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Abstract

This paper presents a new volumetric stereo algorithm

to reconstruct the 3D shape of an arbitrary object. Our

method is based on finding the minimum cut in an octa-

hedral graph structure embedded into the volumetric grid,

which establishes a well defined relationship between the

integrated photo-consistency function of a region in space

and the corresponding edge weights of the embedded graph.

This new graph structure allows for a highly efficient hier-

archical implementation supporting high volumetric resolu-

tions and large numbers of input images. Furthermore we

will show how the resulting cut surface can be directly con-

verted into a consistent, closed and manifold mesh. Hence

this work provides a complete multi-view stereo reconstruc-

tion pipeline. We demonstrate the robustness and efficiency

of our technique by a number of high quality reconstruc-

tions of real objects.

1. Introduction

The faithful and consistent reconstruction of three di-

mensional real world objects from images or video se-

quences remains a great challenge in computer vision. One

particularly promising approach allowing for reconstruc-

tions of very high quality is the combination of volu-

metric scene representations with combinatorial optimiza-

tion [16, 22].

In general such approaches are based on a discretized

volume in which the object to be reconstructed is embed-

ded. Then for each volumetric element (voxel) the likeli-

hood of being intersected by the object surface is estimated,

e.g., by computing its photo-consistency based on color

variances [7, 18], or normalized cross-correlation [22]. Ear-

lier reconstruction methods [18] then extracted a voxel-

based approximate surface by a thresholding approach, i.e.,

the set of most photo-consistent voxels represents the ob-

ject surface. While this is often sufficient for applications

such as new view synthesis [14], the resulting scattered set

of voxels does not support any global smoothness or topo-

logical constraints due to the purely local labeling of voxels.

This makes it especially difficult to extract a consistent sur-

face for further processing of the geometry.

Recently several papers, e.g. [2], have shown how the

problem of computing proper segmentation surfaces in-

between the voxels of a volumetric scene representation

can be casted into a combinatorial optimization problem for

graph cuts. By constructing a specifically designed graph

structure, the globally optimal solution to such a problem

can be efficiently computed as the minimum cut of the re-

spective graph. In [22] it is shown how this approach can

be applied to volumetric multi-view stereo reconstruction,

yielding 3D reconstructions of very high quality.

However, one drawback of these combinatorial ap-

proaches is that the accuracy of the solution is bounded by

the resolution of the domain discretization which cannot be

too high due to restricted memory capacities and compu-

tation time. Moreover, when dealing with more complex

objects and imperfect acquisition conditions, we would like

to use a highly redundant set of images to obtain a robust

reconstruction. This increasing amount of input data obvi-

ously increases the need for more efficient algorithms.

Furthermore there exists a subtle but important issue in

using the above mentioned segmentation approaches for

volumetric 3D object reconstruction. A photo-consistency

measure generally integrates, for a specific region in space,

the likelihood of being intersected by the surface [5, 7, 18].

Hence it is well defined only for a proper integration do-

main, e.g., geometrically valid entities such as voxels. The

above segmentation based approaches however generate a

graph structure which associates graph nodes with voxel

centers and graph edges with voxel faces. This poses the

question of properly defining the edge weights of the em-

bedded graph: If we compute photo-consistency values for

the voxels, these values have to be re-mapped to the graph

edges, e.g., by taking the average consistency of two face

connected voxels. This, however, is equivalent to applying

a low-pass filter to the voxel consistency values and hence

reduces the effective resolution of the reconstruction.



In [22] the photo-consistency is computed for the graph

edges instead of voxels. But while the projection of a voxel

and hence the respective integration domain for the photo-

consistency estimation is well defined, there is no such def-

inition for projecting graph edges into images and comput-

ing their photo-consistency. A simple integration of point

samples over 1D edges or 2D faces would introduce a di-

rectional bias in the 6-connected grid, and the geometrical

interpretation becomes even more unclear if one wants to

extend this approach to larger voxel neighborhoods to allow

for better surface integral approximations [2, 22]. So while

these approaches are generally well suited for problems

where voxels have to be segmented into different classes

by a contour or surface at voxel boundaries, they do not

support the extraction of a proper surface intersecting the

interior of voxels, nor is it clear how the photo-consistency

of the corresponding graph edges should be defined.

