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Abstract

We present a method for the reconstruction of 3D
planes from calibrated 2D images. Given a set of
pixels € in a reference image, our method computes
a plane which best approximates that part of the
scene which has been projected to 2 by exploiting
additional views. Based on classical image align-
ment techniques we derive linear matching equa-
tions minimally parameterized by the three parame-
ters of an object-space plane. The resulting iterative
algorithm is highly robust because it is able to in-
tegrate over large image regions due to the correct
object-space approximation and hence is not limited
to comparing small image patches. Our method can
be applied to a pair of stereo images but is also able
to take advantage of the additional information pro-
vided by an arbitrary number of input images. A
thorough experimental validation shows that these
properties enable robust convergence especially un-
der the influence of image sensor noise and camera
calibration errors.

1 Introduction

The need for robust matching of correspondences
between images arises in many vision related areas
such as tracking, camera calibration or 3D recon-
struction. A weakness of methods like point feature
matching and also of most reconstruction systems
based on volumetric or explicit surface representa-
tions is the computation of reliable correspondence
measures between small image areas. Due to the
inevitable noise in digital images, difficult illumi-
nation conditions or insufficient texture this is an
error-prone problem. A second drawback of many
traditional reconstruction methods is that they work
well for the case of two images, but are not able
to take advantage of additional images showing the
same part of a scene which is the type of data typi-
cally available in many application scenarios.

We present a method to reconstruct 3D planes
from calibrated images that is designed to overcome
both of these problems. Our method takes advan-
tage of the stabilizing effect induced by integrating
over large image areas. It is thus able to robustly
perform matching in noisy images and in regions
with little or no texture, resulting in the reconstruc-
tion of planes that approximate the original scene
with high precision. Furthermore, instead of being
limited to two images, our method handles as many
images as available, improving the quality of our re-
sults especially under the influence of image noise
and camera calibration errors. We choose planes be-
cause of their stronger approximation power com-
pared to points or lines. For that reason planes are
often the method of choice to approximate freeform
geometry. In addition, planes only have three de-
grees of freedom and can hence be reconstructed
more robustly than primitives with more degrees of
freedom like, e.g., quadrics.

Our method is based on two-dimensional projec-
tive mappings between image spaces, also known
as homographies. In general, such a mapping has
eight degrees of freedom. However, it is well known
that by requiring calibrated input images it is pos-
sible to define plane-induced homographies with
only three parameters coinciding with the param-
eters of a plane in space. We apply a scene trans-
formation that simplifies the homographies and en-
ables us to formulate the plane fitting problem in an
efficient way.

Several ideas of our algorithm are inspired by
classical image alignment methods. Although the
research field of image alignment and motion es-
timation has been explored for more than two
decades, we believe that the special case of plane
reconstruction from calibrated images is still lack-
ing an in-depth analysis. We fill this gap by deriving
a Gauss-Newton style matching algorithm tailored
to the specific properties of the plane reconstruc-
tion problem. Compared to standard non-linear op-



timization methods like Levenberg-Marquardt, the
resulting algorithm turns out to reconstruct planes
of equal quality but with much less computation ef-
fort. We furthermore experimentally validate our
claim of increased robustness against image noise
and calibration errors when the number of input im-
ages is increased and show preliminary results of a
3D reconstruction system based on our plane fitting
method.

2 Related Work

Our work is closely related to motion estimation
and image alignment, a research field pioneered by
Lucas and Kanade [11]. The general idea is, given
a region €2 in a reference image I, to find a trans-
formation (or motion) T such that the transformed
image region best matches a comparison image /..
This is usually formalized as a sum of squared in-
tensity differences between the reference and com-
parison image.

Since the work of Lucas and Kanade, many re-
searchers have investigated the problem of estimat-
ing the parameters of various transformations 7" be-
tween two images. In the context of point fea-
ture and region tracking the most extensively used
motions are translations and affine transformations
[17, 14, 10, 7]. The more general work of Bergen et
al. [4] extends the idea to transformations including
projective homographies and also describes the pos-
sibility to parameterize the motion between pairs of
images by three parameters in case the camera cal-
ibration is known. However, their formulation does
not allow for the integration of an arbitrary number
of images to estimate the parameters of one plane
in object-space, which we show to be the key to
improved robustness. An area based on homogra-
phy matching as well is that of image mosaicing for
panorama images (e.g., [16, 15]). Due to the differ-
ent problem domain with a camera rotating about
a fixed center, the solutions cannot easily be trans-
ferred to plane reconstruction. Baker et al. [3] de-
scribe a system capable of reconstructing a scene as
a set of textured planes. Hence, their goal is simi-
lar to ours in that they reconstruct planes from cal-
ibrated images. They do, however, omit details of
the actual fitting process and only state that they
apply a standard minimization approach. In the
more recent work of the same authors [2], Baker
et al. provide an extensive analysis and classifica-

