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The term multiresolution techniques refers to a class of algorithms that decompose a
given geometry into its global shape and detail information on different levels of resolu-
tion. The representation of an object on several levels of detail which are defined relative
to each other gives rise to a number of applications that exploit the hierarchical nature
of the representation. In this Chapter we explain the theoretical background of the mul-
tiresolution transform and show how the basic concepts can be generalized to arbitrary
freeform surfaces.

1. Introduction

One standard approach to facilitate the handling of large amounts of data is to in-
troduce hierarchical structures. Hierarchies usually provide fast access to relevant parts
of a dataset which increases the efficiency of any algorithm processing the data. In the
context of geometric datasets, hierarchical representations provide, besides spatial decom-
position, access to different resolutions of the underlying curve or surface. Depending on
the specific application, the term resolution refers to a certain level of complezrity or to
the amount of geometric detail (cf. Fig. 1).

If the underlying surface representation is based on splines (cf. Chapter ) or subdivision
surfaces (cf. Chapter ) then the topological level of detail characterizes the degree of refine-
ment of the control mesh while the geometric level of detail rates the size of the smallest
features and dents on the corresponding continuous surface. If the surface representation
is based on polygonal meshes the distinction is more obvious since (topologically) refined
meshes can be very smooth (low geometric detail) or highly detailed.

Multiresolution techniques exploit the additional information that becomes available
through a level-of-detail (LoD) representation either by choosing an appropriate resolu-
tion for given quality (complexity) requirements or by considering the difference between
two levels of detail as a separate geometric frequency band which contains the detail
information that is added or removed when switching between hierarchy levels.

In this chapter we will first explain the general theoretic set-up for multiresolution rep-
resentations for curves and surfaces. Based on this formal description we will then discuss
specific algorithms and their applications. We will start with the classical representation
of a freeform object as a vector-weighted superposition of scalar valued basis functions.
Later we generalize this concept to non-nested hierarchies where explicit basis functions
are no longer available.
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Figure 1. For geometric models we distinguish two different types of hierarchies. Topo-
logical hierarchies provide different levels of complexity (left) while geometric hierarchies
provide different levels of geometric detail information. For spline representations, the
link between both hierarchies is established by the basis functions (blending functions)
which are associated with the control vertices. For pure polygonal mesh representations
there is no canonical way to derive smooth meshes from coarse ones.

2. Multiresolution representations for curves

We will introduce the notion of multiresolution analysis and wavelets where we focus
on those aspects which are most relevant for geometric modeling applications. For a more
detailed exposition we refer to standard books, e.g., [1,4,28,27]

As shown in chapter , a standard representation for freeform curves is based on the
uniform B-splines

The concept of subdivision curves (Chapter ) has its origin in the observation that the
basis function ¢ satifies a two-scale-relation

=3 a2 —i) @

which implies the inclusion V' = span{¢(- —i)} C V' = span{¢(2- —i)}. Consequently we
can find a refined representation

f = c¢(2-—i)
i
where the new coefficients ¢, are computed by the subdivision rules

C; = Z Oli_gj Cj. (2)
J

For B-splines and more general subdivision basis functions we usually have only a finite
number of coefficients a; # 0. Hence the sum (2) only computes a linear combination of
a constant number of coefficients c; which leads to very efficient subdivision algorithms.



Equation (2) defines an identity map from the coarse space V' to the fine space V' (with
“twice” as many basis functions). Obviously this map is not surjective since V' contains
functions ' which are not in V. Instead of using the basis {¢(2 - —i)} for V', we try to
extend the basis {¢(- — i)} by additional basis functions {¢(- — %)} such that

V' = span{¢(2- ~i)} = span{¢(- — i)} @ span{u(- — i)} = V& W.

Once we have such a basis function v, every function f' € V' can be rewritten as

f= Yo —i) = Yeol—i) + ¥ du(—0)

% %

which can be considered as the reconstruction of the function f' from a coarse scale
approximation (defined by the c¢;) and the detail information (defined by the d;).

Since the basis functions (- —1) also lie in the space V’, there exists a linear combination
which satisfies

Yo=Y Big(2-—i)
i
and as a consequence we obtain the complete reconstruction rule

Ci = Y g + Y Pigd; (3)
j 7

In the context of multiresolution transforms, the function ¢ is usually called the scaling
function and v is called the wavelet. Both functions are typically designed such that V'
captures the low frequency component of V' and W captures the high frequency parts.
Depending on the application, additional properties of ¢ and 1 might be required.

