeliski, R.: Rapid octree construction from image sequences. Computer Vision,

Graphics and Image Processing: Image Understanding 58 (1993) 23–32
15. Prock, A.C., Dyer, C.R.: Towards real-time voxel coloring. In: Image Understand-

ing Workshop. (1998) 315–321
16. Sainz, M., Bagherzadeh, N., Susin, A.: Hardware accelerated voxel carving. In:

SIACG. (2002) 289–297
17. Culbertson, W.B., Malzbender, T., Slabaugh, G.G.: Generalized voxel coloring.

In: Workshop on Vision Algorithms. (1999) 100–115
18. Eisert, P., Steinbach, E., Girod, B.: Multi-hypothesis, volumetric reconstruction of

3-d objects from multiple calibrated camera views. In: ICASSP. (1999) 3509–3512
19. Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics

hardware. In: CVPR. (2003) 211–217
20. OpenGL extension registry. (http://www.opengl.org/)
21. Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting

on today’s GPUs. In: Eurographics Symp. on Point-Based Graphics. (2005) 17–24


	Introduction
	Photo-Consistency Estimation
	Voxel Supersampling
	Surface Sampling

	Efficient GPU-Based Implementation
	Visual Hull Estimation
	Visibility Estimation
	Photo-Consistency Estimation

	Results
	Conclusion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


