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Abstract

While the continuous Fourier transform is a well-established standard tool for
the analysis of subdivision schemes, we present a new technique based on the discrete
Fourier transform instead. We first prove a very general convergence criterion for
arbitrary interpolatory schemes, i.e., for non-stationary, globally supported or even
non-linear schemes. Then we use the discrete Fourier transform as an algebraic tool
to transform subdivision schemes into a form suitable for the analysis. This allows
us to formulate simple and numerically stable sufficient criteria for the convergence
of subdivision schemes of very general type. We analyze some example schemes to
illustrate the resulting easy-to-apply criteria which merely require to numerically
estimate the maximum of a smooth function on a compact interval.

1 Introduction

Univariate subdivision schemes are usually defined as the iterative application of an oper-

ator which maps a given polygon P,, = [p"] to a refined polygon P,,.; = [p""']. Such an

operator is given by two rules for computing the new vertices p5™ and pg’,’ﬂ depending
on the parity of their index. In the important special case of interpolatory refinement (cf.

Fig. 1), the first rule reduces to the interpolation condition p’;}“ = p".

Figure 1: Interpolatory refinement

If the new vertices are chosen appropriately in every refinement step, then the sequence
of polygons [P,,] may converge to a smooth limit curve P.,. One is mainly interested in



techniques for constructing and analyzing specific refinement schemes which produce limit
curves of a certain smoothness. Although (analytic) differentiability does not necessarily
imply (geometric) smoothness, one usually measures the quality of P, by the quality
of its coordinate functions, i.e., by the number of continuous derivatives with respect to
a uniform parameterization. The additional requirement that the parameterization must
not become singular in the limit is neglected to simplify the analysis.

There are many approaches to the definition of rules which iteratively smooth the shape
of a given polygon. In [CDM91], [Dyn91] and [Ri0o92] the class of stationary subdivision
schemes is extensively investigated. These schemes are defined by a finite sequence of
coefficients [ay]. The new vertices p/"™' are computed by fixed linear combinations:

p;ﬂH = Z Q9 p?- (1)
keZ

The most famous representatives of this class are the subdivision algorithm for B-Splines
[LR80] and the interpolatory Lagrange schemes [DD89).

A more general approach allows the linear combinations to vary in every refinement
step, i.e., to use coefficients «}". These schemes are called non-stationary [DL94]. Fur-
ther, one can vary the weights with the index i, i.e., o}, which leads to non-uniform
schemes [Qu92|, [War95].

A fairly general class of (potentially) globally supported schemes are the implicit refine-
ment schemes. These are interpolatory schemes where the new vertices of the refined
polygon P, are implicitly given by

Vi:  pyptt = p”  and > Bephil =0 (2)
ke

with an arbitrary (but usually symmetric) finite sequence of coefficients [3]. Such schemes
naturally arise in the context of variational refinement schemes which determine the new
vertices pg:ﬂ in the refined polygon P,,, ,; by minimizing some quadratic energy functional
while holding the even indexed vertices fixed [Kob96]. Notice that for o, = 00, the
scheme (2) is stationary.

In the context of signal processing, subdivision schemes arise as one component of a multi-
resolution analysis [Dau92], [HV93]. The discrete multi-resolution set-up provides a set
of filters for analyzing and reconstructing a given real-valued sequence. Here, analyzing
means to split the given sequence into several frequency bands and reconstruction means
the recombination of those bands. A subdivision scheme corresponds to the application
of the reconstruction filter to a decomposition where all but the lowest band vanish iden-
tically (i.e., have zero energy).

To simplify the notation for processing finite sequences [py, .. ., p,_1], one usually extends
them to a bi-infinite sequence [p;] with i € Z by adding infinitely many zero-elements on
both sides. This construction topologically corresponds to open polygons and naturally
leads to the application of the continuous Fourier-transform as a major tool for the analy-
sis. Alternatively, we can as well assume [py, ..., p,_1] to be a closed polygon and extend
the input sequence by periodicity, i.e., by p;1+, = p;. In the periodic setting, the discrete
Fourier-transform turns out to be more appropriate for the analysis.



However, in most of the literature the continuous Fourier transform is applied which
allows the convergence analysis of subdivision schemes like (1) along the following lines
(cf. [Dau92]). The vertices of the polygons P,, are indexed by Z and, by associating the
vertex p;* with the parameter value ¢]" =727, one defines a sequence of functions

Por) = Y plf ®@2"s ) )
ie i

on the real line, with the basis function ® usually not known explicitly. If the subdivision
scheme (1) is convergent then the smoothness of its limit curves can be determined by
analyzing the basis function ® as the unique solution of the refinement equation

P(z) = > a; ®(2z 1),
ick

The Fourier transform yields

with
1 o
ofy) = 5 X op e (4)
ic.
and the recursive expansion
b(y) = &(0) [T a(y2").
k=1

The rate of decay of ®(y) for |y| — oo is a sufficient condition for the (Holder-) dif-
ferentiability of ® and therefore for the smoothness of the curves generated by the sub-
division scheme. There are several ways to estimate this decay from certain properties
of a(y) [Dau92]. Notice that the scaling factor of 27% in the infinite product means that
the trigonometric polynomial a(y2*) is more and more stretched out. In fact, ® is no
longer periodic.

