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Abstract

A simple interpolatory subdivision scheme for quadrilateral nets with arbitrary topology is presented

which generates C

1

surfaces in the limit. The scheme satis�es important requirements for practical appli-

cations in computer graphics and engineering. These requirements include the necessity to generate smooth

surfaces with local creases and cusps. The scheme can be applied to open nets in which case it generates

boundary curves that allow a C

0

-join of several subdivision patches. Due to the local support of the scheme,

adaptive re�nement strategies can be applied. We present a simple device to preserve the consistency of such

adaptively re�ned nets.

Keywords: Curve and surface modeling, Interpolatory subdivision, Adaptive mesh-re�nement

1 Introduction

The problem we address in this paper is the generation of smooth interpolating surfaces of arbitrary topological

type in the context of practical applications. Such applications range from the design of free-form surfaces and

scattered data interpolation to high quality rendering and mesh generation, e.g., in �nite element analysis. The

standard set-up for this problem is usually given in a form equivalent to the following:

A net N = (V; F ) representing the input is to be mapped to a re�ned net N

0

= (V

0

; F

0

) which is required to

be a su�ciently close approximation of a smooth surface. In this notation the sets V and V

0

contain the data

points p

i

;p

0

i

2 IR

3

of the input or output respectively. The sets F and F

0

represent the topological information

of the nets. The elements of F and F

0

are �nite sequences of points s

k

� V or s

0

k

� V

0

each of which enumerates

the corners of one not necessarily planar face of a net.

If all elements s

k

2 F have length four then N is called a quadrilateral net . To achieve interpolation of the given

data, V � V

0

is required. Due to the geometric background of the problem we assume N to be feasible, i.e., at

each point p

i

there exists a plane T

i

such that the projection of the faces meeting at p

i

onto T

i

is injective. A

net is closed if every edge is part of exactly two faces. In open nets, boundary edges occur which belong to one

face only.

There are two major `schools' for computing N

0

from a given N . The �rst or classic way of doing this is to

explicitely �nd a collection of local (piecewise polynomial) parametrizations (patches) corresponding to the faces

of N . If these patches smoothly join at common boundaries they form an overall smooth patch complex. The

net N

0

is then obtained by sampling each patch on a su�ciently �ne grid. The most important step in this

approach is to �nd smoothly joining patches which represent a surface of arbitrary topology. A lot of work has

been done in this �eld, e.g., [Pet90], [Loo94], [Pet95] : : :

Another way to generate N

0

is to de�ne a re�nement operator S which directly maps nets to nets without

constructing an explicit parametrization of a surface. Such an operator performs both, a topological re�nement
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of the net by splitting the faces and a geometric re�nement by determining the position of the new points in order

to reduce the angles between adjacent faces (smoothing). By iteratively applying S one produces a sequence

of nets N

i

with N

0

= N and N

i+1

= S N

i

. If S has certain properties then the sequence S

i

N converges to a

smooth limiting surface and we can set N

0

:= S

k

N for some su�ciently large k. Algorithms of this kind are

proposed in [CC78], [DS78], [Loo87], [DGL90], [DLL92], [HKD93] : : :

The scheme which we present here is a stationary re�nement scheme [Dyn91], [CDM91]. The rules to compute

the positions of the new points use simple a�ne combinations of points from the unre�ned net. They are

derived from a modi�cation of the well-known four-point scheme [DGL87]. This scheme re�nes polgons by

S : (p

i

) 7! (p

0

i

) with

p

0

2i+1

:=

8 + !

16

(p

i

+ p

i+1

)�

!

16

(p

i�1

+ p

i+2

) and p

0

2i

:= p

i

(1)

where 0 < ! < 2 (

p

5� 1) is su�cient to ensure convergence to a smooth limiting curve [DL90]. The standard

value is ! = 1 for which the scheme has cubic precision. In order to minimize the number of special cases, we

restrict ourselves to the re�nement of quadrilateral nets. The faces are split as shown in Fig. 1 and hence, to

complete the de�nition of the operator S, we need rules for new points corresponding to edges and/or faces of

the unre�ned net. To generalize the algorithm for interpolating arbitrary nets, a precomputing step is needed

(cf. Sect. 2).