In this paper we present a new multi-view stereo ap-

proach for efficient, high quality volumetric 3D reconstruc-

tion of solid objects, which resolves the above mentioned

problems. Our technique is based on a new octahedral graph

structure which is embedded into the volumetric grid, such

that voxel photo-consistency values are properly associated

with graph edges. The minimum cut of this graph yields a

manifold surface, which is globally optimal in terms of an

energy functional of the photo-consistency and the area of

the reconstructed surface, supporting smooth and consistent

object reconstructions of high quality. Moreover, our spe-

cific graph design supports a hierarchical surface extraction,

which allows us to efficiently process even high volumetric

resolutions and a large number of input images. Finally, to

provide a complete reconstruction pipeline, we show how to

extract a manifold triangle mesh directly from the set of in-

tersected surface voxels yielding high quality meshes which

are directly available for further geometry processing.

2. Related Work

Our method is inspired by a number of important results

from the fields of volumetric 3D reconstruction as well as

efficient energy minimization techniques using graph cuts.

Based on the principles of voxel coloring presented by

Seitz and Dyer [18], Kutulakos and Seitz [12] formulated

the N-view reconstruction problem of an arbitrary Lamber-

tian shape in their theory of space carving. This approach

has shown to allow for highly efficient implementations us-

ing, e.g., hardware accelerated solutions [14], which makes

it especially suitable in the context of new-view synthesis

and image-based rendering techniques. However, one prob-

lem in common with most techniques related to voxel col-

oring is the fact, that they cannot guarantee geometric con-

straints such as spatial coherence of the reconstructed ob-

ject surface, since all classifications are made purely local

at voxel level.

Different methods based on deformable polygonal sur-

faces have been proposed to directly reconstruct a proper

manifold. [6] present a level-set method which enables au-

tomatic changes of the surface topology due to its represen-

tation as an implicit function. [8] use a stochastic refine-

ment of the visual hull, such that it approximately satisfies

the photo-consistency constraint. [13] improve the conver-

gence by integrating 3D and 2D data into the optimization

process. Reconstructions of very high quality from high

resolution input images based on deformable models have

been presented by [5]. Although these gradient based meth-

ods are able to yield high quality reconstructions of consis-

tent object surfaces, they often have a large computational

complexity on the one hand, and they are in general sensi-

tive to local minima in the target functional . Hence, espe-

cially in the presence of noise, they cannot guarantee con-

vergence to a globally optimal surface, which best satisfies

all constraints such as photo-consistency, smoothness, or a

minimal surface area.

Recently, efficient methods for energy minimization

based on graph cuts were proposed for several vision related

problems, some of which can guarantee finding the global

optimum of the involved energy functional. A solution to

the voxel occupancy problem from visual hulls based on a

segmentation using binary labeling was proposed by [20].

[3] showed how to extend the optimization of binary labels

to an arbitrary number of discrete labels by iterated graph

cuts with applications in disparity based stereo. General-

ized multi-camera stereo reconstruction using graph cuts

was presented by [11]. The types of energy functionals

which can be minimized using iterated graph cuts was ana-

lyzed in [10]. [2] show how to extend the graph construction

to compute globally minimal geodesic contours or surfaces

for arbitrary Riemannian metrics.

Applications of graph cut based energy minimization to

volumetric stereo reconstruction were presented in [16, 19,

22]. [16] present a volumetric reconstruction technique for

computing globally optimal and smooth surfaces in specific

stereo setups. They show results for several stereo setups

with remarkably detailed 3D reconstructions. However, the

method is restricted to one rectangular surface patch and

cannot be generalized to other surface topologies. For ex-

ample, for the reconstruction of a closed surface, they have

to join separately computed patches by which they lose the

optimality near the patch boundaries.