In contrast to this classic technique, we propose to do the convergence analysis not by
considering the functions in the Fourier-domain over the whole real line but by restricting
the spectrum to a finite interval and use the discrete Fourier transform. However, we will
not use it as a specialization of the above technique to periodic and discrete distribu-
tions P,, but we consider this transformation merely as a basis transformation of the
vector P, into a basis which consists of the special eigenvectors common to all circulant
matrices. Thus the only fact we are exploiting is the algebraic property that the discrete
Fourier transform maps convolution operators to diagonal operators.

Staying within the functional set-up, our application of the discrete Fourier transform
would correspond to the use of periodic functions



n2™—1

Pm(x) = Z p;" Am(x_i)

1=0

with

Ap(z) == > 0z —kn2™),
ke

i.e., the vertex p;" is associated with the parameter value " = ¢ modn 2. This stretching
in the time domain (compared to (3)) causes a shrinking of the corresponding discrete
spectrum which therefore remains periodic:

b - (nimz_%l p;ﬂe%jyi> (ZZ(g(yk/nQ’")).

Hence, the analysis in the frequency domain can be restricted to sampling equidistant
points on the unit interval instead of estimating the asymptotic decay.

This paper is organized as follows: In Section 3, we give an elementary proof (without
using any Fourier-technique) for a very general convergence theorem (Theorem 5) which
applies to arbitrary interpolatory schemes. Although this theorem makes a statement
about the differentiability of the limit curves P, with respect to a specific parameteri-
zation, the sufficient condition can be considered without explicitly referring to this pa-
rameterization, i.e., the theorem can be understood as a plain numerical criterion which
guarantees smoothness in some (not further specified) sense. Hence, for the analysis we
do not have to interpret the vertices p]” to be function values of the function P,, but
we can consider the p" as components of the vector P,,. In this context, the pseudo-
parameterization ¢ = tmod n 2™ does make sense and motivates the use of the discrete
Fourier-transform for the manipulation of the vector P,, in the later sections.

We will apply Theorem 5 mainly to implicit refinement schemes (cf. Section 4) but since
the Theorem 5 is known to hold for non-interpolatory stationary schemes as well [Dyn91],
these schemes can be analyzed, too (cf. Section 6).

In Section 5 the main results of this paper (Theorem 7) are derived by combining the
general convergence Theorem 5 with the discrete Fourier transform as an algebraic tool
to rewrite the subdivision operation in a convenient form. In Section 7 several interesting
examples for the application of this approach are given.

2 The discrete Fourier-transform

The fundamental tool which is used in this paper is the DFT. Since there are multiple
ways of defining this transformation, we briefly collect the most important facts needed
here.



Let w, = e 279/ he an nth root ~of unity. Then the DFT of a n-dimensional vector
P = [po,...,Pn 1] is defined to be P := [py, ..., Pn_1] With

n—1

-~ . ik

pZ L an pk'
k=0

The vector P can be considered as the discrete frequency spectrum of P. Therefore we call
the space where P lives the space or time domain and P lives in the frequency domain.
The inverse transformation is

1 n—1
_ —ik A
" k=0

as can be verified easily. The latter equation yields a simple estimate for the maximum
component of P

1 -
[Pl < 1P| )

One of the central results concerning the DFT is called the convolution theorem. Given
a finite convolution operator A = circ|ay, ..., a, 1]” and a vector P = [py, ..., pn_1] the
Fourier transform of Q = AP has the components

n—1 n—1 n—1 n—1
S Kl il k—i)l A
qQ = an Zakﬂ‘pi = anpz' Zwr(, ) Qi = Py,
k=0 i=0 i=0 k=0

where the index of ay, is taken modulo n. Thus, the convolution operator A in the space
domain corresponds to the diagonal operator A = diag|dq, ..., &, 1] in the frequency
domain’.

The difference operator A is used for discrete approximations of differentiation. With

bk
Afp; = > (l) (=) piy,

=0

we define the cyclic difference polygon A*P = [AFp,]?-,) having forward difference vectors
as its components. The corresponding difference spectrum in the frequency domain is

T i Vs 1 (6)

i=0 "

A more detailed description of the DFT can be found in, e.g., [BBN87], [0S89].

!Notice that the transpose operation in the definition of 4 causes a “reversing” of the coefficients
ai,...,a,_1 in each row of the circulant matrix.



3 Convergence criteria for sequences of polygons

Let [P,,] be a sequence of open polygons generated by the iterative application of an
arbitrary interpolatory refinement scheme to the given polygon Py = [p{,...,pl]. We
prove sufficient conditions for this sequence to have a well defined limit curve P, which
is k-times continuously differentiable with respect to a uniform parameterization. These
criteria will not use any specific properties of the refinement scheme other than the in-
terpolation property p’;}“ = p;". Consequently they apply to global, non-stationary and

even to non-linear schemes.

Since we are only dealing with sequences of polygons and are not analyzing specific refine-
ment operators, we can consider closed polygons as a special case of finite open polygons
with periodic behavior. This can be done due to the fact that differentiability is a local
property. By a similar argument the results of this section can be generalized to work for
infinite polygons as well. Hence, throughout this section, we consider refinement operators
which map R"™*? to R*"™"*? with d the dimension of the space where the polygon’s
vertices lie.