Figure 1: The re�nement operator splits one quadrilateral face into four. The new vertices can be associated

with the edges and faces of the unre�ned net. All new vertices have valency four.

The major advantages that this scheme o�ers, are that it has the interpolation property and works on quadrilat-

eral nets. This seems to be most appropriate to engineering applications (compared to non-interpolatory schemes

or triangular nets), e.g., in �nite element analysis [Sch95]. The scheme provides the maximum exibility since

it can be applied to open nets with arbitrary topology. It produces smooth surfaces and yields the possibility to

generate local creases and cusps. Since the support of the scheme is local, adaptive re�nement strategies can be

applied. We present a technique to keep adaptively re�ned nets C

0

-consistent (cf. Sect. 6) and shortly describe

an appropriate data structure for the implementation of the algorithm.

2 Precomputing: Conversion to Quadrilateral Nets

It is a fairly simple task to convert a given arbitrary net

~

N into a quadrilateral net N . One straightforward

solution is to apply one single Catmull-Clark-type split C [CC78] to every face (cf. Fig. 2). This split operation

divides every n-sided face into n quadrilaterals and needs the position of newly computed face-points and edge-

points to be well-de�ned. The vertices of

~

N remain unchanged. The number of faces in the modi�ed net N

equals the sum of the lengths of all sequences s

k

2

e

F .

The number of faces in the quadrilateralized net N can be reduced by half if the net

~

N is closed, by not applying

C but rather its (topological) square root

p

C, i.e., a re�nement operator whose double application is equivalent

to one application of C (cf. Fig. 2). For this split, only new face-points have to be computed. For open nets, the

p

C-split modi�es the boundary polygon in a non-intuitive way. Hence, one would have to handle several special

cases with boundary triangles if one is interested in a well-behaved boundary curve of the resulting surface.
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N CN

p

CN

Figure 2: Transformation of an arbitrary net

~

N into a quadrilateral net N by one Catmull-Clark-split C (middle)

or by its square root (right, for closed nets).

3 Subdivision Rules for Closed Nets with Arbitrary Topology

The topological structure of any quadrilateral net after several applications of a uniform re�nement operator

consists of large regular regions with isolated singularities which correspond to the non-regular vertices of the

initial net (cf. Fig. 3). By topological regularity we mean a tensor product structure with four faces meeting at

every vertex. The natural way to de�ne re�nement operators for quadrilateral nets is therefore to modify a tensor

product scheme such that special rules for the vicinity of non-regular vertices are found. In this paper we will

use the interpolatory four-point scheme [DGL87] in its tensor product version as the basis for the modi�cation.

Figure 3: Isolated singularities in the re�ned net.

Consider a portion of a regular quadrilateral net with vertices p

i;j

. The vertices can be indexed locally such that

each face is represented by a sequence s

i;j

= fp

i;j

;p

i+1;j

;p

i+1;j+1

;p

i;j+1

g. The points p

0

i;j

of the re�ned net

can be classi�ed into three disjunct groups. The vertex-points p

0

2i;2j

:= p

i;j

are �xed due to the interpolation

requirement. The edge-points p

0

2i+1;2j

and p

0

2j;2i+1

are computed by applying the four-point rule (1) in the

corresponding grid direction, e.g.,

p

0

2i+1;2j

:=

8 + !

16

(p

i;j

+ p

i+1;j

)�

!

16

(p

i�1;j

+ p

i+2;j

): (2)

Finally, the face-points p

0

2i+1;2j+1

are computed by applying the four-point rule to either four consecutive

edge-points p

0

2i+1;2j�2

; : : : ;p

0

2i+1;2j+4

or p

0

2i�2;2j+1

; : : : ;p

0

2i+4;2j+1

. The resulting weight coe�cient masks for

these rules are shown in Fig. 4. From the di�erentiability of the limiting curves generated by the four-point

scheme, the smoothness of the limiting surfaces generated by in�nitely re�ning a regular quadrilateral net,

follows immediately. This is a simple tensor product argument.
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Figure 4: Subdivision masks for regular regions with � = �

!

16

, � =

8+!

16

and � = �

2

, � = ��, � = �

2

.