tion of image alignment algorithms which shows
that it is advantageous to exploit the properties of
specific alignment problems rather than relying on
standard minimization techniques. Given a trans-
formation 7T'(p) parameterized by motion parame-
ters p, each step of their alignment framework com-
putes a parameter update Ap. The authors classify
image alignment algorithms as either additive if the
transformation is updated as T'(p + Ap) or com-
positional if the update is performed as the com-
position T'(p) o T'(Ap). Furthermore, algorithms
are classified as either forward or inverse if the pa-
rameter update Ap is computed as transforming the
comparison image /. or reference image /,-, respec-
tively. We stick to these classes and show that in our
case a forward additive algorithm is the only valid
choice. Another work of Baker et al. [1] evaluat-
ing the properties of different homography param-
eterizations is of interest to our work. They show
for the case of two calibrated images that a minimal
parameterization with three parameters is the most
robust choice in terms of convergence and yields at
least as accurate results as all other evaluated pa-
rameterizations. This result stresses that our choice
of parameterization is the best possible.

A second research field related to our work is that
of general 3D reconstruction from calibrated im-
ages based on planes. Hartley and Zisserman give
a thorough overview of the geometrical aspects of
this problem in [8]. Favaro et al. [6] solve the struc-
ture from motion problem based on approximating
nearly planar scene regions with planes. Recon-
struction of scene planes is often a part of architec-
tural modeling. For example, the Facade system [5]
of Debevec et al. lets the user select corresponding
points and lines in a set of uncalibrated images and
is then able to compute camera parameters and a 3D
model. Werner et al. [18] present a system with the
goal to automate Facade. However, it imposes con-
straints on the placement of the scene planes in that
it assumes a ground plane and two main planes of
the building, all being perpendicular to each other.
An overview of general 3D reconstruction from im-
ages — not necessarily based on scene planes — has
recently been presented by Seitz et al. [13].

3 Problem Formulation and Notation

The problem we are addressing can be stated as fol-
lows. Given is a reference image I, and an arbitrary



number of comparison images I.,c = 1,...,n,all
images being calibrated. Our goal is to find a plane
in 3D space which best approximates that part of the
scene which has been projected to a set of pixels 2
in the reference image.

The camera calibration is given in the usual form
of 3 x 4 projection matrices P = (M|m) with
M € R3*3 and m € R3. A separation into in-
trinsic and extrinsic calibration is not required. The
elements of m are referred to as m;. The given im-
ages are treated as two-dimensional intensity func-
tions I (u,v), where u, v are pixel coordinates.

Scene planes are denoted by the four parame-
ters N7 = (no,n1,na,d) with NTX = 0 for
all scene points X lying on N. During the deriva-
tion of the matching equations we utilize homogra-
phies mapping image points (u, v) from the refer-
ence image to the comparison images. Homogra-
phies are denoted by 3 x 3 matrices defined up to
an arbitrary scale factor. We do not make a distinc-
tion between image points (u,v) and their homo-
geneous representation p = (u,v,1)” and we use
I(u,v) and I(p) synonymously. We furthermore
denote the projection of a point p with a homog-
raphy H by Hp which implicitly contains the de-
homogenization.

4 Projective Matching

In this part our solution to the plane fitting problem
is detailed. Section 4.1 revisits a transformation ap-
plied to the whole scene to allow for simpler match-
ing equations. Our main contribution, the derivation
of these equations, is presented in Section 4.2.

4.1 Scene Transformation

Suppose the projection matrices of the reference
camera and an arbitrary comparison image are
P, = (M;/m,) and P, = (M.|m.), respec-
tively. The homography induced by the scene plane
N7 = (ng,n1,n2,d) = (n”,d), mapping image
points from the reference image I, to the plane N
and then further to the image /., is

H.(N) = (dMC — mch) (dMT — m,»nT)71

for d # 0. The global coordinate transformation

M; ! ‘*MflmT 4x4
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simplifies the reference projection matrix P, to
P, = P,.B = (1d;/0).