To make the concept of differentiability meaningful for the limit of a sequence of polygons,
we have to choose a parameterization for this curve. In order to assign the same parameter
value t to identical vertices plsi" in different polygons P,,,,, we choose the equidistant
nodes

o= g2,

Thus, each polygon P,, should be considered as a piecewise linear function P,,(x) with
P, (i27™) =pl".

If P,, = [P, ...,p™n] is finite and open, then A*P,, consists of only (n2™ + 1 —
k) components. Since some arguments we apply during the proofs require all difference
polygons to be defined over the same compact parameter interval, we chose a uniform
parameterization with step-width

n

hpp = ——— 7
& O (7)

for the difference polygons. The polygon AFP,, then corresponds to a piecewise linear
function for which AP, (i by, ) = AFp™ and the A*P,, live over the same parameter
interval [0, n] for all £ and m.

The first lemma yields a useful characterization of difference polygons for sequences [P,,]

which satisfy the interpolation condition pjt" = pI". Since we consider the iterative
refinement of finite open polygons starting with Py = [p),...,p%], we obtain P,, =
[P ..., Plym| after m refinement steps.

Lemma 1 Let [P,,] be a sequence of polygons. The scheme by which they are generated
15 an interpolatory refinement scheme if and only if, for all m,k € IN, the condition

k
k
Nt =3 <1>NPZZ¢}, i=0,...,n2" —k

=0



holds.

Proof The sufficient part of the proof is trivial since setting & = 0 reproduces the
definition of interpolatory refinement schemes. The necessary part is also obvious for
k = 0. The general statement is proved by induction. If the statement holds for some
value k, then

AR = Akpm— Akpm

k
k k 1 k 1 k 1 k 1
= 3 (5) @t ot st 2t
=0

k
k m m
= Z (l) (Ak+1p2z’i}+l + AkaQiﬂ)

The next lemma relates successive difference polygons in the sequence [A*P,,].

Lemma 2 Let [P,,] be a sequence of polygons generated by the iterative application of an
interpolatory refinement scheme. Then there exists a constant o which only depends on k
such that

HAkPm — 2 AkPMHHOO < (7||Ak+1Per1||oo-

Proof The maximum distance is obviously obtained at some vertex. The polygons
AFP,, and AP, are parameterized with different step-widths but the distance be-
tween a vertex V' of one polygon and a point on some edge E of the other polygon can be
bounded by the maximum of the distances between the vertex V' and the two endpoints

of E.

For the parameter values of A*pJt' AkFp™ and Akpg}ﬂc, we have

Y : Y
in____in <(Z+k)n

, =0,....n2™ — k.
n2mtl — k= n2m —f — p2mtl [ ! SRR

Thus, it is sufficient to consider the distances between AFp™ and 2% Akpg}il for r =

0,...,k. Lemma 1 implies

k
2
|Akp — 28 ARpDE]] > (1) Arpot) — 2k Arpiit)

=0

< o [|AMTPy



since the binomial coefficients sum to 2*. 0

The next lemma reveals a correlation between the asymptotic behavior of different differ-
ence polygons.

Lemma 3 Let [P,,] be a sequence of polygons generated by the iterative application of an
interpolatory refinement scheme. If there exists a ¢ < 2% such that

oC
> g™ APyl < o,

m=0

then

S g™ APl < o

m=0
Proof From Lemma 2 it follows that there exists some o such that

HAkPMHOO < 27,9||Akme1||oo+U||Ak+1PM||oo

< 27| AFP,, sl + 270 | AP, 1 ]lee + 0 | AP0

S 27mk ||AkP0||oo +o Z 2(i7m)k ||Ak+1Pz||oo

=1

Setting r := ¢2% < 1 we obtain for every N € N

N N N m
D llg" APl < Y AP+ 0 Y0 D™ gt AP
m=0 m=0 m=1 i=1
1 . N N-1 .
< —— AP+ X (S ) 0" AM P
L= m=1 " i=0
1 k Al k+1
< E(HA POHOO_'_Unngq A PMHOO)a
Now taking N — oc yields
- m 1 - m
S g™ APyl < —— (IAPoll+0 3 g™ A Pl) <00 g
m=0 m=1

The next lemma justifies the use of the difference operator A as a discrete approximation
to the differential operator.



Lemma 4 Let [P,,] be a sequence of polygons generated by the iterative application of an
interpolatory refinement scheme. Then

k
g=1f = lim 2""AFP,, = f € O°.

Proof For the implication from left to right, we use the fact that all intermediate vertices
p/ already lie on the limit curve P, ie., P(i2™™) = ¢g(i2™™) = p". Due to the
special parameterization of the difference polygons A*P,, with step-width (7) we have
NP (R i) = AFg(i27™) with i27™ < i hpyp < (1 + k) 27™ and the statement follows
from the application of the difference operator to the Taylor expansion of ¢ and letting
k2~™ tend to zero.

