
A Fast Dot-Product Algorithm with
Minimal Rounding Errors

Ein schneller Algorithmus zur Berechnung von
Skalarprodukten

mit minimalem Rundungsfehler

Leif Kobbelt

Institut für Betriebs- und Dialogsysteme
Abteilung geometrische Datenverarbeitung

Universität Karlsruhe
Germany

COMPUTING 52 (1994), pp. 355-369, Springer Verlag

Abstract

We present a new algorithm which computes dot-products of arbitrary length
with minimal rounding errors, independent of the number of addends. The algorithm
has an O(n) time andO(1) memory complexity and does not need extensions of the
arithmetic kernel, i.e., usual floating-point operations. A slight modification yields an
algorithm which computes the dot-product in machine precision. Due to its simplicity,
the algorithm can easily be implemented in hardware.

Abstract

Es wird ein Algorithmus vorgestellt, der ein Skalarprodukt beliebiger Länge
auswertet. Bei der Berechnung tritt nur ein minimaler Rundungsfehler auf, der nicht
von der Anzahl der Summanden abhängt. Der Algorithmus hat einen konstanten
Speicherbedarf, einen linearen Rechenaufwand und es ist keine Erweiterung der
arithmetischen Grundoperationen notwendig. Durch eine kleine Änderung erhält
man einen Algorithmus, der das Ergebnis in Maschinengenauigkeit berechnet. Wegen
seiner einfachen Struktur kann der Algorithmus leicht in Hardware realisiert werden.

1



1 Introduction

A frequent task in numerical applications is to compute dot-products of the formsn = nXi=0

ai bi:
For example dot-products occur in matrix multiplications. The special case of an ordinary
sum where all ai = 1 is in general the most unstable step in every numerical algorithm that
obtains its result from adding a large number of partial results (subdivision strategies). The
main problem in computing dot-products results from the instability of the subtraction in
floating-point arithmetics since significant digits can get lost.

There are solutions to this problem which use some kind of sorting the addends [Kul81].
These solutions need a large amount of memory space and are not very efficient —
especially in cases where the number of addends is too large to store all of them at the same
time in the main storage. Another solution uses a special fixed-point arithmetic with large
mantissae (about 4000 bits for IEEE-arithmetics) that can represent all intermediate results
without rounding errors [CXSC92]. However, the implementation of such an arithmetic
is both machine dependent and inefficient since a single floating-point addition is mapped
onto several fixed-point additions. The third known strategy for adding floating-point
numbers is based on an addition operation which gives the rounded result and the exact
remainder. Thus the addition of n numbers yields a rounded sum s̃ and n� 1 remaindersri. The remainders are used to correct the value of s̃ [Kul81]. As in the sorting approach
it is necessary to store all addends at the same time.

A detailed overview over the various addition algorithms is given in [Boh90]. Howe-
ver, all the algorithms mentioned there use specialized arithmetic operations with larger
mantissae than those of the addends. In this paper a solution is given which only uses
standard arithmetic (e.g. the operators “+” and “�” provided by the underlying system
or compiler). Thus it can be implemented independent of a particular computer. Its time
complexity is linear and in most practical applications much better than for the solutions
mentioned above. The memory requirement is bounded by a small constant independent
of the number of addends.

Although computer arithmetic can be defined with an arbitrary base b, in this paper
we restrict ourselves to the binary case. This is done for practical reasons since floating-
point arithmetics with other bases than 2 are very rare. Moreover, the algorithm can be
formulated in a very neat and compact form for this special case. Hence we understand
by machine independence that the algorithm is defined relative to an abstract computer
arithmetic definition, e.g., the IEEE-floating-point format [IEEE85]. The independence
concerns the architecture of the hardware platform.

The definition of a standard binary computer arithmetic includes the size r of the
mantissa, the exponent range, and the basic operators “+”, “�”, “�”, and “=” that compute
a result with machine precision, i.e., with maximum relative rounding error 2�r. The high
performance of the algorithm presented here can be increased further if a coprocessor for
these basic arithmetic operations is supported by the compiler.