All other projection matrices are transformed anal-
ogously with the same matrix B. This transforma-
tion triggers two important simplifications. First,
now that the optical center of the reference cam-
era always lies in the origin of the world coordi-
nate frame, it is possible to scale the plane vector
N such that d = 1. Planes which require a zero
d would pass through the optical center of the ref-
erence camera and the fitting procedure with this
camera as reference is not possible anyway. Sec-
ond, due to M. being the identity and m!. being
all zero, the plane-induced homography of N7 =
(no,m1,n2, 1) from I, to I, simplifies to

H.(N)=H.(n) =M, —m/n”. (2

For the remainder of this section we assume that
all matrices and planes have been transformed by
B. Notice that scene points and planes are trans-
formed as X’ = B™'X and N’ = BTN, respec-
tively. More details on the underlying concepts can
be found in [8].

4.2 Derivation of the Matching Equations

To simplify the derivation of the matching equations
we consider the case of two images (one reference
and one comparison image) first. Hence we can
drop the image indices and denote the reference and
comparison images by I and J, respectively. The
extension to more comparison images is straightfor-
ward, as we will see at the end of this section.

The matching process is based on minimizing the
well-established sum of squared differences (SSD)
of image intensities. The objective function for two
images thus is

p=Y (1)~ J<H<n>p>)2. @)

PEQ

We solve for the unknown plane n iteratively
and compute a parameter update An in each iter-
ation. In iteration k + 1 a parameter update An is
computed, based on the result of the previous step:
ng41 := ng + An. According to the classes devel-
oped in [2], this is a forward additive approach. As
a side note, a compositional formulation (either for-
ward or inverse) as H(n) o H(An) is not possible:



the set of homographies H(n) does not necessarily
include the required identity map due to the above
parameterization. An inverse additive approach also
cannot be applied since the partial derivatives of the
transformation with respect to the motion parame-
ters n and the image points do not obey the required
constraints. Hence, a forward additive approach is
the only valid choice in our case. As with all image
alignment methods, we need an initial estimate of
the plane. How this is obtained will be discussed in
Section 4.3. Introducing the iterative formulation in
the objective function results in

B = Y (1) - J(Hi (0 + 80p) ) @)

pPeEQ

which we are going to minimize with respect to An.

The above problem can be simplified by compar-
ing the reference image I to a transformed image
J*HY instead of comparing it to the original image
J© = J. The transformation we apply to J© in
iteration k + 1 is the homography H(ny) computed
in the previous step k. That is, we use the trans-
formed image J**V (p) := J© (H(ny)p). Be-
fore substituting the transformed image into the ob-
jective function (4), we observe that the homogra-
phy H(ng + An) can be written as H(ny +An) =
H(n;) — mAn” according to (2). With this result
we are now able to rewrite the objective function as

Bror = 3 (1) - SO 000 + )

PEQ
= (I(p) — kD ((Id - rhAnT)p))2
)

with m being the last column of .J’s projection ma-
trix, multiplied by the inverse homography: m :=
H(ny) 'm. To improve the legibility of of the
derivation we drop the superscript (k + 1) from the
transformed comparison image and refer to it as J.

After rewriting the function of the compari-
son image in parametric form with explicit de-
homogenization of (Id — mAn”)p and p =
(u,v,1) as

J((Id - IhAnT)p)

. u—1oAnTp v—miAnTp
o 1—m2AnTp’ 1 — maAnTp )’

we are able to derive the first order Taylor expan-
sion:
J((Id - IhAnT)p)

u—moAnTp

%J(p)+( —u) J=(P)

1 —m2AnTp
fA . ©)
v—rmiAn' p
+ (1 _ TthnTp U) ’]U(p)7

where J, and J, denote the partial derivatives of
the transformed comparison image in the image x-
and y-direction.

The above equation is non-linear because of the
de-homogenization step. However, it can be lin-
earized by dropping the term m2An” p from both
denominators. As result the denominators reduce
to 1. This linearization is justified by the iterative
approach: Dropping the above term is identical to
performing the de-homogenization with the denom-
inator of H(ny)p instead of H(ny + An)p. When
the iteration converges, the computed upgrade An
rapidly decreases towards the zero-vector and hence
the linearized denominator approaches the correct
version. The linearized Taylor expansion (6) is

J((Id — rhAnT)p)

~ J(p)—(moAn" p)J.(p)— (1 An” p) J,(p).