More precisely, since the AF-operator kills all polynomials up to the degree of k — 1, the
existence of a Taylor-expansion for g at x = 72~ implies that for some & € [i27™, (i +

1) 2]

k ( 1)k+l lk
2" NFP (i b ) = ( )T g™ (&)
1=0 ! -

where the weight coefficients sum to unity and thus

k

12K ARP L (i B i) — (i P i) < > < ) (&) = fi b))l

=0

Due to the uniform continuity of f which is a continuous function on the compact interval
[0, n], the right-hand side of this inequation can be made smaller than any ¢ by choosing
m independently of i. Further, if m is such that even |f(z) — f(y)| < € for |z —y| < hpy
then

max | 2" AFP,, (1) — f(7)] < 2e.

z €[0,n]

The opposite implication is shown by induction over k. The case k = 0 is trivial. Let
[2F+D)mAK+IP T he a converging sequence with continuous limit f which is bounded
on the compact interval [0, n]. Then the sequence |28 AFHIP, ||, converges like O(2™)
and, by Lemma 2, the polygons 2*™ A*P,, form a Cauchy sequence of continuous functions
with continuous limit g.

Let Q,, : [0,n] — R be piecewise constant functions over the intervals (i by, g, (i +1) ]
with function values

2k
Q,,(i b)) = — AFpm i=1,...,n2™ —k.
'm,k

The maximum distance between Q, and 2¢+UmAIP g



1
‘h_k o Qm‘ || ka Ak+1Pm ||OO + || 2(k+])mAk+2Pm ||OO

k
= —0@27") + [ 28V mAREP,, |,
n

||Qm o 2(k+])mAk+]Pm||oo

IN

and therefore the sequence Q,, also uniformly converges to the limit f since
2(kt1)m AR+2P - uniformly converges to zero due to the continuity of f. Now, uniform
convergence and integration are commutative limits, and thus

m—oo |

/Ow f(t)dt = lim /:Qm(t)dt

— lim (kaAkPm(m) — gkm A’“pﬁ")

m—r 00

= g(x) — 9(0),

i.e., g is continuously differentiable with % g = f. It is exactly this conclusion that makes
it necessary to require convergence to happen with respect to the || - ||oc norm.

We assumed that from 28" AFP,, — g € O it follows that P,, converges to some g € C*
with ¢®) = g and showed actually g € C*' since g1 = L g — f € C° which concludes
the induction. 0

Now we have the tool-kit ready to prove the following sufficient convergence criterion.

Theorem 5 Let [P, be a sequence of polygons generated by the iterative application of
an interpolatory refinement scheme. If

S22 AP, 0o < 00 (8)

m=0

for some | € N, then the sequence [P,,| uniformly converges to a k-times continuously
differentiable limit curve.

Proof For [ > 1, we apply Lemma 3 (I — 1)-times to obtain the same statement about
the rate of contraction for the scalar sequence [28™[|A*1P_ ||],n. By Lemma 2, these
values bound the maximum distances between successive difference polygons 2*™AFP,,.
Thus the sequence [2*™AFP, ], is a Cauchy-sequence and, since every element of this
sequence is a continuous function, it is well known that it converges to a continuous limit
curve. Finally, Lemma 4 concludes the proof. 0

Applying this theorem allows to reduce the convergence analysis of interpolatory refine-
ment schemes to the analysis of the rate of contraction of some arbitrarily high forward

10



differences. This sufficient condition can be tested without explicitly referring to the spe-
cial equidistant parameterization with step-width h,,j, i.e., we just have to prove the
convergence of the scalar series (8) without caring about how the P,, were generated.
The theorem then guarantees that there exists a regular reparameterization (based on the
hp i) such that the coordinate functions of the limit curve P, are C* on some compact
interval.

Theorem 5 somewhat generalizes the well-known convergence criteria of [Dyn91] in the
case of interpolatory subdivision schemes. The sufficient conditions in [Dyn91] require the
existence of a constant factor p < 1 by which the maximum (k + 1)th forward difference
has to decrease after a fixed number of subdivision steps. This however would imply that
(8) can be bounded by a convergent geometric series. Hence, Theorem 5 is more general
since it allows any kind of converging series and does not require exponential convergence
(which, however, is the only kind of convergence linear operators are able to produce).
Nevertheless, the more important generalization is that Theorem 5 does not require the
subdivision scheme to be stationary, compactly supported or even linear.

We can state a very similar convergence criterion in the frequency domain if we look at
the discrete difference spectra A*'P,, (cf. (6)) instead of the original difference polygons
AFHP, . Notice that the application of the DFT implies a periodic structure of the vector
components. Thus, while Theorem 5 holds for open and closed polygons as well, the next
corollary is only suitable for the refinement of closed polygons.

Corollary 6 Let [P,,] be a sequence of closed polygons generated by the iterative appli-
cation of an interpolatory refinement scheme. If the difference spectra satisfy

Z ||2(k71)mAk+l13m||] < 00

m=0

for some | € IN, then the original sequence [P,,| converges to a k-times continuously
differentiable limit curve.

Proof Use the inequality (5) and notice that the number of vertices in the polygons
AFP,, increases like O(2™) as m tends to oo. O

It is important to notice that corollary 6 allows to check the convergence of a subdivision
scheme by estimating the || - ||;-norm (i.e., the average function value) of the difference
spectrum. This will turn out to lead to sharper convergence criteria than those based on
testing the || - ||oo-norm.

4 Implicit refinement schemes

According to (2) an implicit refinement scheme defines the new vertices ph.f| of the refined
polygon P41 by

S Bepnily =0, Vi (9)
ke

11



under the condition that p5i™" = p™. The coefficients (3 build a finite sequence which
in most practical cases can be assumed symmetric, i.e., 8 = _. The implicit definition
(9) is in contrast to common approaches where the new vertices are computed by ezplicit

rules (cf. (1)).