2



1.1 Over- and Underflow Errors

If the algorithm is used only for the summation of arbitrarily many floating-point numbers
and not for the summation of products, then underflow errors are impossible to occur.
This is obvious, since in IEEE-arithmetics no normalization of floating-point numbers
is performed if the exponent would fall below the lower limit of the exponent range. In
contrast, overflow errors may occur and should be regarded.

Having products to add, the situation is more difficult to handle, since intermediate
multiplications may produce exponent excesses in both directions. The simplest situation
arises if one can bound the exponent values in the input of the algorithm to some “middle
region”. Consider for example the IEEE-floating-point standard: The allowed binary ex-
ponents for double precision numbers range from �1022 to 1023. Taking the mantissa
length of 53 bit into account (to prevent underflows) and adding 27 guardian bits (for
the overflow case), one can avoid over- and underflow errors during the computation by
requiring that each number x = ai or x = bi in the given dot-product satisfies&�1022+ 53

2

' = �484 � log2 jxj � 484 = �1023
2

� � 27

or equivalently
10�145 � jxj � 10145:

If this is satisfied, all intermediate results during the computation of the dot-product are
within the allowed range. However, for arbitrary input data this inequality is not guaranteed
to hold. Thus, overflow handling has to be introduced into the algorithm. For the sake
of simplicity we first describe the ideas of the algorithm without overflow handling. In
section 3, we sketch how these exceptional cases can be handled.

2 The Algorithm

Since the sum sn does not necessarily have a representation in the floating-point format
with bounded mantissa, there is no algorithm which always computes dot-products exactly.
Thus, one seeks to construct an algorithm which computes a floating-point number with
minimal deviation from the exact result where the deviation should not depend on the
number of addends.

The basic idea of our approach is to identify operations which can be performed exactly
by the standard arithmetic kernel and to construct a summation strategy which uses only
these operations.

2.1 Exact Standard Operations

The following operations can be done exactly in standard binary floating-point arithmetics.
The proof of their exactness is straightforward [Kob92].

3



OP1: Summation of two numbers with same exponent, same sign and same genus. The
genus of a floating-point number is the contents of the least significant bit in its
mantissa. It is used to distinguish “odd” and “even” floating-point numbers.

OP2: Summation of two numbers with same exponent and opposite sign.

OP3: Multiplication of two numbers whose floating-point representations only use less
than half the mantissa.

OP4: Multiplication of a floating-point number by a factor 2n.

The most important observation that can be made is that two floating-point numbers with
same exponent and same genus can always be added by standard arithmetics without
rounding errors.

Remark: All the operations enumerated above can be generalized to floating-point
arithmetics with an arbitrary base b instead of 2. Then in the first operator OP1, one has
to distinguish more than two genera to avoid rounding errors, i.e. numbers x and y having
the same sign and exponent can be added exactly if the last digit of x is l and the last digit
of y is b� l. In OP4 the factor will be bn.

2.2 The Summation Strategy

It is fairly well-known how to reduce a floating-point multiplication to a sum of interme-
diate products which can be computed exactly(a+ b) (x+ y) = ax+ a y + b x+ b y
where a, b, x and y are single precision numbers which can be multiplied exactly in double
precision arithmetics. Thus, in the following it suffices to consider sums of arbitrarily
many numbers. The proposed strategy works in three phases.

Phase I

In the first phase only the addition operators OP1 and OP2 are used. If a new addend x
is given, the algorithm searches among the earlier addends and intermediate results for a
“partner” y which has the same exponent and genus. If such a partner has been found,
the addition can be performed without rounding error. The same procedure is repeated for
the intermediate result x+ y. If no partner can be found, the new addend is just stored in
a table which holds a place for every exponent and both genera. Since in floating-point
arithmetics the number of possible exponents is finite, the maximal memory requirement
for the table is bounded. Using a hash table with the exponent as key to hold the addends
yields constant time complexity for the search of a partner.

4



The hash technique also allows to reduce the maximal memory requirement in most
practical applications. This is done by usingk(x) := EXPONENT(x) mod S
as hashing key value for the floating-point addend x, where S is the size of the table. As
long as no two intermediate results differ in their exponent by more than S, no conflicts
occur. Otherwise the hash table has to be enlarged dynamically.