Substituting the linearized Taylor expansion into
the objective function (5) yields

Ek+1 = Z (I(p) — J(p) + (ThOAnTp)Jz(p)
peER 2
+ (D) (p))
We finally set
Fo :=uk> Fy = vFs
Fy = 1o J(p) + m1Jy(p)
D = I(p) — J(p).

and reorder the terms of Fy41 with respect to the
coordinates of An to obtain

B = Z (ATL()FO + An1 Fy + Ano Fo + D)z.
peEQ
To minimize Fr4+1 we compute the partial
derivatives with respect to the coordinates of An
O0Fk11

aA’n,l =2 Z FL' (AnOFo + Aanl

peR + AngFp + D),



set them to zero and solve the resulting linear sys-
tem

FAn=b N

with
F2 FoF\ FoF» FoD
F=> |RF F FF|b=- F.D].
pee \FoFy, F\F, FZ pea \ILD

A major advantage of this formulation is the easy
integration of additional images. Taking more than
one comparison image into account is achieved by
extending the objective function (3) as

E=3 3 () - LEmp) . ©

c=1peN

The additional summation does not affect the
derivation and results in an accumulated linear sys-
tem which is built by summation over the systems
shown in (7), one for each comparison image. Thus,
the problem stays minimally parameterized for an
arbitrary number of comparison images and the
time needed to solve the accumulated system does
also not change. The matching scheme can be ex-
tended to use RGB color images in a completely
analogous way: every color channel is treated as
separate graylevel image in the outer sum in (8).
Since our method combines two (discrete) integra-
tion steps we gain improved robustness against im-
age noise and camera calibration errors. This is
shown empirically in Section 5.

The main problem of image matching based on
squared differences of color intensities is its well-
known sensitivity to illumination changes. If the
object surface is not perfectly Lambertian, changing
camera perspectives lead to changes in the inten-
sity of the same surface patch. A standard approach
to compensate for such lighting changes is to apply
individual photometric normalization to the image
regions. In each iteration, i.e. during each construc-
tion of (7), the mean intensities yu, and p. of the
image regions I,-(2) and I.(H.(£2)) are subtracted
from the pixel intensities, the resulting intensities
are then divided by the standard deviations o, and
o. of the respective image regions:

E= i 2 (Ir(pir— fr _ IC(Hc(r;)Cp) - Mc>2.

c=1peQ

This allows the plane fitting scheme to work well
even in cases of moderate changes in the lighting
conditions.

4.3 Implementation Issues

We approximate the partial derivatives .J,, and .J, in
the image directions by simple central differences.
The transformed comparison images introduced in
the previous section are not explicitly computed
for performance reasons. Instead, we always com-
pute the transformed positions in the original com-
parison images and apply bi-linear interpolation to
compute intensity values at non-integer positions.

An extension to avoid local minima during the
matching process (already described in [4]) is to
perform the matching on a Gaussian image pyra-
mid. Starting on a coarse resolution, the computed
plane parameters are reused as initialization on the
next finer level. In our implementation the plane
parameters stay unchanged when switching to a dif-
ferent level. Only the projection matrices have to be
adjusted to compensate for the change in image res-
olution. Due to the Gaussian image pyramids the al-
gorithm does not require additional image smooth-
ing.

To improve numerical stability, the set of pixels
) is translated such that its center of gravity lies at
the origin (0, 0) and it is scaled such that the coor-
dinates of all pixels p € € lie in the range [—1, 1)?
(see, e.g., [8]). Notice that for consistency all pro-
jection matrices have to be transformed as P=TP
with

w 0 —weg
T = 0 w —wey |,
00 1

where (cz,cy) is the center of gravity of {2 and
w the correct scale factor. Notice further that this
transformation affects the scene transformation B
in (1) as well. However, as the image derivatives
are computed based on the original images, again
no explicit image scaling is necessary.

We compute the initial scene plane ng using a
simple heuristic. It is parallel to the reference im-
age and its depth is determined by the intersection
of the re-projected image centers of the reference
image and a nearby (in terms of angle deviation of
these re-projected rays) comparison image. Obvi-
ously, if the initial plane deviates too much from
the correct solution, the matching algorithm may
get trapped in a local minimum. Furthermore, as
in all iterative approaches to non-linear optimiza-
tion problems, there is no guarantee for our match-
ing algorithm to converge. However, according to
our observations, when using a moderate damping



of the plane update of 0.75 and initial plane param-
eters sufficiently close to the correct values, diver-
gence or oscillating configurations did not occur in
any of our experiments.