The minimum requirement for this reconstruction to be useful is that for a given function
f’ we have to be able to efficiently compute well-defined values [c;, d;] from the coefficients
[ci]. This inverse reconstruction operation is called the decomposition. For arbitrary basis
functions ¢ and 1 the decomposition requires to solve the linear system defined by (3)
which is computationally much more expensive than the reconstruction itself. Hence,
one tries to balance the computation costs and looks for specific pairs of basis functions
[¢(- —7),9(- — 4)] that lead to faster and more effective decomposition operators.

For example, if we can find another set of functions [¢(- — 4), ¢(- — i)] for which the
following conditions hold

<oC=i)d6 i) > = <vt-idt-i == {15 (@)
and
<=0 (- —g) > =<9(—0),0(-—j) > =0 Vij (5)

then the coefficients ¢, and d; can easily be computed by
e, =<f.9(-—k)> and  dy = <f,0(-—k)>.

This setting is called the bi-orthogonal wavelet setting since the conditions (4) and (5)
indicate that the two bases [¢(- — i), (- —7)] and [¢(- — i), (- — )] are bi-orthogonal (or
dual) to each other.



The reformulation of the decomposition operation in terms of inner products is not
necessarily more efficient than solving the linear system directly. However, if we choose
special basis functions, the situation simplifies significantly since we do not have to eval-
uate the inner products by integration.

Assume that there exists a two-scale-relation for the dual basis functions as well

¢ = Z/\j¢3(2'—j)
and
b = ZNNB(?'—J')-

then, based on these relations, the inner products reduce to simple linear combinations
of control coefficients, e.g.,

<f,0(--k)> = <Y cio2-—i), S \o(2- —2k—j) >
i J

= Yo\ <o(2-—i), (2 —2k—j) >

2
and hence
cr = Z Aj ok C; (6)
j
and
dp = Z 14j—2k C; (7)
j

respectively. If the dual two-scale-relations have only finitely many non-vanishing coeffi-
cients then the decomposition has the same computational complexity as the reconstruc-
tion. As we will see in the next section there is a simple technique to construct such pairs
of dual refinable basis functions.

Besides the mere applicability of the decomposition, we usually require additional prop-
erties of the transform. The obvious requirement is that the coarse approximation f of f/
should be as close as possible. Here, the optimal solution can be obtained if we find basis
functions (- — ) which are orthogonal to the basis functions ¢(- — ¢) since in this case
the approximation error becomes minimal in the least squares sense. This setting, where
V=V @ W is an orthogonal decomposition, is called semi-orthogonal wavelet setting.

From the theoretical point of view, the optimal representation for a function f or f’
would be with respect to an orthonormal basis, i.e., not only are the ¢(- — ¢) orthogonal
to the (- — 7) but in addition the integer shifts of the basis functions themselves are
orthogonal to each other. If this is the case then the dual basis [qz~5, 15] is identical to the
primal one and the magnitude of the coefficients d; is proportional to their impact on the
shape.

Requiring the set [¢(-—1), ¢ (-—1)] to be an orthonormal basis is a very strong condition
which eliminates most of the degrees of freedom [4]. Additional properties such as smooth-
ness (differentiability), symmetry, and local support of the basis functions ¢(- —¢) cannot



be satisfied simultaneously anymore. Hence, in many applications, the semi-orthogonal
setting is preferred and the additional degrees of freedom are used to obtain smooth basis
functions with local support.

However in practice, it often turns out that even the semi-orthogonal setting is quite
difficult to establish. Therefore, an even weaker condition is imposed on the basis functions
¢(-—1) and ¥(- — 7). The motivation for this weaker condition is that the space V' usually
contains some low degree polynomials up to order n, i.e.

Vk:()a]-an Elpz,k ()k = sz,k¢(_z)7

to guarantee a certain approximation power. Instead of requiring that the basis function
(- — i) be orthogonal to all functions from V' we can restrict ourselves to requiring that
the basis functions (- — i) be at least orthogonal to these low degree polynomials

o
< (V- —i) > = / o —i)de = 0 YVi Yk=0,1,...,n

—0oQ
This property is called vanishing moments. For the basis functions (- — i) to deserve the
name “wavelets” we typically have to guarantee at least one vanishing moment (= average
function value is zero).