A sketch of an implementation of the first phase is given by the following pseudo-code
which inserts the number x into the table.

while TABLE [k(x), genus of x] not empty

aux := TABLE [k(x), genus of x]

delete TABLE [k(x), genus of x]x := x + aux

TABLE [k(x), genus of x] := x
Phase II

After all addends have been added or stored, the table still contains numbers of different
signs. This can be changed by means of OP4. For example let a 2k+n and �b 2k be two
addends (a and b may be both positive or both negative). Sincea 2k+n � b 2k = n�1Xi=0

a 2k+i + (a 2k � b 2k);
one can change �b 2k into (a� b) 2k without rounding error (OP2). This can be repeated
if necessary — either (a � b) 2k or (2 a � b) 2k must have the same sign as a if both
numbers are represented as normalized floating-point numbers. Notice, the second additiona 2k+(a�b) 2k is computed exactly even though (a�b) 2k has an exponent smaller than k.
This is obvious since the zeros in the least significant part of the mantissa of (a� b) 2k are
correct (a and b have no rounding errors) and are pushed out of the mantissa again before
adding a because of the exponent adaption which is done implicitly by the “+”-operator
of the underlying arithmetic kernel.

Using this idea, it is possible to transform the table such that the mantissae of the
remaining entries all have the same sign (positive or negative). Thus, all the addends
having a sign opposite to the result are eliminated. To guarantee that the right sign is
eliminated, one starts at the top of the table where the large exponents are stored and
successively eliminates each change of sign between addends. In every step, one change
of sign is vanished thus termination of the second phase is ensured.

5



While computing the second phase, it is possible that intermediate results with smaller
and smaller exponents arise. However, since in IEEE-arithmetics the normalization of
floating-point numbers is omitted whenever the minimum exponent occurs, the floating-
point addition of phase II in this case actually is a fixed-point addition. Thus, the iterated
elimination of sign changes always terminates at the bottom of the table and it is guaranteed
that during the second phase, no underflows occur.

Until this phase, no rounding error has occurred, so the whole information of the addends
is still contained in the table entries. Notice, the first two phases transform the problem
of adding arbitrary many numbers of different signs and exponents into the much easier
problem of adding a small set of numbers all having the same sign which are ordered by
their exponents.

Phase III

In the last phase all the remaining numbers have the same sign, but different exponents
and genera. In this phase the numbers are added up in the order of their size, beginning
with the two smallest ones. These operations may cause some rounding errors, but since
the exponents of the intermediate results increase at each addition, no significant digits
get lost. A detailed description with rounding error analysis is given in Section 2.3.

The operations during the last phase can not be performed exactly. Notice however,
that if no table entries are modified in this phase, i.e., the additions are done by using
a supplementary accumulator, then no information gets lost. Thus, the sum sn can be
computed without affecting the exactness of sn+m.

2.3 Analysis of the Third Phase

We use the notation 12xa for a normalized floating-point number with exponent a and
genus x 2 f0; 1g. The field 2 represents an arbitrary sequence of r � 2 binary digits. We
assume a to be the exponent of the least significant bit, e.g.,

11013 = 1101 000; r = 4:
The basic arithmetic operations provided by the system cause relative rounding errors
which are bounded by the machine precision 2�r where r is the width of the mantissa. By
the notation

12xa + 12xb = 12xc + E(c; b); a � b
we mean that adding the two numbers on the left side in computer arithmetics with constant
mantissa size approximates the exact result with an absolute error being half as big as the
value of the result’s least significant bit in the worst case, more precisely�2c�1 � E(c; b) � 2c�1 � 2b:
With a mantissa size of r bits this limits the maximal relative rounding error to 2�r if
normalized representation is used.