By separating the unknown p%/f| from the known pj*' = p

™ in (9) we obtain a linear

system
B [psinli = C[p5"'; (10)

which has to be solved for the pg:ﬂ Both, B and C are banded convolution operators.
Applying the z-transform to the system, yields the polynomial identity

<zk:ﬁ% ZQk) <§k:p3;++]] 22k+]> = (zk:ﬂ?k] 5~ (2k=1) > <me 2k>

or equivalently

—(2k—1)
Z pm+1 _ (1 - Zkzﬁikﬁ;kzzgk > Z pm 2k
Z (_l)kﬁ Zik m
— ( kaﬁQk Zf% zk: p 22 (11)

—. me Qk

Hence, the implicit refinement schemes correspond to discrete filters with a special form
of rational transfer function H(z) which due to the construction guarantees cardinal
interpolation (half-band property). For [y, = 0y, the transfer function is polynomial
and the filter has a finite impulse response (FIR).

In [Kob96] interpolatory refinement schemes are derived from a variational set-up, i.e.,
a quadratic energy functional is defined and the new vertices pg’:ﬂ are chosen such that
P,,+1 minimizes this functional. The resulting refinement schemes are implicit schemes
with (9) playing the role of the discrete Euler-Lagrange equation of the optimization
problem.

The use of the particular energy functionals F(P,, 1) := [|A" P,,41]2 leads to an Euler-
Lagrange equation of the form

A"potl =0, Vi (12)

Hence, the coefficients 3 in this case are the binomial coefficients 3, = (—1)* (Tirk) and
the corresponding transfer function takes the simple form

2(z+1)*
(z+ 1) +(z - 1%

H(z) = (13)

with the frequency spectrum

12



2 cos(¥)?"
H(jw)| = 2 :
() cos(%)? + sin (%)%

Thus, the special implicit refinement schemes given by (12) are exactly the 2r-th order
Butterworth half-band filters [OS89], [HV93] whose transfer function is maximally flat
in the sense that a maximum number of derivatives vanishes at w = 0. The connection
between the implicit refinement schemes (12) and the Butterworth filters has been pointed
out to me by A. Cohen and an unknown referee.

5 Analysis of interpolatory refinement schemes

In this section, we will use the discrete Fourier transform to reformulate the action of
refinement, operators in order to derive simple convergence criteria. The use of the dis-
crete Fourier transform requires that the transformed sequences be periodic. Therefore
we focus on the refinement of closed polygons in this section. Since we want to apply
Theorem 5, we restrict ourselves to interpolatory schemes, more precisely we assume the
refinement operator to belong to the class of implicit refinement schemes. The case of
non-interpolatory stationary schemes is investigated in Section 6.

To understand the action of a refinement operator in the discrete frequency domain, we
look at the interpolatory refinement in detail. Starting with the given polygon P, =

Py, ..., pPr ] and its Fourier transform P, = Py, . ... pr 4], we first define the vector
P, = [py,0,...,p™ ,0] which coincides with P,,,; in the even components due to the
interpolation property p5*! = p/. In the frequency domain the corresponding spectrum
is

~/
_ Am Am A Am
:Pnl'_ [pﬂa"'apn717p07"'7pn71'

The odd components of the refined polygon P,,,; are computed from P,, by applying a
circulant matrix A which can be factorized into A = B~' C with both B and C having a
bounded bandwidth (cf. the solution of (10)). The vector P, := P,,,; — P, is obtained

m
from AP, by the insertion of zeros for the even components. Its Fourier transform is

2n—1

~ 11 .

I)nl = [aénllipi)]izo
where pyg, ..., i, are the diagonal elements of A and the index i of w; and p;* has to be
taken modulo n. Finally, the Fourier transform of P,y =P;, ., + P} is

2n—1

Po = [(+wh,m)pl ]| = [Npl]

2n—1

i=0

Due to the factorization A = B~ C with banded circulant matrices B and C, there exists
a (trigonometric rational) transfer function A : R — C (cf. H(jw) in Section 4) which
does not depend on n and for which

13



A = A(%) = 1+u(2%) and Az +1) = Ma).

Since the refinement scheme is assumed to be interpolatory having only real-valued co-
efficients which are symmetric (asymmetric schemes in a uniform setting make no sense
from the geometric point of view), we further find from the special structure of H(z) in
(11) that p is real-valued with several symmetries

pla) = —ulz — ) = —p(s +2) = p(1 - 2)

2
and p(3) = 0 (half-band property). The affine invariance of the refinement scheme is

equivalent to constant precision and thus can be guaranteed by u(0) = 1. We call a
refinement scheme satisfying all these assumptions geometrically meaningful.

Example Consider the minimally supported refinement scheme which reproduces the
piecewise linear interpolant through the initial vertices p. The new vertices are implicitly
given by the conditions

pitl —opmtl fprtl = 0, i=0,...,n2"—1

and the convolution operator by which the new vertices with odd index are computed is

A= circ[%, %, 0,...,0]. The corresponding transfer function is
2njx 1 1 —Anjz
AMz) = 1+e ]"<§+§e J") = 1+cos(2mx).