3. Lifting

Lifting [29-31] is a simple technique to construct a set of operators that perform a
multiresolution decomposition and reconstruction. The underlying basis functions and
their duals correspond to the bi-orthogonal setting and the lifting technique can be used
to increase, e.g., the number of vanishing moments of the wavelets.

The starting point for the construction is an arbitrary refinable scaling function ¢
whose integer shifts ¢(- — i) span a coarse space V. For simplicity we assume that ¢ is
interpolatory, i.e., $(0) = 1 and ¢(7) = 0 for all integers i # 0.

The squeezed basis functions ¢(2 - —i) span the refined space V' and we have V C V'
due to the two-scale-relation (1).

Suppose we are given a function

£ =2 cig(2-—i)

3

in the refined space V'. The simplest way to decompose f’ into a coarser approximation
f = Z Ci ¢(‘ - l)
i
plus detail information
ff—f = Z d; (- — 1)
i
is to apply subsampling to the sequence of coefficients, i.e.,

Ci = Ch. (8)

7



Applying the subdivision operator (2) corresponding to the basis function ¢ we obtain
predicted values

Phij1 = ) O2it1-2j Cj

J
on the refined scale which in general differ from the original values cj; ;. Hence the detail
coefficients d; can be defined as the prediction error
d; := C’2i+1 - P12i+1 = C’2z'+1 - Z Q244125 Clzj 9)

j

Equations (8) and (9) define the decomposition operator for a multiresolution analysis.
The corresponding reconstruction operator is given by

CIQ,L- = C; and CIQ,L-_H = dZ + Z 02;+1-25 Cj (10)
j
which is shows that we implicitly set the detail function ¢ to ¢(2 - —1).

The construction so far has all the formal properties that we required. We have a pair of
basis functions [¢, 1] based on which we derive efficient decomposition and reconstruction
operators. The dual basis functions never appear explicitly although the coefficients of
their two-scale-relations show up in the decomposition rules.

As we mentioned earlier, we would like to have additional properties such as vanish-
ing moments of the wavelet v since this guarantees better approximation quality of the
original function and consequently smaller detail coefficients.

In the lifting scheme these additional vanishing moments can be obtained by modifying
the initial choice for the function . For this we add a linear combination of scaling
functions ¢(- — 1), i.e.

¥ = 62 —1) + Y 6l — )

where we choose the «y; such that ¥* has vanishing moments. Obviously vo = 71 = —i and
all other ; = 0 yields at least one vanishing moment and even two vanishing moments if
the function ¢ is symmetric. More non-zero coefficients v; can give additional vanishing
moments.

The reason for using the ¢(- —7) to enhance the wavelet is that it enables a very simple
implementation of the multiresolution tranform. For the modified wavelet ¥* we get a
new decomposition operator

C; <+ C

! !
d, Coir1 — 25 O2i41-25 Cy;
Ci € —2j%i-jd,

and the corresponding reconstruction operator is obtained by simply inverting the order
of the update steps and changing the signs

C; — C;+ Zj Yi—j dj
! !
Coir1 d; + Zj Q2i4+1-25 Co;

!



Obviously both operators have the same computation cost. Moreover, since the coarse
scale coefficients ¢; and the detail coefficients d; are used for mutual updating we can
overwrite the old values in each line of the implementation. Hence the whole computation
can be done “in place” without using additional memory [31].

The original lifting scheme as proposed by Sweldens [29,30] is much more general than
the construction presented here. In fact, every uniform wavelet transform can be factorized
into a number of lifting steps [5]. Moreover, lifting can be applied even in non-uniform
settings where the spaces V and V' are no longer spanned by uniformly spaced shifts of
the same basis functions. For more details on the lifting scheme and its usage in different
practical applications cf. [31].

4. Geometric setting

So far we considered the functional setting, i.e., the geometry was given as the graph
of a scalar valued function defined over the real line (or plane). In a more general setup,
we have to use parametric representations where the geometry is given by a vector valued
function which maps some planar or non-planar parameter domain into 3-space, i.e., each
of the coordinates is defined by a separate scalar valued function. As a consequence,
control coefficients and detail coefficients are also vector valued.