[19] present a graph cut based reconstruction approach

which combines strict enforcement of silhouette constraints

with photo-consistency constraints. However this approach

currently does not support objects of arbitrary genus, and

furthermore does not respect concavities that are not present

in the silhouette, but which coincide with rim curves.

The approach presented in [22] is closest related to our

work: It extends the Riemannian minimal surface idea [2]



Figure 1. Given a set of input images (a) our hierarchical 3D reconstruction algorithm works on an adaptively refined grid. It first computes

an approximation to the visual hull of the object (b) at a user specified resolution level (1283 in this example). Then on successive refinement

levels, photo-consistency values are computed for each voxel within a crust around the estimated surface position (c-e) (refinement levels

1283, 2563, and 5123 respectively). A new graph based algorithm is used to extract the globally optimal surface on each level, which is

then used as a surface proxy on the next refinement level. At the desired target resolution our method supports the direct extraction of a

closed and manifold triangle mesh (f).

to general, multi-view volumetric stereo. Starting with an

approximate surface, e.g., the visual hull, they compute the

visibility and photo-consistency of scene points in the prox-

imity of this surface. Using graph-based surface extraction

they are able to reconstruct a smooth, detailed surface of

very high quality by segmenting the volume into inside and

outside voxels. However, due to their specific graph struc-

ture, this method poses a number of open questions con-

cerning the computation of edge weights within the embed-

ded graph (c.f . Sect. 1).

Finally, most of the above mentioned techniques do not

exploit hierarchical algorithms for increased efficiency, but

perform all computations directly at the volumetric target

resolution, such that it could be time consuming in practice

to apply them at high volumetric resolutions with many in-

put cameras. A first description and analysis of hierarchical

graph cuts based on 6-connected grids for fast segmentation

has recently been presented in [15].

3. Hierarchical Volumetric Reconstruction

Our work targets at reconstructing objects from arbitrary

video sequences, for example created by using a turn-table

setup or simply a hand-held camera. Similar to [22] the

input to our algorithm is a number of calibrated and fore-

ground segmented input images I0 . . . In−1, e.g., obtained

by using structure from motion [1] and interactive segmen-

tation techniques [17]. Instead of extracting the surface di-

rectly at the volumetric target resolution we present a hierar-

chical method using a sequence of adaptively refined voxel

grids V l (Fig. 1). The basic idea is to compute a voxelized,

intermediate surface proxy Sl
opt ⊆ V l on each refinement

level l, which is then refined to a new proxy Sl+1 on the

next level to constrain the volumetric region for the surface

computation in V l+1. This leads to a significantly reduced

space and time complexity in comparison to previous work.

We start with an initial bounding cube V 0 containing the

object to be reconstructed. As mentioned in [5, 7, 22] it is

important to compute an initial surface proxy, e.g., to esti-

mate the visibility of each voxel in every image. Hence our

algorithm starts by computing a voxelization of the object’s

visual hull: Beginning with l = 0 we iteratively refine the

volume V l and test for each voxel v ∈ V l if it projects to

the background in one of the input images. This is done

up to a level l0, where all relevant object features such as

thin structures or holes in the target model are reasonably

approximated (Fig. 1, 5, 6). We typically set l0 = 7 corre-

sponding to a resolution of 1283 voxels. However, if nec-

essary as for example for the Dragon model (Fig. 7), the

effect of choosing a different level l0 can be easily tested by

the user since the computation of the visual hull generally

is a matter of a few seconds ([7], Table 1). We then define

our initial voxelized surface proxy Sl0 as the outer bound-

ary voxels of the voxelized visual hull, corresponding to the

so called base surface described in [22].