For the re�nement of irregular quadrilateral nets, i.e., nets which include some vertices where other than four

faces meet, a consistent indexing which allows the application of the above rules is impossible. If other than

four edges meet at one vertex, it is not clear how to choose the four points to which one can apply the above

rule for computing the edge-points. However, once all the edge-points are known, there always are exactly

two possibilities to choose four consecutive edge-points when computing a certain face-point since the net is

quadrilateral. It is an important property of tensor product schemes on regular nets that both possibilities lead

to the same result (commuting univariant re�nement operators). In order to modify the tensor product scheme

as little as possible while generalizing it to be applicable for nets with arbitrary topology, we want to conserve

this property. Hence, we will propose a subdivision scheme which only needs one additional rule: the one for

computing edge-points corresponding to edges adjacent to a non-regular vertex. All other edge-points and all

face-points are computed by the application of the original four-point scheme and the additional rule will be

such that both possibilities for the face-points yield the same result.

We use the notation of Fig. 5 for points in the neighborhood of a singular vertex p. The index i is taken to be

modulo n where n is the number of edges meeting at p. Applying the original four-point rule wherever possible

leaves only the points x

i

and y

i

unde�ned. If we require that both possible ways to compute y

i

by applying the

standard four-point rule to succeding edge-points lead to the same result, we get a dependence relating x

i+1

to x

i

x

i+1

= x

i

+

w

8

(h

i

� h

i+1

) +

w

2

8 (4 + w)

(k

i�2

� k

i+2

)+

w

8

(l

i+2

� l

i�1

) +

4 + w

8

(l

i+1

� l

i

);

which can be considered as compatibility condition. In the regular case, this condition is satis�ed for any tensor

product rule. The compatibility uniquely de�nes the cyclic di�erences 4x

i

= x

i+1

� x

i

which sum to zero

(telescoping sums). Hence, there always exists a solution and even one degree of freedom is left for the de�nition

of the x

i

.

y

i

i i

i+1

i+1
i+2

i+2

i−1

i−1

i−2

i

i+1

i

k

h

l k

lxl
i+1h

k

x

l
k

k

p

Figure 5: Notation for vertices around a singular vertex P .

The points x

i

will be computed by rotated versions of the same subdivision mask. Thus, the vicinity of p will
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become more and more symmetric while re�nement proceeds. Hence, the distance between p and the center of

gravity of the x

i

will be a good measure for the roughness of the net near p and the rate by which this distance

tends to zero can be understood as the `smoothing rate'. The center of gravity in the regular (n = 4) case is:

1

n

n�1

X

i=0

x

i

=

4 + w

8

p+

1

2n

n�1

X

i=0

l

i

�

w

8n

n�1

X

i=0

h

i

:

In the non-regular case, we have

1

n

n�1

X

i=0

x

i

= x

j

+

1

n

n�2

X

i=0

(n� 1� i)4x

i+j

; j 2 f0; : : : ; n� 1g:

Combining common terms in the telescoping sum and equating the right hand sides of both formulas leads to

x

j

= �

w

8

h

j

+

4+ w

8

l

j

+

4 + w

8

p�

w

8

v

j

; (3)

where we de�ne the virtual point

v

j

:=

4

n

n�1

X

i=0

l

i

� (l

j�1

+ l

j

+ l

j+1

)+

w

4 + w

(k

j�2

+ k

j�1

+ k

j

+ k

j+1

)�

4w

(4 + w)n

n�1

X

i=0

k

i

:

(4)

Hence, the x

j

can be computed by applying (1) to the four points h

j

, l

j

, p and v

j

. The formula also holds in

the case n = 4 where v

j

= l

j+2

. Such a virtual point v

j

is de�ned for every edge and both of its endpoints.

Hence to re�ne an edge which connects two singular vertices p

1

and p

2

, we �rst compute the two virtual points

v

1

and v

2

and then apply (1) to v

1

, p

1

, p

2

and v

2

. If all edge-points x

j

are known, the re�nement operation

can be completed by computing the face-points y

j

. These are well de�ned since the auxillary edge-point rule is

constructed such that both possible ways lead to the same result.