If we are considering decomposition and reconstruction only then the processing of
vector valued functions is done by simply applying the same operators simultaneously to
all three coordinate functions. However, if the decomposition is used for multiresolution
modeling, i.e., if the position of the control points is changed then a “more geometric”
definition of the detail information is necessary.

A typical multiresolution modeling step comnsists of three stages. First the original
geometry is decomposed into global (low frequency) shape and detail information. Then
the global shape is modified and finally the detail information is added back by the
reconstruction operator. If the detail information is vector valued then the reconstruction
will often lead to counter intuitive results since the rotation of the global shape’s tangent
is neglected (cf. Fig. 2).

N\
/l\\/\/\//\ S\S(\\/\//)

{J O
/ N v,
AAAAAL \ q <

Figure 2. If the detail vectors are defined with respect to a global coordinate frame
then the reconstruction after a deformation of the global shape (gray line) does lead to
artifacts (center). A more intuitive detail preservation is achieved, if the detail is defined
with respect to local frames that stay aligned to the global shape.



In order to avoid this effect, Forsey and Bartels [9,10] introduced the notion of local
frame representation of the detail coefficients: Instead of storing the detail vectors d;
with respect to some global reference frame F, one rather stores d; = F;}(F(d;)) with
individual frames F; which depend on the local surface geometry of the low frequency
geometry. For example, a local frame that consists of the normal vector and the tangent(s)
automatically stays aligned to the underlying curve or surface.

After the modification, the low frequency geometry has changed and hence we find new
local frames F;. The detail coefficients which are used for the reconstruction are then

A~

F;(d}) which guarantees intuitive detail preservation (cf. Fig. 2).

5. Multiresolution representations for surfaces

The formal description of the multiresolution decomposition and reconstruction so far
heavily relies on the regular structure of the control polygon or control mesh. In a reg-
ular mesh, all vertices can be labeled by a unique pair of indices, c;;, and the bivariate
subdivision operator computes the new control vertices by

C; = Z O —2k,j—21 Ck,l
k,l

which combines four different averaging rules according to the parity of + and j. The
corresponding super- and subsampling operations that are based on the parity of the
global indices can only work if the topological neighborhood of each vertex is identical.
It is well-known that this requires each inner vertex of a triangle mesh to have exactly
six neighbors (or each inner vertex of a quad mesh to have exactly four neighbors). This
restriction is too strong for practical modeling applications since the class of possible
shapes only contains surfaces which are homeomorphic to (a part of) a torus.

In order to apply multiresolution techniques to more general classes of freeform surfaces
we have to extend the concepts of Section 2 to irregular meshes and non-planar parameter
domains, e.g., a closed genus zero surface can be represented as a regular map from the
unit sphere into 3-space while there is no regular map from any planar domain.

The standard procedure for finding operators with multiresolution functionality on sur-
faces with arbitrary topology is to first generalize the sub- and supersampling operations
and then define decomposition and reconstruction operators that have properties simi-
lar to the original transformations on regular meshes. Ideally the generalized operators
coincide with the original ones on regular meshes.

5.1. Coarse-to-fine hierarchies

Based on a generalized two-scale-relation, subdivision schemes provide the means to
reconstruct a smooth surface from a coarse control mesh with arbitrary topology. The
idea is to extend the knot-insertion operation for splines to irregular control meshes.

Starting with the initial control mesh M, consisting of the control vertices c?, ..., C?L(O),
we compute refined control meshes M,, with control vertices c7’,..., Cp(m) ON the mth
m+1

refinement level. The geometric location of each new control vertex c;*"" is computed
by weighted averaging of nearby vertices ¢}* from the unrefined mesh (cf. Chapter ). For
triangle meshes we usually have two different types of averaging rules. One for the new

: m+1 m+1 . : m+1 m+1
vertices €15+ -+ Comay) and one for updating the old vertices """, ..., C(m)-



The subdivision operator can serve as the reconstruction operator in a multiresolution
representation of a freeform surface. When applying the subdivision operator to a given
control mesh M,,,, we obtain predicted locations for the control vertices ¢/"** on the next
level. Detail coefficients d* act like translation vectors which move the vertices back to
their original location, i.e., in the reconstruction they undo the prediction error [34]. For
the non-functional, geometric setting those displacement vectors have to be encoded with
respect to a local coordinate frame (cf. Section 4).