Our hierarchical reconstruction algorithm then proceeds

as follows: At a given level l we define a crust V l
crust of

voxels around the current surface proxy Sl ⊆ V l
crust ⊆ V l,

which is supposed to contain the actual object surface, and

which splits the volume V l into three components: the crust

itself, an exterior, and an interior component (Fig. 2 a). This

crust V l
crust can easily be computed by applying a number

d of morphological dilation steps to Sl. In our experiments

we generally set d = 2 for all levels l. This is justified by

assuming an approximation error of the surface proxy Sl−1

on the previous level up to the size of one voxel. The only

exception is the initial level l0, where V l0
crust contains all

non-background voxels of V l0 since the visual hull of an

object can be quite far away from the true object surface,

e.g., in concave regions [5, 22]. Based on the current sur-



face proxy Sl we then compute the visibility for each voxel

v ∈ V l
crust in each image Ij using a hardware-accelerated

technique described in [7]. Alternatively this can be done

as described in [22], or by using simple ray-casting tech-

niques. Although our hierarchical method allows for itera-

tive improvements of the visibility information, our experi-

ments showed, that an initial visibility estimation at level l0
is sufficient as long as all relevant features such as holes in

the object are present.

The next central step is to compute the photo-consistency

φ(v) for all voxels v ∈ V l
crust. For maximal flexibility and

efficiency we apply the method described in [7] which esti-

mates the photo-consistency per voxel based on an illumi-

nation invariant voxel-supersampling approach for Lamber-

tian surfaces and geometrically unconstrained camera se-

tups. Basically this approach creates a number m of ob-

ject space samples p0 to pm−1 and a camera-weight wj for

each voxel v and image Ij . For each of these samples pi a

(normalized) color value ĉ
i
j in each image Ij is computed.

The final photo-consistency is then computed as the sum of

weighted, normalized color variances per sample:

φ(v) =
1

m

∑

i

φ(pi), φ(pi) =
∑

j

wj(ĉ
i
j)

2
−

(

∑

j

wj ĉ
i
j

)

2

.

(1)

Since φ(v) measures the photo-consistency based on color

variances, it has values close to zero for photo-consistent

voxels, while it increases for inconsistent voxels. Although

the approach presented in [7] leads to the best results in

our hierarchical reconstruction setting, techniques based on

normalized cross-correlation of image patches as described

in [5, 22] or even simple color variances as originally pro-

posed in [18] also lead to acceptable results, depending on

the properties of the input model and the images.

Having consistency values for all voxels within crust

V l
crust we apply our new graph-cut based surface ex-

traction algorithm to refine the current surface proxy Sl

to an optimized approximation Sl
opt, which better fulfills

photo-consistency and smoothness constraints on the cur-

rent level l. The details of this step are described in Sect. 4.

If l is our desired target resolution, we are now able to ex-

tract a manifold triangle mesh from Sl
opt as described in

Sect. 5. Otherwise we refine the adaptive grid for all vox-

els v ∈ Sl
opt to a new surface proxy Sl+1, and start a new

iteration by building a new crust V l+1
crust.

This iterative, hierarchical reconstruction setting allows

us to efficiently process large input data in terms of vol-

umetric resolution and number of input images, since the

photo-consistency as well as the extraction of Sl have to be

done only within a thin crust of voxels instead of the whole

volume, while the globally optimal properties of the final

reconstruction are preserved.

Figure 2. This image illustrates the graph based contour compu-

tation in 2D. (a) shows a voxel grid of consistency values where

the darker colors indicate higher photo-consistency values. Typi-

cally these consistency values have many local minima and max-

ima due to color ambiguities in homogeneously textured object

regions, image noise, erroneous visibility estimation, or imperfect

camera calibration. In (b) the dual 2D graph is embedded into the

voxel grid. Green colors correspond to low edge weights while

red edges have higher weights. The source and sink node are con-

nected to the inner and outer boundaries respectively. Despite the

local inconsistencies the globally optimal graph cut correctly re-

constructs surface Sopt as shown in (c).