4 Convergence Analysis

The subdivision scheme proposed in the last section is a stationary scheme and thus the convergence criteria

of [BS88] and [Rei95] can be applied. In the regular regions of the net (which enlarge during re�nement), the

smoothness of the limiting surface immediately follows from the smoothness of the curves generated by the

univariate four-point scheme. Hence to complete the convergence analysis, it is su�cient to look at the vicinities

of the �nitely many isolated singular vertices (cf. Fig. 3).

Let p

0

; : : : ;p

k

be the points from a �xed neighborhood of the singular vertex p

0

. The size of the considered

neighborhood depends on the support of the underlying tensor product scheme and contains 5 `rings' of faces

around p

0

in our case. The collection of all rules to compute the new points p

0

0

; : : : ;p

0

k

of the same `scaled'

(5-layer-) neighborhood of p

0

= p

0

0

in the re�ned net can be represented by a block-circulant matrix A such

that (p

0

i

)

i

= A (p

i

)

i

. This matrix is called the re�nement matrix . After [BS88] and [Rei95] the convergence

analysis can be reduced to the analysis of the eigenstructure of A. For the limiting surface to have a unique

tangent plane at p

0

it is su�cient that the leading eigenvalues of A satisfy

�

1

= 1; 1 > �

2

= �

3

; j�

2

j > j�

i

j;8i � 4:

Table 1 shows theses eigenvalues of the re�nement matrix A for vertices with n adjacent edges in the standard

case ! = 1. The computation of the spectrum can be done by exploiting the block-circulant structure of A. We

omit the details here, because the dimension of A is k � k with k = 30n+ 1.

In addition to a uniquely de�ned tangent plane we also have to have local injectivity in order to guarantee

the regularity of the surface. This can be checked by looking at the natural parametrization of the surface at

p

0

which is spanned by the eigenvectors of A corresponding to the subdominant eigenvalues �

2

and �

3

. The

injectivity of this parametrization is a su�cient condition. The details can be found in [Rei95]. Fig. 6 shows

meshes of `isolines' of these characteristic maps which are well-behaved.
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n �

1

�

2

�

3

�

i�4

�

3 1:0 0.42633 0.42633 0.25

4 1:0 0.5 0.5 0.25

5 1:0 0.53794 0.53794 0.36193

6 1:0 0.55968 0.55968 0.42633

7 1:0 0.5732 0.5732 0.46972

8 1:0 0.58213 0.58213 0.5

9 1:0 0.58834 0.58834 0.52180

Table 1: Leading eigenvalues of the subdivision matrix

Figure 6: Sketch of the characteristic maps in the neighborhood of singular vertices with n = 3; 5; : : : ; 9.

5 Boundary Curves

If a subdivision scheme is supposed to be used in practical modeling or reconstruction applications, it must

provide features that allow the de�nition of creases and cusps [Hop94]. These requirements can be satis�ed if

the scheme includes special rules for the re�nement of open nets which yield well-behaved boundary curves that

interpolate the boundary polygons of the given net. Having such a scheme, creases can be modeled by joining

two separate subdivision surfaces along a common boundary curve and cusps result from a topological hole in

the initial net which geometrically shrinks to a single point (cf. Fig. 7).

To allow a C

0

-join between two subdivision patches whose initially given nets have a common boundary polygon,

it is necessary that their limiting boundary curves only depend on these common points, i.e., they must not

depend on any interior point. For our scheme, we achieve this by simply applying the original univariate four-

point rule to boundary polygons. Thus, the boundary curve of the limiting surface is exactly the four-point

curve which is de�ned by the initial boundary polygon. Further, it is necessary to not only generate smooth

boundary curves but rather to allow piecewise smooth boundary curves, e.g., in cases where more than two

subdivision patches meet at a common point. In this case we have to cut the boundary polygon into several

segments by marking some vertices on the boundary as being corner vertices . Each segment between two corner

vertices is then treated separately as an open polygon.