The multiresolution representation of a surface by subdivision plus displacement on
every refinement level mimics most of the important properties that we saw in the previous
sections. The displacement vectors dj* are local detail coefficients where the length of
the vector indicates the significance of the detail and the refinement level on which the

displacement is applied indicates the frequency band to which it belongs (cf. Fig. 3).

Figure 3. The effect of a detail coefficient d]* depends on the associated refinement
level. The region of the surface that is affected by one detail coefficient corresponds to
the support of the basis function associated with the displaced control vertex. Since the
support of the basis functions decreases with each refinement step, we obtain a proper
decomposition of the geometric shape into different frequency bands.

So far we only considered the reconstruction operator which consists of subdivision
plus displacement. For a complete multiresolution functionality we also have to construct
a compatible decomposition operator that inverts the reconstruction. The easiest way
to obtain such an operator is to apply subsampling to the original mesh M, ; then
apply the subdivision scheme to obtain a mesh M;, ., which is a smoothed version of the
original. The detail vectors are found by computing the shift of the vertices caused by
this procedure.

Notice that in this case the number of detail coefficients equals the number, n(m + 1),
of vertices in the fine mesh. This is quite different from the classical wavelet setting where
the number of detail coefficients, n(m + 1) — n(m), equals the number of vertices that
are newly introduced by the reconstruction operator. In principle this does not affect the
space and frequency localization properties of the decomposition but it introduces some
redundancy since multiple detail coefficients are assigned to the same vertex on different
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refinement levels. This redundancy can be avoided if we use interpolatory subdivision
(cf. Chapter ).

A limitation of the subdivision based multiresolution representation is that it cannot be
applied to arbitrary meshes. Because the decomposition is constructed for a prescribed
type of reconstruction operator, the subsampling only applies to the special output of that
operator. The specific connectivity of the meshes M,, which are generated by the appli-
cation of a uniform refinement operator is called semi-regular or subdivision connectivity.
Semi-regular meshes consist of patches with regular mesh structure and extraordinary
vertices (with valence # 6) only occur at the corners of these patches (cf. Fig. 4). Meshes
to which we want to apply the “inverse subdivision” subsampling have to have this special
connectivity.

Figure 4. Although the base mesh M, can be chosen arbitrarily in the coarse-to-fine
setting, the refined resolutions M,, must have subdivision connectivity. This is due to
the uniform refinement of the reconstruction operator. The “inverse subdivision” cannot
be applied to arbitrary meshes.

We call this type of hierarchy coarse-to-fine hierarchy since the structure of the meshes
is determined by the coarsest level M (which can be arbitrary). All finer meshes M,,
are generated by iterative refinement and the decomposition operator only undoes this
refinement. If a surface is given by an unstructured triangle mesh which does not have a
semi-regular connectivity, remeshing techniques [8,21,19] have to be applied which resam-
ple the original surface to generate a semi-regular mesh that approximates the original
geometry.

The mere displacement of individual control vertices after the refinement corresponds
to the initial choice of the wavelet basis function in (10). Since the lifting scheme is not
restricted to the uniform setting, we can apply it to improve the generalized reconstruc-
tion operator in a similar fashion. This leads to more involved reconstruction operators
where a detail coefficient associated with one control vertex also affects the position of
neighboring control vertices on the same level. Schroder and Sweldens use this technique
to design multiresolution decompositions for genus zero surfaces (parameterized over the
unit sphere) [26]. Applying the lifting scheme also leads to improved decompositions with
non-interpolatory basis functions but does not introduce redundant detail coefficients
since the factorization of the transform can be computed in-place.
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Another technique to improve the approximation behavior of the decomposition oper-
ator is presented in [23]. The construction starts with the nested sequence of spaces V;,
which are spanned by the subdivision basis functions ¢* on the mth level (each func-
tion ¢ is associated with the corresponding control vertex c!*). On the mth level,

the basis qﬁ{n,...,qﬁ:f(m) is extended to a basis of V,,y1 by including the pre-wavelets
[my1s - - Utmny] = | nm(jnl)ﬂ, . ¢nm(;1+1)]. Since the pre-wavelets are related to con-

trol vertices from the (m + 1)st refinement level, they are associated with the edges of the
mesh M,,,.