4. Surface Reconstruction by Graph Cutting

In this section we will present a new graph structure for

our hierarchical surface reconstruction approach, which es-

tablishes a well defined relationship between voxel photo-

consistency values, the embedded graph, and the recon-

structed surface. We show that this relation is achieved by

representing each voxel by its dual octahedral subgraph. We

will drop level indices l for a simplified notation, since all

voxels v ∈ V l
crust are at the same refinement level.

Our goal is to find a surface Sopt within the current crust

Vcrust which approximates the true but unknown object sur-

face. We computed the likelihood for each voxel to be inter-

sected by this surface by assigning photo-consistency val-

ues φ(v) to each voxel v. Hence the reconstructed surface

Sopt has to be defined by a set of surface-intersected voxels

Sopt ⊆ Vcrust. As already discussed there is an important

difference of this surface definition to graph based segmen-

tation approaches such as [2, 22], since these methods gen-

erate graph edges (and hence the segmentation boundary)

in-between voxels (or pixels in the 2D case). This specific

graph structure does not allow for a well defined assignment

of voxel photo-consistency values to the graph edges.

We will introduce a new embedded graph structure with

the properties that 1) the resulting surface Sopt is optimal

with respect to an energy functional (Eq. 2) of the integrated

photo-consistency and surface area and hence closely ap-

proximates the actual object surface, 2) edge weights are

well defined by the photo-consistency of a corresponding

voxel, and 3) a minimum cut through this graph directly

yields a closed, 2-manifold surface represented by a set of

surface-intersected voxels Sopt.

Similar to previous work the energy functional we want



Figure 3. Splitting the faces of a cube into an exterior and an inte-

rior part is equivalent to a graph cut in the dual octahedron (a),(c).

Simple configurations with 4 or 6 cut-edges correspond to locally

planar cut surfaces in the geometric embedding (b) while complex

configurations with 8 or more cuts correspond to locally curved

cut surfaces (d).

to minimize for a surface S is a weighted sum of the inte-

grated photo-consistency and the area of the surface:

E(S) =

∫

S

φ(x) dx +

∫

S

a dS (2)

The desired optimal surface Sopt should minimize this func-

tional for a good approximation of the true object surface.

Within our voxel grid V consisting of cubical voxels

with square faces, the crust Vcrust properly separates the

interior component Vint of V from the exterior compo-

nent Vext (Fig. 2), since Vcrust is a face-connected (6-

neighborhood) set of voxels. Suppose now we have an arbi-

trary closed surface Sopt. For each voxel in Vcrust we can

label its faces as interior or exterior depending on which

side of the surface they lie. Faces that are intersected by

the surface are labeled as interior by default. The important

observation now is that if we want to separate the interior

faces from the exterior faces for a single voxel, we have to

cut along a sequence of edges of the voxel (Fig 3 a,c).

Based on this observation we build the following graph

structure. For each voxel face in Vcrust we define a node

in the graph. Within each voxel v we connect the six nodes

corresponding to the six faces in an octahedron-fashion and

assign the consistency value of the voxel plus a surface area

constant φ(v) + a to all twelve edges. Due to the duality

of the cube (voxel) and the octahedron, we have a one-to-

one correspondence between the edges of both. Hence the

above voxel cut (along edges) which separates interior from

exterior faces is equivalent to a graph cut in the octahedron

which separates the corresponding nodes (Fig 3 b,d).

The global graph embedded in Vcrust consists of the sub-

graphs of all voxels. The graph source is connected to all

nodes, whose associated faces lie at the interface to the ex-

terior component Vext, while all nodes at the interior com-

ponent Vint are connected to the sink (Fig 2 b).

Computing the minimum cut of this graph yields a set of

cut edges C which minimizes the sum of edge weights, and

which defines a closed surface that separates the graph into

two components by splitting those voxels Sopt ⊆ Vcrust

which are most likely intersected by the true object surface.