By applying a refinement scheme with transfer function A(x) iteratively to the given

polygon P,, = [py’, ..., P ;] we obtain in the frequency domain
N r 7 n2"—1
Py = A M} 14
wo= |G er ] (14)

s=1

where the index 7 of pJ" again is taken modulo n. Considering the difference polygon
NFP,,, it follows from (6) that

~ r 7’I:S _ l)k Z ) nor_1
APmir = { =t A S m} - 15
" ql;ll (W;;s—1 - 1)k (n 25) (wn ) P im0 ( )

Thus, the derived transfer function A¢y(x) which maps AP, directly to A’“f’mH can
be written as

(ej27rm o l)k
(ej47rm _ ]_)k

A(x)

Ay () = — .
(k)(T) (6]27r,'r,_|_1)k

AMz) =

14



This derived function has a singularity at x = % if A has a zero of order less than k. Hence,
it does not make sense to consider difference spectra of higher order than the root of A at
T = % The modulus of the possibly complex valued function Ay)(z) is

A@)]

_ 16
2k | cos(m x) |k (16)

Ay (z)] =
Now, using the convergence criterion of Corollary 6, we are able to prove the following

Theorem 7 Let A(x) be the transfer function of an interpolatory refinement scheme, with
a root of order (k+1) at % for somel € IN. Then the scheme produces k-times continuously
differentiable limit curves if, for some r € N and q¢ < 27,

1 2=l & v+ h
— A < q".
max o hgo l;[1 (k-l—l)( > < q
Proof Let AFHP,, = [(w,? —1)*pm |7 Then
k4D " T ‘ k+1
+ _ : +Hp
||A Pm+7”||1 - ; 51;[1 ‘)\(]H’l)(an)‘ ‘(w” 1) ‘
< |A*'P,] max Z 1T Aws (=5
€l0,n—1]
h=0 s=1
kI r+h
< APl max S Adesny (T5)
h=0 s=1
where we exploit the periodicity of the (w,* — 1)k p™. From the assumed condition it

follows
|AB,, [ = O((20)™).

and this, by Corollary 6, is sufficient for the convergence to a C* function since 2¢ < 2'~*.
O

In this theorem, the parameter r counts how many refinement steps are combined for the
estimation of the rate of convergence. Due to the averaging behavior (% > -+ of the es-
timated term in the sufficient condition, the evaluation can be performed in a numerically
stable way which is not the case for methods based on the continuous Fourier transform
where the supremum of functions of the form [, |A4y(22°)| has to be estimated (cf.
Fig. 2). Since, from the symmetry of u(z), it follows that Ay () = Apsn(1 — 2), it

suffices to estimate the maximum for z € [0, 5].
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Figure 2: Examples for the typical oscillations of functions of the form [T [Agis (2 2°)]
(left) and 5= > T, [Aerny(( + h) 27%)| (right). Here r = 4 for the transfer function of
the example in Section 7.2.

If we set » = 1 in Theorem 7, we get a weaker but more intuitive sufficient condition
for the convergence. Suppose p is (piecewise) continuous and |u(x)| < 1. This is satisfied
if the refinement matrix A has no negative eigenvalues. Together with the symmetry of
A, this means that the refinement operator has the linear phase property [Rio92]. Then,
A(z) > 0 and the sufficient condition from Theorem 7 is equivalent to

sin(m ) 4 cos(m 2 )4 () (sin(r 2 cos(m 2)FH)
2 2 2 2 2 1 -
sin(7 x)**! 2k—17

for z € [0,3] as follows from the symmetry of p and (16). For x = 1, this is satisfied

iff | > k+ 1, i.e., one has to analyze at least the behavior of the (2k + 1)-th difference
polygons if one wants to prove P, € C* by using Theorem 7 with r = 1.

For z — 0 one obtains

Y
vt 2F+ sin(nr E)’“H cos(m g)k”
— im 1+ (%) n 1—pu(3)
204 26 \ cos(m 2)FH T gin(r Z)kH

Let p(x) be sufficiently differentiable in some interval [0, e]. Then, by the symmetry of u
and since A(z) has a root of order (k + 1) at z = 3, we have p(0) =1 and 4/(0) = --- =

,u(k“*])((]) = 0. Hence, one can apply de I’'Hopital’s rule to the second term:

I LowE L . — (kD) (k) ()

8 Sin(r 3)E BB G DT EH cos(n D77 + Ofsin(r 2))
—p**0(0)
EDE
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Thus the condition (17) is surely satisfied for x — 0 if A(z) even has a root of order
(k+1+1)at x =L For 0 < z < i, the expressions in (17) have no singularities and
therefore we obtain the following

Corollary 8 Let A\(xz) = 1+ p(z) be the transfer function of a geometrically meaningful
interpolatory refinement scheme with a root of order (k+1+1) at x = % for somel > k+1.
Then the scheme produces C*-curves if for all x € (0, )

2k sin(2 7 ) — sin(w ) — cos(m x)FH

< p(z) < 1

sin(r 2)* — cos(m x)*F !

We call the area where the graph of p(x) is restricted to lie, the C*-corridor (cf. Fig. 3).
Corollary 8 can be used in two directions. Given a particular refinement scheme, we can
compute the corresponding transfer function A(z) = 1 + u(x) and test whether p(z) lies
within some C*-corridor (analysis). On the other hand, we can construct new schemes in
a simple and systematic way by choosing a transfer function from some C*-corridor and
then derive the corresponding refinement scheme.