These pre-wavelets are then modified to make them orthogonal to the space V,, since this
guarantees that the decomposition operator finds the best low frequency approximation
in the least squares sense (semi-orthogonal setting). The orthogonalization is achieved by
subtracting the least squares approximation o;" of the function " from the space V,,
ie.,

e LR D DT
J

It turns out that the least squares approximant o;" happens to be globally supported in
general which means that all s; ; are non-vanishing. Since this diminishes the efficiency
of the decomposition and reconstruction operator, one tries to find a locally supported
approximation of ¢;"* that is “as orthogonal as possible” to the space V,,. For this one
prescribes a support 2" that is centered around the edge of M,, where the vertex ctt
is going to be inserted. Then one finds the least squares approximation of ;" by using
only those basis functions ¢;* whose support lies within the interior of €2]*. By increasing

the size of {2 the resulting basis converges to the semi-orthogonal setting.

5.2. Fine-to-coarse hierarchies

The first attempt to generalize the concept of multiresolution representations to freeform
surfaces worked from coarse to fine, i.e., we started with the reconstruction operator and
the decomposition operator was derived by inverting the reconstruction. The second ap-
proach works the opposite way: We start with a decomposition operator building the
hierarchy from fine to coarse and then derive the matching reconstruction operator.

The advantage of the fine-to-coarse approach is that it can be applied to arbitrary
meshes, no special connectivity is required. The disadvantage is that we no longer have a
simple representation of the surface geometry by a superposition of smooth basis functions
(as they emerge from subdivision schemes) since the different hierarchy levels are non-
nested and hence a proper two-scale-relation cannot be defined.

Given an arbitrary triangle mesh with vertices c7?,.. ., Cr(m)> W€ reduce its complexity
by applying mesh decimation algorithms, e.g. [2,11,14,17,22 25]. Such algorithms remove
vertices from the mesh according to some application specific criterion. A typical example
for incremental decimation is edge collapsing where one vertex is removed at a time by
shifting it into its neighbor’s position and eliminating degenerate triangles (cf. Fig. 5).
This operation reduces the mesh complexity by one vertex and two triangles and can be
considered as a basic subsampling step. If we use edge collapsing to remove an independent
set of vertices Crlm—1)+17- - - » Cn(m)> i.e., a set of vertices which are not connected by an
edge then we achieve a global subsampling which does not require any regularity of the
mesh connectivity (cf. Fig. 6).
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Figure 5. The edge collapse operation reduces the mesh complexity by one vertex and two
triangles. Its inverse, the vertex split, can easily be performed if the local neighborhood
relations are stored.

The original position of the removed vertices Co(m—1)+1> - - - » Cn(m) T€PIesents the detail
information that is separated from the global shape by the decomposition operation.
There are various ways to encode those positions relative to local frames which are aligned
to the remaining geometry [20]. The decomposition does not produce redundancy since
the number of geometric coefficients (one chunk per vertex) remains constant.

Hoppe [14] first observed that the edge collapsing can easily be inverted by vertex
split operations. For this we only have to store little extra information about the local
connectivity. Hence we immediately find a reconstruction operator which undoes the
decomposition. Hoppe used this technique for the progressive transmission of complex
meshes by first sending the decimated base mesh to the receiver and then sending a
sequence of vertex splits which allow the client to run the mesh decimation backwards
until the original model is recovered.

In the context of multiresolution techniques the combination of mesh decimation and
progressive refinement yields the necessary pair of basic operators to switch between levels
M,,, in a multiresolution representation for arbitrary meshes (cf. Fig. 7). However, so far
we cannot access the smooth low frequency part of the geometry because we cannot
refine the mesh without adding back the detail coefficients. For the full multiresolution
functionality we have to be able to refine the mesh while suppressing the detail information
since otherwise a geometric modification on a coarse scale will not lead to a smooth global
deformation of the surface (cf. Fig. 8) [18].