5 Results

The first series of tests analyzes the running time of
our algorithm. All tests have been performed on an
AMD Athlon 64 3500+ system. Figure 1 shows the
average time for one iteration of the matching pro-
cedure with increasing pixel sets {2 and increasing
number of comparison images. As expected, the al-
gorithm shows close to linear behavior in the num-
ber of comparison images since the time needed for
the construction of the linear system dominates the
time for its solution. We furthermore see that the
algorithm is sufficiently fast for real-world applica-
tions, even for large sets (2 and large numbers of
comparison images.

As pointed out by [2] there are several differ-
ent possibilities to minimize the objective function
(3). One of their results is that the Gauss-Newton
and Levenberg-Marquardt methods perform equally
well. We therefore have compared our method
against a Levenberg-Marquardt minimization of (3)
using the MINPACK library [12]. The required Ja-
cobian of the objective function can easily be com-
puted after the scene transformation of Section 4.1.
The results are in line with [2]: both methods yield
reconstructions of comparable quality. However,
the implementation of our linearized algorithm was
faster in all our tests, usually by a factor of about
two to three.

The second test examines the influence of differ-
ent numbers of comparison images on the quality
of the reconstruction under the influence of cali-
bration errors. A set of 10 synthetic small-baseline
images of a textured 3D plane has been generated.
One run of the algorithm then consisted of the fol-
lowing steps: A subset of the images was cho-
sen and the corresponding synthetic cameras have
been corrupted by noise. For a realistic setup, we
projected a set of 3D points into the synthetic im-
ages, added Gaussian noise to the resulting image
positions and re-computed the projection matrices
from the now distorted 3D-2D correspondences us-
ing standard techniques [8]. The resulting matrices
were then used in our plane reconstruction frame-
work. To minimize statistical artifacts, each mea-
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Figure 1: Average computation time for one itera-
tion of our algorithm with sets 2 of 100 (left), 1.000
(center) and 10.000 (right) pixels. Five tests have
been performed for each set, one for 2, 3,4, 5 and 10
images (including the reference image). All times
are given in milliseconds.

surement has been repeated 50 times with newly
selected images and newly generated camera noise.
We performed this experiment with different num-
bers of comparison images and different levels of
noise, the results are shown in Figure 2, left.

Analogously we measured the behavior of our
algorithm with respect to Gaussian image noise.
Again, 10 synthetic images of a plane were taken.
The images were now distorted by Gaussian im-
age noise of varying intensity (02 = 0.025, 0> =
0.0125 and o® = 0.005 with image intensities be-
tween 0 and 1). The results of this test are shown
in Figure 2, right. The results of both tests indicate
that the algorithm benefits from more images up to
about 8 both in terms of mean error and standard
deviation. From that point on more images do not
seem to improve the result significantly. However,
it becomes clear that the results of a simple stereo
setup can always be improved considerably by tak-
ing more images into account.

Figure 4 shows an approximation of a Chinese
statue by a set of 57 planar polygons from five cali-
brated input images (of resolution 1024x768). Each
plane has been fitted by manually selecting the cor-
responding 2D image polygon in the reference im-
age and then passing it to the automatic matching
procedure. All image polygons are shown in the
center image of the top row. Each of the polygons
has been fitted independently, i.e., without any cou-
pling like smoothness constraints. The accumulated
time spent in the matching routine for all 57 poly-
gons has been 1.49 seconds. The matching proce-
dure has been performed using the multiresolution



Reconstruction with Calibration Error

02 =4 a2 =1 02 =0.25
7
8 3 12 0.5
g 25 1 04
2 2
= 08 03
S 15 0.6
k] 0.2
EE 0.4
A 05 0.2 0.1
o
T 0 A 0 Hrrrrr 0 L
Z 2 4.6 810 2 4 6 810 2 4.6 810

Number of images

Reconstruction with Gaussian Image Noise

02 =0.025 02 =0.0125 o2 =0.005
s 7 45 4
2 4
& 6 3.5
g 5 35 3
= 3 25
g5 4 25 >
% 3 2 15
g i :
g 1 !
]
% o ° %
s o e o
é 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Number of images

Figure 2: Measurement of reconstruction quality under the influence of calibration error and image noise.
Synthetic images (of resolution 685 x 660) and synthetic cameras have been distorted by various intensities
of camera calibration error (left) and different levels of Gaussian image noise (right). The plots show the
mean (square dots) and standard deviation (error bars) of the angle between the normals of the reconstructed
plane and the ground truth. Notice the different scales of the y-axes.