6 Analysis of stationary schemes

Since Theorem 5 is known to hold for non-interpolatory stationary schemes as well
[Dyn91], we can apply Theorem 7 to this class. In this case the transfer function A (which

has to be evaluated at the points x = ﬁ if a polygon P = [pg,...,Pn_1] is to be subdi-

vided) is the sum of two trigonometric polynomials py and gy, i.e.,
AMz) = po(z) +m(z) = Z o e 2T
i

with

por) = X ane T and p(e) = e TS agge T
i .

7

where the coefficients «; constitute the subdivision mask of (1). Comparing this to the
continuous Fourier method explained in the introduction, we see that

AMz) = 2a272)

and

2

. ol—k—l
(@ 5 D al2mx) = 2 L(2Tx).

A4y (T) =

A well-known sufficient criterion for the differentiability of the limit curve of convergent
subdivision schemes is [Dau92, Lemma 7.1.2]
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Figure 3: C*-corridors (grey) for k = 0,1,2,3 with / = k + 1 and examples for typical
functions u(x) corresponding to refinement schemes that generate C* limit curves.

T

sup HE(QSy)‘ < 2t —  pect (18)

yelR

s=1

If this condition is satisfied, it follows

1 2" —1 T .Z“"h 1 27 —1
max . )\ < — 2T(]7k7l)+7"(l7]) — 277"]€7
which proves that the convergence criterion 7 for the same r is more general. The improve-
ment stems from the discrete Fourier transform which allows the use of the || - ||;-norm
instead of the || - ||oo-norm as motivated by (5). This yields a much sharper estimate

since the average function value of the transfer function is usually much smaller than
its maximum. In Section 7.3, numerical results are given which allow to compare both
criteria.
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7 Some Applications

To demonstrate the use of the discrete Fourier approach, we give some examples of how the
discrete formalism can be applied to the analysis and construction of refinement schemes.

7.1 Implicit refinement schemes

Consider a particular subset of the implicit refinement schemes (2):

1
P+ A5+ p5h) (5o 8) 05 PR + o (i 5t = 0

with —1 < a4+ 8 < 0. The restrictions on the coefficients a and § are introduced in
order to guarantee symmetry, solvability and affine invariance of the scheme [Kob95]. The
transfer function

20 cos(2mx) +2a cos(6T )
(1+2a+20) cos(dnz)—1

AMz) =

can easily be read off from the coefficients of the implicit scheme without further com-
putations (cf. (11)). This becomes obvious if one looks at the Fourier transform of the
matrix A = B~'C by which the new vertices are computed from the old.

If we want use Corollary 8 to determine which values a and 3 do represent refinement
schemes that generate at least C' limit curves, then the corresponding transfer function
A(x) = 1+ p(x) has to have a root of order 4 at 2 = 1. Comparing the coefficients of the
Taylor expansion of A\(z) shows that this is achieved if

38 = Ha—2.

Hence, we have a family of implicit refinement schemes

16a—1
6

mil S — 2

1 1 1 1 1 1
Poit1 3 (Pt + pg}i?) - (phi ) + Pg}is') + a(pyfy + pg}izt) =0

with one free parameter o and the corresponding transfer function

Mz) = 1+ (10cv — 4) cos(2mx) + 6 cos(67rm). (19)
(16— 1) cos(dmz) — 3

Using Corollary 8 it is easy to prove numerically that the limit curve is C! if o = —2]—0

or a = 1. Since p(z) is monotonic with respect to «, it follows that the limit curve is C'

for all o € [—%, %] Moreover, it is possible to verify, by applying Theorem 7, that the
limit is C? for o € [~ 55,0] and C? at least for a € [~ 55, ~0.0373]. In the case o = — o,
the transfer function has a root of order 6 and we even get C*-curves. Notice that o = 1]—6

reproduces the 4-point scheme of [DGLS87].

To prove these higher regularities, one has to combine several refinement steps. Best results
in the convergence analysis by Theorem 7 are achieved if [ is taken to its maximum, i.e.,

(k+1)=4fora# —5 and (k+1) =6 for a = — -

20 20°
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7.2 Variational Schemes

As explained in Section 4, the implicit refinement schemes can be considered as discrete
Euler-Lagrange equations characterizing the solution of some optimization problem.

Let us consider a particular quadratic energy functional which measures the strain of a
polygon Pr,.q by

E(Pm+1) = ||A3Pm+] ||2 = Z ||A3p;‘ﬂ+]||§-

The vertices with even index are fixed due to the interpolation condition while the vertices
with odd index are the free variables of the optimization problem. The discrete Euler-
Lagrange-equation for this problem is?