In the coarse-to-fine setting of the last section the reconstruction without detail is
achieved by simply applying the plain subdivision operator without displacement. In the
fine to coarse setting, however, we no longer have such smooth basis functions associated
with the vertices. As a consequence we have to find a more general prediction scheme
that computes the expected position of the new vertices when they are introduced by the
supersampling.
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Figure 6. Removing an independent set of vertices (hollow dots) from the mesh M,, has
the effect of global subsampling but without requiring a regular structure of the mesh

connectivity.
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Figure 7. A sequence of meshes generated by a mesh decimation algorithm. We can go
from left to right by performing edge collapses and we can go from right to left by splitting
vertices (progressive meshes).

The most promissing approaches to generate smooth geometry with unstructured trian-
gle meshes are curvature flow techniques [32,6,12] and constrained optimization [16,18,24].
Both approaches lead to similar filter algorithms where every vertex of the mesh is shifted
to a new position that is computed by a weighted average of its neighbors. The specific
weights for these filters are derived from a discrete approximation of some continuous
curvature measure and depend on the local connectivity and edge lengths [7].

Based on these techniques we can define the reconstruction operator as follows: Re-
insert a subsequence of previously removed vertices Co(m—1)+17 - - - » Cn(m) by vertex splits
in reverse order. Determine the predicted position of the new vertices by applying a filter
operation. Move the vertices to their final position by adding the detail vectors d*

Omitting the last step leads to topologically refined meshes without high frequency
detail (cf. Fig. 9). If the smoothing filter is applied to the position of the coarse-scale
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Figure 8. A deformation of the global shape is not only characterized by a large support
(topologically coarse) but also by its smoothness (low geometric frequency). The object
on the left is globally deformed by using a (non-smooth) piecewise linear function in the
center and a smooth function on the right.

vertices ¢, ..., €.,y as well, we can improve the quality of the low frequency geometry
but we have to store redundant detail coefficients.

6. Applications

Multiresolution representations of geometric models decompose the overall shape into
detail information from different scales or frequency bands. These representations are
hierarchical in the sense that besides the “horizontal” ordering of the geometric coefficients
according to the surface topology (or mesh connectivity) we obtain a “vertical” ordering
of the coefficients according to significance or feature size. This vertical ordering is very
intuitive since it enables to directly access the shape of an object on various levels of
detail.

There are plenty of applications where the augmented structure of hierarchical represen-
tations is used to increase the performance by allowing algorithms to focus the processing
resources on the significant part of the geometry or by adapting the amount of detail
information to the required accuracy. Typical examples for this type of applications are
data compression and progressive transmission.

Another class of applications does not rate the detail coefficients according to their
significance but tries to exploit the semantic information that emerges from the decom-
position. Defining the detail information relative to the global shape is what designers
usually do when assembling complex CAD objects. The rationale behind this is that local
features are (semantically and physically) attached to the main body of an object and if
the main body’s shape is altered then the local features should follow accordingly. The
decomposition operator in a multiresolution scheme automatically recovers this type of
hierarchical structure from the final shape. While the decomposition cannot identify the
functional parts in a CAD model, it can at least distinguish between different feature
sizes. Various metaphors for multiresolution editing can be implemented based on this
structure.
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Figure 9. Starting with the original mesh M,, on the left, we apply mesh decimation
to build up a fine-to-coarse hierarchy. The coarsest level M, is shown in the center.
When re-inserting the vertices, we can suppress the detail information by computing new
(predicted) vertex positions with some smoothing filter. The resulting mesh M. on the
right has the same connectivity as the original mesh M, but the geometry does not
contain any high frequency details.

6.1. Multiresolution editing

The general procedure for multiresolution editing is a three step process. First the
decomposition operator is applied to separate detail information and global shape. Then
the global shape is modified and finally the detail information is added back by the
reconstruction operator. The detail reconstruction will be intuitive if the vector valued
detail coefficients are encoded with respect to local frames (cf. Section 4).

For coarse to fine hierarchies, the multiresolution editing is quite simple since we have
well-defined subdivision basis functions associated with each control vertex on each re-
finement level. Early works by Forsey and Bartels [9,10] already used these technique for
hierarchical spline surfaces and Zorin et al. [34] generalized it to subdivision surfaces.

An interesting difference between the two approaches is that for hierarchical splines the
control vertices on the different hierarchy levels are considered completely independent
while Zorin et al. propagate modifications on the fine levels down to the coarser ones.
The goal of this propagation is to keep the detail coefficients on each level as small as
possible. Although this makes the reconstruction operator numerically more stable, the
strict separation of the detail levels is not preserved.