When dealing with open polygons, it is not possible to re�ne the �rst or the last edge by the original four-point

scheme since rule (1) requires a well-de�ned 2-neighborhood. Therefore, we have to �nd another rule for the

point p

m+1

1

which subdivides the edge p

m

0

p

m

1

. We de�ne an extrapolated point p

m

�1

:= 2p

m

0

� p

m

1

. The point

p

m+1

1

then results from the application of (1) to the subpolygon p

m

�1

;p

m

0

;p

m

1

;p

m

2

. Obviously, this additional
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Figure 7: Modeling sharp features (piecewise smooth boundary, crease, cusp)

rule can be expressed as a stationary linear combination of points from the non-extrapolated open polygon:

p

m+1

1

:=

8� w

16

p

m

0

+

8 + 2w

16

p

m

1

�

w

16

p

m

2

(5)

The rule to compute the point p

m+1

2n�1

subdividing the last edge p

m

n�1

p

m

n

is de�ned analogously.

This modi�cation of the original scheme does not a�ect the convergence to a continuously di�erentiable limit,

because the estimates for the contraction rate of the maximum second forward di�erence used in the convergence

proof of [DGL87] remain valid. This is obvious since the extrapolation only adds the zero component 4

2

p

m

�1

to

the sequence of second order forward di�erences. The main convergence criterion of [Kob95] also applies.

It remains to de�ne re�nement rules for inner edges of the net which have one endpoint on the boundary and

for faces including at least one boundary vertex. To obtain these rules we use the same heuristic as in the

univariate case. We extrapolate the unre�ned net over every boundary edge to get an additional layer of faces.

When computing the egde- and face-points re�ning the original net by the rules from Sect. 3, these additional

points can be used. To complete the re�nement step, the extrapolated faces are �nally deleted.

Let q

1

; : : : ;q

r

be the inner points of the net which are connected to the boundary point p then the extrapolated

point will be

p

�

:= 2p�

1

r

r

X

i=1

q

i

:

If the boundary point p belongs to the face s = fp;q;u;vg and is not connected to any inner vertex then we

de�ne p

�

:= 2p� u. For every boundary edge pq we add the extrapolated face s

�

= fp;q;q

�

;p

�

g.

Again, the tangent-plane continuity of the resulting limiting surface can be proved by the su�cient criteria of

[BS88] and [Rei95]. This is obvious since for a �xed number of interior edges adjacent to some boundary vertex p,

the re�nement of the extrapolated net can be rewritten as a set of stationary re�nement rules which de�ne the

new points in the vicinity of p as linear combinations of points from the non-extrapolated net. However the

re�nement matrix is no longer block-circulant.

At every surface point lying on the boundary of a tangent plane continuous surface, one tangent direction is

determined by the tangent of the boundary curve (which in this case is a four-point curve that does not depend

on inner vertices). On boundaries, we can therefore drop the requirement of [Rei95] that the leading eigenvalues

of the re�nement matrix have to be equal. This symmetry is only a consequence of the assumption that the rules

to compute the new points around a singular vertex are identical modulo rotations (block-circulant re�nement

matrix). Although �

2

6= �

3

causes an increasing local distortion of the net, the smoothness of the limiting

surface is not a�ected. This e�ect can be viewed as a reparametrization in one direction. (Compare this to the

distortion of a regular net which is re�ned by binary subdivision in one direction and trinary in the other.)

We summarize the di�erent special cases which occur when re�ning an open net by the given rules. In Fig. 8

the net to be re�ned consists of the solid white faces while the extrapolated faces are drawn transparently. The

dark vertex is marked as a corner vertex. We have to distinguish �ve di�erent cases:

A: Within boundary segments, we apply (1) to four succeeding boundary vertices.

B: To the �rst and the last edge of an open boundary segment, we apply the special rule (5).

C: Inner edge-points can be computed by application of (3). If necessary, extrapolated points are involved.

D: For every face-point of this class, at least one sequence of four C-points can be found to which (1) can be

applied. If there are two possibilities for the choice of these points then both lead to the same result which is

guaranteed by the construction of (3).
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Figure 8: Occurences of the di�erent special cases.

E: In this case no appropriate sequence of four C-points can be found. Therefore, one has to apply (5) to a

B-point and the two C-points following on the opposite side of the corner face. In order to achieve independence

of the grid direction, even in case the corner vertex is not marked, we apply (5) in both directions and compute

the average of the two results.

6 Adaptive Re�nement

In most numerical applications, the exponentially increasing number of vertices and faces during the iterative

re�nement only allows a small number of re�nement steps to be computed. If high acuracy is needed, e.g., in

�nite element analysis or high quality rendering, it is usually su�cient to perform a high resolution re�nement

in regions with high curvature while `at' regions may be approximated rather coarsely. Hence, in order to keep

the amount of data reasonable, the next step is to introduce adaptive re�nement features.