APpiitt =, i=0,...,n—1.
Hence, the new vertices of the refined polygon are the solution of
circ[20,6,0,...,0,6] [py{i]i, = cire[15,15,1,0,...,0,1] [p]"] -

The diagonal elements of the Fourier transformed convolution matrices B and C (cf. (10))
are

271 ‘ . 4
Wi = 20412 cos(ﬂ) and v; = 15+15w;’+w;22+w;
n

respectively. The resulting transfer function A(z) corresponding to the convolution matrix
A = B7'C is the trigonometric rational polynomial

v 15 cos(2X%) + cos(8E1)

7 n

i
ML) = 1+ = 1+ |
(Qn) “an i 10 + 6 cos(4E)

The derived transfer function A (z) takes the simple form

1 N 15 cos(2mx) + cos(6 7 x)
64 cos(m z)8 10+ 6 cos(47x)

Aoy (2)] =

1
20 + 12 cos(4 7 x)

and since
1 1 1
[Aw ()] < ‘/\(6)(1)‘ =3 <7
2Compare this to the non-discrete case, where f(G)(m) = 0 is the Euler-Lagrange-equation for the

minimization of [[f®)(z)]? dz.
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it follows immediately from Theorem 7 with r = 1 that P, € C2. Collecting two refine-

ment steps, it can be shown that P, € C? and, for r = 11, we even obtain P, € C*.

Notice that this particular refinement scheme belongs to the class of schemes presented
1

in the last subsection with o = —55-

More generally, if we minimize
EPu1) = [[A"Ppyi |2 = Z ||Arp;n+1||g’
i

we obtain the corresponding Euler-Lagrange equation
Awpgg—tifrzoa 7::0,...,’[1—1_

Applying the z-transform as in (13) and writing the resulting transfer function as a rational
polynomial H(z) = H(e ?™7%), we get

H) 21

Ap(T)] = —FF% =
‘ 2 (T)| (Z + 1)27" 608(271'.’1?)% + Sin(27r.?7)2r

and since
M) < ()] = 2 <2t

we immediately see that the variational scheme minimizing || A" P11 ||2 generates at
least C"~! limit curves. In [Kob96] it is shown that the combination of two refinement
steps yields a sharper bound: The iterative minimization of || A" P, [|2 generates at
least C" limit curves (and higher continuity is to be expected if more refinement steps are
combined).

7.3 Stationary subdivision

In the case of stationary subdivision schemes, the continuous and the discrete Fourier
methods can be compared by looking at the number r of steps that have to be combined
in order to prove a certain differentiability of the limit curves. We applied both criteria,
Theorem 7 and (18), to the Lagrange schemes [DD89] of order £ = 2, 3, 4. The results are
given in Table 1. The differentiability of the limit curves has to be strictly less than the
indicated upper bounds.

7.4 (C°°-Interpolants

The last example shows how to construct a refinement scheme which produces interpo-
lating C'*°-curves. Looking at the transfer function
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diff'ty | diff'ty
order k| steps r (cont.) | (discr.)
2 1 1.415 2.0
2 2 1.651 2.0
2 8 1.667 2.0
3 1 1.678 2.541
3 2 2.212 2.746
3 8 2.247 2.804
4 1 1.871 2.83
4 2 2.729 3.39
4 8 2.785 3.493
4 15 3.072 3.52
4 20 3.2 3.928

Table 1: Upper bounds for the differentiability of the Lagrange interpolatory subdivision
schemes. In the third column are the results from the classical continuous Fourier method
and the fourth column contains the results obtain by applying the discrete Fourier tech-

nique. The improvement stems from the use of the || - ||;-norm instead of the || - || -norm.
103
Mel) = T4ple) = {1 o=l a=?
1 3
0 T <r<j3

it is easy to verify that the corresponding refinement scheme is geometrically meaningful
and produces C™®-curves since i, () passes through the C*-corridor for every k € IN.

In fact, since Ay (z) vanishes for i <z < %, no higher frequencies are introduced through
the subdivision operator. Hence, this refinement scheme actually computes the minimally
band limited interpolant through the given vertices Py = [p)),...,p" ,] which is, assuming
a parameterization Py (i) = pY, uniquely defined by a linear combination of the integer
shifts of the cardinal basis function [GY83]

W) = Y sin(ﬂ(x—in))‘

7 7 (z —in)

This refinement scheme can be understood as the limit scheme of the class of Lagrange-
schemes (as k — o0). Although the scheme is global, its computational complexity is
not very high. The polygon P,, on the m-th refinement level can be obtained in the
following way: First compute the Fourier transform P, of the given polygon Pg. Then
apply the filter operation m times (cf. (14)) and transform P,, back into P,,. For this last
transformation, FF'T can be exploited effectively since the dimension of the vector f’m is
n2™m.
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Applying the filter in the frequency domain is also very easy since we just have to scale
the coefficients by a constant factor and insert zeros. Depending on whether the number
of vertices in the original polygon Py = (po, ..., Pn_1) is even or odd, P, takes the form

f)m = (QmpOa"mep%f]anilﬁ%a 07"'70a2m71f)%12mf)%+]7'"anf)nf])-

——
(2m—1)n—1
or
P, = (2", 2" Pus, 0, 0,2 Pusr, ..., 2" Py 1)
——r
(2m—-1)n

respectively. Since the number of non-vanishing coefficients in the frequency spectrum P,
is constant, the limit curve will obviously be the band limited interpolant. Fig. 4 shows
an example for the application of this scheme.

10 10
8 8
6 6
4 4
2 2
0 2 4 6 8 0 2 4 6 8
10 10
8 8
6 6
4 4
2 2
0 2 4 6 8 0 2 4 6 8

Figure 4: Iterative application of the C'*°-scheme.
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