approach, where the lowest level of the Gaussian
image pyramids is determined automatically such
that at least 50 pixels per polygon are left on the
lowest resolution. Furthermore, the lowest level is
limited to be at most three since lower levels did
not yield better results in our experiments due to the
strong image blurring. Convergence of the match-
ing iteration can easily be determined by monitor-
ing the length of the update vector An. Thus,
our implementation of the matching algorithm does
not depend on any parameter to be set by the user.
In this example, the fitting usually converged after
roughly 15 iterations. Notice that concave areas do
not pose a problem for our matching strategy and
all concave regions have been reconstructed cor-
rectly. The center image of the lower row in Fig-
ure 4 contains the reconstructed planes rendered to-
gether with a ground truth geometry obtained with
an implementation of [9]. The rendering clearly
shows that even in cases where the original geom-
etry is moderately curved, the matching procedure
still results in a correct approximation in the least
squares sense.

The next example in Figure 3 shows the appli-
cation of our method to five calibrated images of
an outdoor scene without any control on the light-
ing conditions. The procedure has been the same
as for the Chinese statue: The image polygons have
been defined manually and each polygon has been
passed to the automatic reconstruction algorithm
separately. Due to the smaller image resolution
(720x576), the accumulated matching time has only
been 1.13 seconds. The resulting planes demon-

Figure 3: 60 planes fitted to an outdoor statue. Top:
one of the five input images, with and without the
manually defined image polygons overlaid. Bot-
tom: rendering of the reconstructed 3D planes.

strate that our algorithm works well even under dif-
ficult conditions like low image contrast and little
object texture.

Finally, Figure 5 shows a reconstruction from a
subset (15 images) of the DinoRing dataset which
is part of the mutli-view stereo evaluation by Seitz
et al. [13]. The reconstruction has been obtained
with the prototype of a fully automatic system that
handles the selection of image regions {2 and the se-
lection of suitable comparison images in addition to
the actual plane fitting. The system fits disc-shaped
planes which are adaptively resized to project to im-
age regions €2 of roughly 500 pixels. Each of the



discs has been reconstructed independently using 4
comparison images. For the illustration in Figure 5
the size of the discs has been reduced to 60% (cen-
ter) and 20% (right) of the original radius, respec-
tively. The Dino object is particularly difficult for
reconstruction methods relying on small, possibly
image aligned patches due to its uniformly colored
smooth surface. In contrast, our algorithm is able to
faithfully fit planes to image regions with very few
texture and deeply concave parts of the geometry.

6 Conclusion and Future Work

We have presented a method for the reconstruction
of 3D planes from calibrated images with two im-
portant properties: It is robust against image noise
and camera calibration errors by integrating over
large image regions and it is able to take advantage
of additional information in the form of more input
images. It is furthermore fully automatic and does
not depend on any parameters to be set by the user.
We have shown that the resulting implementation is
fast and applicable to real-world settings.

There is, however, still some room for further im-
provement: The currently used objective function
based on the SSD of intensity values with photo-
metric normalization works well for moderate light-
ing changes but is known to have problems with
stronger changes like specular reflections. A pos-
sible direction for future work is the integration of
a voting-based approach which computes planes in
space for subsets of images and then removes im-
ages with specular reflections by detecting outlying
planes.

The second main area of future work is the ex-
tension of our prototype system to a full-scale au-
tomatic reconstruction method. The main problems
here are to find image regions suitable for the plane
reconstruction process (i.e., regions belonging to
approximately planar parts of the scene) and to find
a set of comparison cameras all having an unoc-
cluded view on the reconstructed plane. A ground
truth evaluation of our Dino reconstruction is also
part of the future work.
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Figure 4: Approximation of the front side of a Chinese statue using 57 planar polygons. The upper row
shows the five small-baseline input images used during the matching process. The lower row shows the
set of reconstructed planes (left), the same planes rendered together with the ground truth geometry of the
statue (center) and the ground truth geometry alone for reference (right).

Figure 5: Reconstruction from 15 images of the DinoRing dataset which is part of the Middlebury Multi-
View Stereo Evaluation [13]. Left: first, middle and last input image. Center: coarse reconstruction using
1100 disc-shaped planes. The discs have been reduced to 60% of their original radius for rendering. Right:
fine reconstruction using 14k discs which have been reduced to 20% of their original size.