Besides pure consistency maximization the geometric

smoothness of the resulting cut surface is enforced by two

aspects of the graph embedding: First, within each voxel, a

configuration which cuts as few octahedron edges as possi-

ble is preferred (since they all have the same weight). These

preferred configurations cut either four or six edges and cor-

respond to planar cuts while more complex cuts with eight

or more edges correspond to curved configurations (Fig 3).

Second, since the cost of a separating cut is the sum of

the weights of all edges that are split, the optimal solution

might rather contain inconsistent voxels if this leads to a

better global solution than summing over a larger number

of voxels with better consistency.

Since the edges are embedded fairly uniform in the voxel

space, the sum over all edge weights φ(v)+a can be consid-

ered as a decent, discretely sampled surface integral approx-

imation of the consistency function and the surface area.

Therefore a cut through this graph minimizes the discretiza-

tion of the energy functional (2):

E(C) =
∑

e∈C

φ(e) +
∑

e∈C

a (3)

E(C) discretizes E(S) up to a constant scaling factor which

depends on the voxel size. The trade-off between local con-

sistency and global surface area minimization can be con-

trolled to a certain extend by applying a suitable transfer

function φ′(x) = φ(x)s with a smoothness factor s > 0,

and by changing the surface area constant a. Since the graph

complexity depends only quadratically on the current volu-

metric resolution due to our hierarchical approach, different

choices of these parameters can be evaluated by the user

with only short delays. However our experiments revealed

that when using consistency measures such as [5, 7, 22],

which generate a relatively distinct consistency maximum

(Fig. 1 c-e), the energy functional is dominated by the

photo-consistency values. This allows us to keep these

two parameters constantly set to s = 4 and a = 10−5

for all resolution levels and experiments. This graph-based

surface reconstruction supports our initially formulated re-

quirements concerning the minimized energy functional,

the definition of edge weights, and the extraction of surface-

intersected voxels Sopt.

5. Manifold Extraction

After the graph-cut algorithm has found the set of

surface-intersected voxels Sopt, we have to extract this man-

ifold surface and convert it into a triangle mesh to allow for

further processing of the reconstructed 3D model.

One solution would be to apply existing iso-surface re-

construction techniques such as [9]. This however would



Figure 4. (a) shows a set of surface voxels from Sopt, which are

split by the graph cut into inside (dark) and outside (bright) faces.

The cut-edges within each voxel define a loop of split-edges (b).

Each loop defines a polygonal face of the output surface. By trian-

gulating these polygons we can extract the final output mesh (c).

imply a conversion of our voxel based surface into a 3D

scalar field, and the resulting surface would not necessar-

ily respect the surface topology defined by the cut edges C

anymore. Instead we derive a simple and efficient algorithm

for the manifold extraction directly from the geometric in-

terpretation of our graph embedding and the computed cut.

Consider a voxel v ∈ Sopt which contains some cut-

edges after the cut surface has been computed for the oc-

tahedral photo-consistency graph (Fig. 3). Because of the

one-to-one correspondence between the octahedron edges

and the voxel (cube) edges, the set of cut-edges in the oc-

tahedron defines a loop of split-edges in the cube, splitting

it into inside and outside faces (Fig. 4 a,b). Although one

could create a proper mesh directly by triangulating either

the set of inside or outside faces, this approach would not

generate a minimal number of vertices and triangles.

Instead we can consider each of these loops of split-

edges as one (non-planar) polygonal face of the output man-

ifold. Collecting all these loops for each intersected voxel

yields a polygonal mesh representationMp of the final sur-

face whose vertices lie at the voxel corners. By triangu-

lating each of these polygons, e.g., using simple triangle

fans, we obtain the desired triangle mesh Mt (Fig. 4 c).

Since the vertices v ∈ Mt are initially placed at the voxel

corners the resulting reconstruction shows discretization ar-

tifacts (Fig. 5 b). We eliminate these artifacts in a post-

processing step by applying a mesh smoothing filter [21]

v ← v +△v to the mesh vertices, with the operator △ be-

ing the discrete Laplacian defined on the mesh (Fig. 5 c).