6



A rough but intuitive estimation of the maximal rounding error can be made by the
following idea. Consider in the third phase the addition of the table entries at the exponent
stage a. The maximal exponent that is possible for the accumulator at this time is bounded
by a+ 1 since adding all entries with smaller exponent yieldsa�1Xi=�1(2r � 1) 2i| {z }

“odd”

+ a�1Xi=�1(2r � 2) 2i| {z }
“even”

< (2r � 1) 2a+1:
In the worst case the elimination on this stage a needs two addition steps (both genera)
with results having an exponent of a+ 2. Thus, using the standard operations, a maximal
rounding error of 2a+2 is possible. Such an error can occur at each stage and hence we
have a global error Emax of Emax < q�2Xi=�1 2i+2 = 2q+1

where q is the exponent of the result sn. Hence,Emax is bounded by four times the machine
precision, independent of the number of addends.

A smaller maximal error, however, is achieved if the additions in the third phase are
done more carefully.

To precisely analyse the maximal rounding error in the third phase of the algorithm (the
other two phases cause no errors), we have to distinguish the situations where one or two
table entries in an exponent stage a are occupied and the cases where the accumulator has
a larger exponent than the smallest table entries or where the accumulator is smaller. We
list all possible cases and indicate the maximal rounding errors. Only the rightmost tail
of the sum is shown where the last addend stands for the accumulator whose exponent is
bounded by a+ 1.

1. ) : : :+ 12xa + 12xb; b � a
(a) = : : :+ 12xa + E(a; b); b < a
(b) = : : :+ 12xa+1 + E(a+ 1; b)

2. ) : : :+ 120a + 12xa+1

(a) = : : :+ 12xa+1

(b) = : : :+ 12xa+2 + E(a+ 2; a+ 1)
3. ) : : :+ 121a + 12xa+1= : : :+ 120a + 12xa+1 + 2a

(a) = : : :+ 12xa+1 + 2a
(b) = : : :+ 12xa+2 + E(a+ 2; a+ 1) + 2a

4. ) : : :+ 120a + 121a + 12xb; b � a
7



(a) = : : :+ 120a + 12xa + E(a; b); b < a= : : :+ 12xa+1 + E(a; b) + E(a+ 1; a)
(b) = : : :+ 120a + 12xa+1 + E(a+ 1; b)

i. ) = : : :+ 12xa+1 + E(a+ 1; b)
ii. ) = : : :+ 12xa+2 + E(a+ 1; b) + E(a+ 2; a+ 1)

5. ) : : :+ 120a + 121a + 12xa+1= : : :+ 120a + 120a + 12xa+1 + 2a= : : :+ 12xa+1 + 12xa+1 + 2a= : : :+ 12xa+2 + E(a+ 2; a+ 1) + 2a
If two table entries have the same exponent (but different genera), the order in which they

are added to the accumulator is relevant (case (4)). In case (4.b.i) the maximal rounding
error will be E(a+ 1; b) + E(a+ 1; a) if the even summand is added first.

In case (5) one first adds the odd and the even entry of equal exponent and thus produces
a known error of 2a. This error has to be considered in the addition to the accumulator. A
little trick can be employed to deal with this situation. Since the sum of the three addends
in (5) surely has an exponent of a+ 2, the digit which is relevant for the correct rounding
has the value 2a+1. The last digit of 121a therefore should not affect the rounding process.
This is achieved by deleting this bit before adding.

Case (3) can be handled similar to case (5), i.e., directed rounding can be performed by
deleting the least significant bit in the mantissa of the odd addend 121a. For the case (3.b)
the deletion does not affect the result since the concluding rounding step does not depend
on this bit.

We collect the remarks on the summation strategies in the third phase by giving the
following pseudo-code:

for exp := smallest exponent to largest exponent

if exponent of accu > exp then

aux := TABLE [exp,odd]

delete least significant bit in aux

accu := accu + (aux + TABLE [exp,even])

else

accu := (accu + TABLE [exp,odd]) + TABLE [exp,even]

Notice that empty table entries equal zero and thus adding to the accumulator or deleting
a bit in the mantissa causes no changings.