In [12] Guskov et al. propose a technique for multiresolution decomposition of arbitrary
meshes. The decomposition is based on a mesh decimation technique and the reconstruc-
tion operator uses a sophisticated smoothing filter for the prediction, i.e., each vertex split
during the reconstruction is followed by applying a low-pass filter to a local vicinity. The
resulting multiresolution representation is highly redundant since for each vertex split one
has to store detail coefficients for all neighboring vertices that are affected by the local
smoothing.

One drawback of the above mentioned approaches is that the basis functions which are
associated with the mesh vertices are fixed and their definition cannot be adapted to a
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specific design goal. Therefore in [18] a multiresolution metaphor is presented that builds
up the hierarchy on demand. The designer can choose the location and the support of a
modification and a fine to coarse hierarchy is then built by applying mesh decimation to
the region of the mesh that is covered by the support. Because the resulting decomposition
is custom made for one specific editing operation, one does not have to explicitly use the
intermediate hierarchy levels but one can restrict to a two-level decomposition (cf. Fig. 10).

Figure 10. A flexible metaphor for multiresolution edits. On the left, the original mesh is
shown. The black line defines the region of the mesh which is subject to the modification.
The white line defines the handle geometry which can be moved by the designer. Both
boundaries can have an arbitrary shape and hence they can, e.g., be aligned to geometric
features in the mesh. The boundary and the handle impose C! and C° boundary condi-
tions to the mesh and the smooth version of the original mesh is found by applying discrete
fairing while observing these boundary constraints. The center left shows the result of
the curvature minimization (the boundary and the handle are interpolated). The geo-
metric difference between the two left meshes is stored as detail information with respect
to loacal frames. Now the designer can move the handle polygon and this changes the
boundary constraints for the curvature minimization. Hence the discrete fairing generates
a modified smooth mesh (center right). Adding the previously stored detail information
yields the final result on the right. Since we can apply fast multi-level smoothing when
solving the optimization problem, the modified mesh can be updated with several frames
per second during the modeling operation. Notice that all four meshes have the same
connectivity.

6.2. Geometry compression

Techniques for lossy compression of geometry data often exploit the fact that mul-
tiresolution decompositions imply an ordering of the detail coefficients according to their
significance. If we want to obtain a prescribed compression ratio we can simply remove
a certain percentage of the detail coefficients starting with the least significant ones. If
we want to stay within a prescribed approximation tolerance, we can remove the least
significant detail coefficients as long as we do not violate that tolerance.

Sophisticated multiresolution representations improve the effectiveness of such algo-
rithms. If we choose the right basis functions ¢ and v then the approximation quality
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of the low frequency component increases and hence the prediction error (= detail coef-
ficients) during the reconstruction becomes smaller. This is the reason why one usually
aims at the (approximate) semi-orthogonal setting.

In [23] Lounsbery et al. constructed piecewise linear wavelet functions such that they
are, for a given support, as orthogonal as possible to the space of subdivision basis func-
tions. Based on the lifting scheme, Schroder and Sweldens constructed wavelets with
vanishing moments for various subdivision schemes and compared their approximation
properties [26].

Guskov et al. [13] and Khodakhowski et al. [15] additionally exploit the geometric
coherence of a meshed surface by storing the detail coefficients as scalar valued normal
displacements instead of vector valued local frame displacements. They achieve this by
resampling the orignal geometry such that the tangential component of the displacement
vectors vanishes.

All the above multiresolution compression schemes are based on coarse to fine hier-
archies. The reason for this is that the availability of subdivision basis functions and
their corresponding wavelets allows to adapt the theoretical concepts from the regular
functional setting.

In [3] Cohen-Or et al. propose a compression scheme which is based on a fine to coarse
hierarchy. Their technique combines ideas from lossless non-hierarchical mesh compression
with progressive reconstruction of fine to coarse hierarchies. In every subsampling step
they remove an independent set of vertices and retriangulate the resulting holes by triangle
strips. In order to keep the detail vectors as small as possible they use a linear prediction
scheme that is similar to the low pass filter operations mentioned in Section 5.2.

Taubin describes a progressive compression scheme in [33]. Here the fine to coarse
hierarchy is generated by rather complex “forest splits” which are a generalization of the
vertex split operation. The scheme is optimized for connectivity compression.
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