The decision where high resolution re�nement is needed, strongly depends on the underlying application and

is not discussed here. The major problem one always has to deal with when adaptive re�nement of nets is

performed is to handle or eliminate C

�1

-inconsistencies which occur when faces from di�erent re�nement levels

meet. A simple trick to repair the resulting triangular holes is to split the bigger face into three quadrilaterals in

an Y-fashion (cf. Fig 9). However this Y-split does not repair the hole. Instead it shifts the hole to an adjacent

edge. Only combining several Y-elements such that they build a `chain' connecting two inconsistencies leads to

an overall consistent net. The new vertices necessary for the Y-splits are computed by the rules of Sect. 3. The

fact that every Y-element contains a singular (n = 3) vertex causes no problems for further re�nement because

this Y-element is only of temporary nature, i.e., if any of its three faces or any neighboring face is to be split

by a following local re�nement adaption, then �rst the Y-split is undone and a proper Catmull-Clark-type split

is performed before proceeding. While this simple technique seems to be known in the engineering community,

the author is not aware of any reference where the theoretical background for this technique is derived. Thus,

we sketch a simple proof that shows under which conditions this technique applies.

First, in order to apply the Y-technique we have to restrict the considered nets to balanced nets. These are

adaptively re�ned nets (without Y-elements) where the re�nement levels of neighboring faces di�er at most by

one. Non-balanced inconsistencies can not be handled by the Y-technique. Hence, looking at a particular face s

from the n-th re�nement level, all faces having at least one vertex in common with s are from the levels (n�1),

n, or (n+1). For the proof we can think of �rst repairing all inconsistencies between level n� 1 and n and then

proceed with higher levels. Thus, without loss of generality, we can restrict our considerations to a situation

where all relevant faces are from level (n� 1) or n.

A critical edge is an edge, where a triangular hole occurs due to di�erent re�nement levels of adjacent faces. A

sequence of Y-elements can always be arranged such that two critical edges are connected, e.g., by surrounding

one endpoint of the critical edge with a 'corona' of Y-elements until another critical edge is reached (cf. Fig. 10).

Hence, on closed nets, we have to require the number of critical edges to be even. (On open nets, any boundary
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Figure 9: A hole in an adaptively re�ned net and an Y-element to �ll it.

edge can stop a chain of Y-elements.) We show that this is always satis�ed, by induction over the number of

faces from the n-th level within an environment of (n � 1)-faces. Faces from generations > n or < (n � 1) do

not a�ect the situation since we assume the net to be balanced.

Figure 10: Combination of Y-elements

The �rst adaptive Catmull-Clark-type split on a uniformly re�ned net produces four critical edges. Every

succeeding split changes the number of critical edges by an even number between �4 and 4, depending on

the number of direct neighbors that have been split before. Thus the number of critical edges is always even.

However, the n-faces might form a ring having in total an even number of critical edges which are separated

into an odd number `inside' and an odd number `outside'. It turns out that this cannot happen: Let the inner

region surrounded by the ring of n-faces consist of r quadrilaterals having a total number of 4r edges which

are candidates for being critical. Every edge which is shared by two such quadrilaterals reduces the number of

candidates by two and thus the number of boundary edges of this inner region is again even.

The only situation where the above argument is not valid, occurs when the considered net is open and has a

hole with an odd number of boundary edges. In this case, every loop of n-faces enclosing this hole will have an

odd number of critical edges on each side. Hence, we have to further restrict the class of nets to which we can

apply the Y-technique to open balanced nets which have no hole with an odd number of edges . This restriction is

not serious because one can transform any given net in order to satisfy this requirement by applying an initial

uniform re�nement step before adaptive re�nement is started. Such an initial step is needed anyway if a given

arbitrary net has to be transformed into a quadrilateral one (cf. Sect. 2).

It remains to �nd an algorithm to place the Y-elements correctly, i.e., to decide which critical edges should be

connected by a corona. This problem is not trivial because interference between the Y-elements building the

`shores' of two `islands' of n-faces lying close to each other, can occur. We describe an algorithm which only uses

local information and decides the orientation separately for each face instead of `marching' around the islands.