8



Theorem 1 Let 12xq be the result of the summation algorithm with the above mentioned
handling of the cases (3), (4) and (5). Then the maximum absolute rounding error is boun-
ded by 2q. With normalized floating-point representation this means a relative precision
of two times the machine precision (21�r = 2 � 2�r).
Proof We prove the theorem by induction on the number of addition steps. The base
case for the induction is trivial since the accumulator is zero in the beginning and adding
the first table entry causes no rounding errors.

For the induction step we show a stronger result. If case (3.a) does not occur, the resulting
error E is bounded by �2e � E � 2e�1 where e is the exponent of the accumulator after
a single addition step. In case (1), since b < e 2 fa; a+ 1g, we have�2e � E(e; b)� 2b � E(e; b) + 2b�1 � 2e�1:
In case (2.a) no error occurs and in (2.b) we have�2a+2 � E(a+ 2; a+ 1)� 2a+1 � E(a+ 2; a+ 1) + 2a � 2a:
Case (3.b) is�3

4
2a+2 � E(a+ 2; a+ 1) + 2a � 2a+1 � E(a+ 2; a+ 1) + 2a + 2a � 2a+1:

The first addition in case (4) is covered by case (1) and the second addition either by case
(1) or by case (2). Finally in case (5) we have�3

4
2a+2 � E(a+ 2; a+ 1) + 2a � 2a+1 � E(a+ 2; a+ 1) + 2a + 2a � 2a+1:

Only case (3.a) disturbs the stronger error estimation�2a � 2a � 2a+1 � 2a + 2a � 2a+1;
but the statement of the theorem still holds. If situation (3.a) has occurred, the next addition
step will be of kind (1) or (4) since the exponent of the accumulator has not increased.
Hence we have after the next addition step�2e � E(e; b)� 2b � E(e; b) + 2b � 2e�1

and thus the tighter estimation is reestablished. This concludes the induction. 2
The estimation above considers the worst case which is rather unlikely to arise. In the

average case the rounding error will be smaller.

2.4 An Example

A simple example is given to demonstrate the algorithm. We emphasize the occurrence
of all operators described in Section 2.2 and do not give an example where cumulative
addition would produce large rounding errors by cancellation of significant digits. Such
examples are easy to establish but do not give much insight into the execution of the
algorithm.

9



Phase I

add(10111) 10111

add(�11001) �11001 10111

add(�11101)
�11012

10111
(�11001 � 11101 = �11012)

add(�10001)
�11012�10001 10111

add(11113)
11113�11012�10001 10111

add(10111)
11113�11012�10001

+10112 (10111 + 10111 = 10112)

11113�10001�10000

(�11012 + 10112 = �10000)

Phase II
11112�10001 11111�10000

+11111 (11112 + 11111 + 11111 = 11113)

11112

11111�10000

+11100 (�10001 + 11111 = 11100)

11112

11111

1100�1

(�10000 + 11100 = 1100�1)

Phase III
11112

11111
+1100�1

11112 +10012 (1100�1 + 11111 = 10012)

Result 11003 (11112 + 10012 = 11003)

10



3 Over- and Underflow Error Handling

As already mentioned in the introduction, there is still a lack of robustness in the algorithm
if products of very large or very small numbers occur. In order to extend the algorithm
to correctly handle these cases, it is necessary to check before multiplying floating-point
numbers whether the exponent of the result will exceed the allowed range. This is simply
done by considering the sum of the exponents of the factors. In the sequel, we confine
ourselves to describe this extension for an IEEE-arithmetic based system. Transferring the
ideas to other arithmetic standards is a straightforward task.

In addition to table T which holds the addends during phase I, we now need two more
tables To and Tu. In the overflow case, the larger factor of the product to be added is scaled
down by 2�1024. As already stated in the introduction, this is always possible since this
factor must be larger than 2484. The result of the multiplication is then stored in To as if it
was an ordinary addend (cf. phase I). In the opposite case, i.e., in case of an underflow, one
scales up the smaller factor by 21024 which likewise is always possible since this factor has
to be smaller than 2�484. The result is then stored in Tu. All other products are stored in T
as before. The scaling of every critical multiplication is an operation covered by the case
OP4 and therefore can be performed without rounding errors. Obviously, this ensures that
no exponent excess can happen.