By restricting this smoothing to a maximum distance of one

voxel the original reconstruction error is preserved. This

method is guaranteed to efficiently extract a smooth, closed

and manifold mesh.

As a side note we would like to mention that one can

alternatively generate a polygonal mesh dual toMp, which

places a vertex at each voxel center instead at voxel corners.

In this case we have to generate a polygon for each 23 block

of voxels, that contains at least 3 cut voxels. While this

approach creates a reduced number of vertices, it is signifi-

cantly more involved to implement for hierarchical grids.

Figure 5. The Leo model was reconstructed using 86 images cap-

tured with an uncalibrated turn-table setup (a). (b) shows the mesh

extracted from the graph cut surface. Discretization artifacts due

to the underlying voxel grid can be effectively eliminated by ap-

plying a Laplacian smoothing filter (c). Invisible parts of a model

like the belly or the feet of the Leo (d) are smoothly closed by

the computed cut surface. A reconstruction (e) of the head from

the same image set shows, that even very fine details such as the

nostrils and the concavities of the ears are properly reconstructed.

Textured and relighted versions of the model are shown in (f).

6. Results

In this section we will present the results of our method

applied to several real-world data sets. Our reference sys-

tem was a Linux-based Intel Pentium 4 CPU with 3.2 GHz

and 2 GB of main memory. We captured video streams

of the Warrior, the Leo, and the Dragon model with an

uncalibrated turn-table setup and an image resolution of

1024×768. The Bahkauv statue was captured using a hand-

held video camera with a resolution of 720×576. However

the effective image size of the objects was often signifi-

cantly smaller because of the necessity to include calibra-

tion objects within the images (e.g., Fig. 5). We calibrated

and segmented the video streams using standard structure

from motion [1] and image segmentation techniques[17].

Table 1 presents the quantitative results for each of the

models, including the complexity of the input data, tim-

ings, and the resulting mesh complexity. Our experiments

show that the photo-consistency estimation is the dominat-

ing computational factor. This fact underlines the benefit of

our hierarchical approach since it significantly reduces the

number of processed voxels, keeping the computation times

acceptable even for high volumetric resolutions.

The Bahkauv (Fig. 6) was reconstructed from only 27



Figure 6. Reconstruction of the Bahkauv statue from only 27 im-

ages (a). The images were captured using a simple hand-held

video camera on a roughly circular path. Despite the specular

surface and other illumination artifacts we are able to reconstruct

3D meshes of fairly high quality (b), (c). However, some regions

with a significant deviation from the Lambertian model in the in-

put images lead to slightly noisy surface properties (d). (e) shows

a textured and relighted version of the model.

images. Despite the difficult acquisition conditions with

non-Lambertian, weakly textured surface properties and

other illumination artifacts we achieve quite an acceptable

reconstruction with less than 10 minutes overall computa-

tion time. Previous non-hierarchical approaches generally

report reconstruction times in the range of one to several

hours for comparable input complexity and reconstruction

quality on similar reference systems. For the reconstruction

of the Leo model (Fig. 5) we used 86 images. Although

a quite acceptable reconstruction can already be obtained

with about 30-40 images, we used a higher number of im-

ages to better reconstruct details such as the Leo’s ears.

With less cameras they became slightly truncated due to

their relatively small image size and our imperfect camera

calibration. The Dragon model represents the most com-

plex reconstruction in terms of object structure and surface

properties. We used 141 input images for increased robust-

ness and a starting level l0 = 8 corresponding to a volumet-

ric resolution of 2563 voxels to better carve out fine details

such as the claws in the initial surface proxy. Fig. 8 shows a

reconstruction of the Warrior at a high resolution of 10243.