The initially given net (level 0) has been uniformly re�ned once before the adaptive re�nement begins (level 1).

Let every vertex of the adaptively re�ned net be associated with the generation in which it was introduced. Since

all faces of the net are the result of a Catmull-Clark-type split (no Y-elements have been placed so far), they

all have the property that three of its vertices belong to the same generation g and the fourth vertex belongs

to a generation g

0

< g. This fact yields a unique orientation for every face. The algorithm starts by marking

9



all vertices of the net which are endpoints of a critical edge, i.e. if a (n � 1)-face fp;q; : : :g meets two n-faces

fp; r; s; : : :g and fq; r; s; : : :g then p and q are marked. After the marking-phase, the Y-elements are placed. Let

s = fp;q;u;vg be a face of the net where p is the unique vertex which belongs to an elder generation than the

other three. If neither q nor v are marked then no Y-element has to be placed within this face. If only one of

them is marked then the Y-element has to be oriented as shown in Fig. 11 and if both are marked this face has

to be re�ned by a proper Catmull-Clark-type split.

p q p q p q p q

u u uv v v v u

Figure 11: The orientation of the Y-elements depends on whether the vertices q and v are marked (black) or

not (white). The status of vertices p and u does not matter (gray).

The correctness of this algorithm is obvious since the vertices which are marked in the �rst phase are those

which are common to faces of di�erent levels. The second phase guarantees that a corona of Y-elements is built

around each such vertex (cf. Fig. 10).

7 Implementation and Examples

The described algorithm is designed to be useful in practical applications. Therefore, besides the features

for creating creases and cusps and the ability to adaptively re�ne a given quadrilateral net, e�ciency and

compact implementation are also important. Both can be achieved by this algorithm. The crucial point of the

implementation is the design of an appropriate data structure which supports an e�cient navigation through the

neighborhood of the vertices. The most frequently needed access operation to the data structure representing

the balanced net, is to enumerate all faces which lie around one vertex or to enumerate all the neighbors of

one vertex. Thus every vertex should be associated with a linked list of the objects that constitute its vicinity.

We propose to do this implicitely by storing the topological information in a data structure Face4Typ which

contains all the information of one quadrilateral face, i.e., references to its four corner points and references to

its four directly neighboring faces. By these references, a doubly linked list around every vertex is available.

Since we have to maintain an adaptively re�ned net, we need an additional datatype to consistently store

connections between faces from di�erent re�nement levels. We de�ne another structure Face9Typ which holds

references to nine vertices and eight neighbors. These multi-faces can be considered as `almost' split faces, where

the geometric information (the new edge- and face-points) is already computed but the topological split has

not yet been performed. If, during adaptive re�nement, some n-face is split then all its neighbors which are

from the same generation are converted into Face9Typ's. Since these faces have pointers to eight neighbors,

they can mimic faces from di�erent generations and therefore connect them correctly. The Face9Typ's are the

candidates for the placement of Y-elements in order to re-establish consistency. The various references between

the di�erent kinds of faces are shown in Fig. 12.

To relieve the application program which decides where to adaptively re�ne, from keeping track of the balance

of the net, the implementation of the re�nement algorithm should perform recursive re�nement operations when

necessary, i.e., if a n-face s is to be re�ned then �rst all (n � 1)-neighbors which have at least one vertex in

common with s must be split.

The following pictures are generated by using our experimental implementation. The criterion for adaptive

re�nement is a discrete approximation of the Gaussian curvature. The running time of the algorithm is directly

proportional to the number of computed points, i.e., to the complexity of the output-net. Hence, since the number

of regions where deep re�nement is necessary usually is �xed, we can reduce the space- and time-complexity

from exponential to linear (as a function of the highest occurring re�nement level in the output).

Each of the appended colored pictures shows a given quadrilateral net N (gray) and a corresponding adaptively

re�ned net N

0

(colored) where additionally the Gaussian curvature is printed (red: positive, blue: negative).
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Face4Typ Face9Typ Face4Typ

Figure 12: References between di�erent kinds of faces.

Figure 13: Examples for adaptively re�ned nets.
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