Another source of overflow errors during the computation are additions of very large
numbers at the top of tables T or Tu. These can be avoided by means of the same scaling
operation as described above. In this case both addends are scaled by 2�1024 and the
result is stored in table To or T , respectively. Underflow errors due to the subtraction of
very small numbers can never occur since the normalization is omitted for floating-point
numbers with minimum exponent.

The second and third phase of the algorithm are realized very similar to the simpler
case without over- and underflow handling, despite the fact that elimination (phase II) and
accumulation (phase III) now run over all the three tables. Notice, that switching from one
table to another always requires a multiplication by the factor 21024 or 2�1024, respectively.
To prevent rounding errors, a positive number that is scaled by 2�1024 has to be � 4 = 22

and a positive number that is scaled by 21024 has to be < 1 = 20.

Since the values for the exponents in the different tables T , To and Tu may overlap,
one has to eliminate doubly occupied stages by simply adding up the entries after suitably
scaling. Ordering the three tables To � T � Tu by their significance, there is no difference
whether the entry from the more significant table is scaled up or the entry from the less
significant table is scaled down. The exception to this is, when the less significant entry is
smaller than 4 and thus scaling it down is no longer an exact operation. If one wishes to
avoid this overlapping, one has to scale both factors in phase I by a suitable amount each,
instead of scaling only one by a fixed amount. Nevertheless, this more involved scaling in
the first phase does not essentially simplify the following phases.

If the algorithm is used only for the summation of floating-point numbers (instead of
computing dot-products) then underflow can never occur and overflow can be handled
much easier by allowing more than one entry at the top of table T , which corresponds to

11



the maximum exponent. On this stage only subtractions can be carried out correctly and
thus addends with equal sign may not be further processed. If there is more than one entry
on this stage after the second phase of the algorithm then the result can not be represented
as a regular floating-point number; otherwise phase III can be performed without any
changes.

4 Towards a Hardware Implementation

If the algorithm is to be implemented as a hardware unit, machine independence is no
longer required. A slight modification of the third phase of the algorithm makes it possible
to get the most exact result of the dot-product, i.e., machine precision is achieved. The
additional requirements for this modification are the possibility of directed rounding and
an accumulator with one supplementary bit, i.e., a mantissa size of r + 1 bits.

Let us assume an accumulator with an arbitrary mantissa length and fixed exponent. If
we use the floating-point notation of Section 2.3 (mantissa size r bits), the addition of a
table entry with exponent a in the third phase only affects the bits of the accumulator with a
value � 2a and leaves the less significant bits unchanged. Since the accumulator mantissa
is not bounded, no rounding is needed. Let 2q+r�1 be the value of the leftmost 1-digit of
the accumulator after the summation of all table entries. Then the correct rounding of the
accumulator contents to a mantissa length of r bits is determined by the digit with the
value 2q�1. Thus, only the upper r + 1 digits of the accumulator are needed to compute
the result with minimal deviation.

Now suppose an accumulator with mantissa length r + 1. Then, after adding all table
entries from exponent stages < a, the exponent of the accumulator is � a. Notice,
following the notation of Section 2.3, the exponent of a floating-point number represents
the value of its least significant bit. Hence, due to its extended mantissa, the accumulator
with exponent a can represent normal floating-point numbers with exponent a+ 1.

If both table entries for an exponent stage a are occupied the odd number is added first.
This guarantees that at every time the value of the lowest bit in the extended mantissa
of the accumulator is not larger than the value of the lowest 1-digit in the remaining
addends. Hence the window of r + 1 bits in the accumulator always covers the region of
the “infinite” accumulator where digits actually are modified.

If every addition step with the modified accumulator in the third phase is concluded
by truncating instead of rounding to reduce the mantissa size of the intermediate result,
then the r + 1 bits of the accumulator always represent the most significant part of the
above mentioned “infinite” accumulator. This is particularly true in the end where one
final rounding step yields the optimal result sn.

Using this modification of the algorithm, the advantage of machine independence is
diminished. Nevertheless, high efficiency remains. This fact is primarily interesting for a
hardware implementation of the algorithm. There are arithmetic-processors which inter-
nally use a supplementary bit. The basic operations are computed by truncating behind
the supplementary bit and rounding the result corresponding to the contents of this bit.