Despite the relatively low image resolution in comparison

to the volumetric resolution our method is able to recon-

struct fine surface details. For ground truth evaluation we

computed the Hausdorff distance [4] of our reconstruction

to a laser scan, resulting in a very low mean (max) error

of 0.1% (1.9%) with respect to the bounding box diagonal.

Since we explicitly generate the graph data structure for the

surface computation, we used a machine with 4 GB of main

memory and a reduced crust thickness for the final surface

computation step. Despite this high resolution the computa-

Figure 7. The dragon model is particularly difficult to reconstruct

because of the fine details such as the claws as well as partially

specular and transparent surface areas. We used 141 images (a)

to increase the robustness of our technique and succeeded in re-

constructing a fairly detailed model (b). However, our Lambertian

photo-consistency measure leads to visible artifacts, e.g., for the

fire which is made from colored glass and hence causes complex

light scattering effects. A relighted and textured version of the

model is shown in (c).

Model Bahkauv Leo Warrior Warrior Dragon

Images 27 86 71 71 141
Level l0 7(1283) 7(1283) 7(1283) 7(1283) 8(2563)

Target level 9(5123) 9(5123) 9(5123) 10(10243) 9(5123)

Visual hull 1.9 s 2.4 s 2.2 s 2.2 s 10.5 s

Visibility 2.9 s 6.5 s 5.9 s 5.9 s 35.9 s

Consistency 5.4 m 9.7 m 7.0 m 19.1 m 13.6 m

Graph cut 1.3 m 41.9 s 37.4 s 3.2 m 1.6 m

Meshing 45.0 s 17.5 s 25.5 s 2.6 m 1.2 m

Overall 9.5 m 12.8 m 10.5 m 27.8 m 20.4 m

Vertices 639 K 298 K 388 K 1570 K 575 K

Table 1. The time and space complexity of each reconstruction

is mainly influenced by the number of input images, the initial

level l0, and the desired target resolution. We provide accumu-

lated timings in seconds and minutes respectively for each of the

algorithm’s main phases. The overall reconstruction time addition-

ally includes user interaction and other involved processing steps

such as normal computation and the crust generation. The number

of mesh vertices at the target resolution is given in the last row.

tion times are still quite acceptable. However, one important

goal of our future work will be the reduction of the mem-

ory requirements of our method. Our used input data and

results are available at http://www.rwth-graphics.de.

7. Conclusion

We presented a new algorithm for the reconstruction of

a 3D shape from a set of video frames based on graph cut

minimization. Our octahedral graph structure establishes a

well defined relationship between the photo-consistency of

a voxel and the edge weights of an embedded octahedral



Figure 8. The warrior model was reconstructed from 71 images (a)

at a high volumetric resolution of 10243. The resulting mesh has

a complexity of 1570 K vertices (b). (c) shows the textured and

relighted model.

subgraph. Our algorithm is efficient, especially if the num-

ber of input images and/or the volumetric resolution is large,

because our hierarchical procedure effectively reduces the

amount of voxels that have to be processed. This is achieved

by using a coarse scale reconstruction to predict the region

where the surface lies on the finer level. The final result

of the graph cut computation can easily be converted into a

closed and guaranteed manifold triangle mesh.

The current main limitation of our method to compute

resolutions higher than 10243 is the fact that we explic-

itly generate the octahedral graph structure within the voxel

grid, leading to a noticeable memory overhead. This over-

head could be reduced by exploiting the special structure of

our graph, e.g., by using some indexing scheme in the voxel

grid. The reconstruction quality is furthermore limited by

our currently used Lambertian photo-consistency measure.

Although our method allows us to effectively exploit a high

number of input images to achieve robust reconstructions

of difficult surfaces, we plan to investigate more sophisti-

cated photo-consistency measures to reconstruct such sur-

faces more robustly. Finally we plan a more detailed evalu-

ation of our graph construction in comparison to the current

standard approaches (e.g, [2]) in terms of graph complexity,

accuracy of the reconstruction, and metrication artifacts.
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