12



During the three phases of the algorithm, this hardware can be used in different modi:
in phases I and II one computes with r bit mantissa and in phase III one computes withr + 1 bit mantissa but needs no rounding. Thus, for a hardware implementation, existing
arithmetic units can be reused and only little control logic has to be supplemented.

5 Conclusion

The algorithm given here is O(n) in time and O(1) in space complexity since the second
and the third phase do not directly depend on the number of addends but rather on the
interval which contains the addends and all intermediate results. The use of standard
arithmetics makes the algorithm machine independent. Practical experiences have shown
that the memory requirement for the addend table in most applications is much smaller than
the theoretical upper bound. A table which covers about S = 200 exponent stages (= 3
Kbyte) seems to be sufficient in most cases (cf. 2.2, phase I). The O(n) time complexity
contains only a small constant factor since the number of addition operations in the first
phase is not greater than the number of addends. In the implementation of the large
mantissa approach [Boh90], [CXSC92], linear time complexity is also achieved, but with
a constant factor of about 3. Since the exponent interval which contains all intermediate
results increases with the number of addends only as O(log(n)), the second and third
phase do not significantly affect the execution time of the algorithm.

Since the table entries represent the exact result (no rounding errors are made in the first
two phases and the third phase does not modify the table), the precision of the sum can be
increased by subtracting the first result. Let s be the exact sum of the given addends ands0 = s+" the result obtained by the algorithm where the error " is smaller than the value of
the last binary digit of s. If we add�s0 to the table entries, we have an exact representation
of �". Applying the addition algorithm once more gives a value �"0 = �" + � where
again the error affects only the last bit of ". Putting s0 and�"0 together yields the improved
result s00 = s+ �. This correction can be iterated.

In the analysis of the third phase we used the fact that the rounding error which occurs
when adding two numbers of same exponent but different genus is fixed (Section 2.3,
case (5)). This can be exploited in the first phase too and allows to reduce the memory
requirements of the algorithm to its half. If a new addend is given one searches for a partner
with the same exponent as described in Section 2.2. If the genera coincide, the addition
can be performed without rounding error. If they differ, the rounding error amounts �2a
where a is the exponent of the two addends. Only a flag for this rounding error has to be
maintained on each exponent stage and has to be taken into consideration the next time a
new addend with this exponent is stored.

Besides reduction of the memory requirements this modification also simplifies the third
phase since less special cases have to be addressed. However, the first phase requiring
most of the computing time is more involved. Hence, in order to obtain a maximum time
efficiency the first phase should be implemented such that the addends are inserted into
the table as fast as possible.

13



The algorithm can be implemented in a very compact form. In order to make the
algorithm available to a wide domain of users, a short and efficient implementation in C
[Ker83] is offered by the author. If you like a copy of the source file send your request via
e-mail to kobbelt@ira.uka.de.

The underlying arithmetic is the IEEE standard double format [IEEE85]. If other arith-
metics are used, only the few defines in the preamble of the code have to be changed which
access the various data fields of the IEEE floating point numbers.

The data structure holding the addends which have not yet found their partner for
the addition without rounding error are stored in a dynamic hash table AddTabTyp.
The initial size of this table is passed as parameter n to the initialization procedure
Addouble Init(). If the table overflows, it is enlarged automatically by procedure
Addouble Push(). The procedure Addouble Add() performs the second and third
phase of the summation algorithm.

The functionality of the procedures is obvious. Other operations like adding two
AddTabTyp or multiplying an AddTabTyp by a scalar factor are straightforward to
implement.

The over- and underflow error handling described in section 3 is not included but for
most of the application this implementation works very well, i.e., if the bounds given in
the introduction hold.

References

[Boh90] G. Bohlender, What do we need beyond IEEE-Arithmetic?, Computer Arith-
metic and Self-validating numerical Methods, pp. 1-32, Academic Press
1990

[CXSC92] R. Klatte et al., C-XSC: A C++ Class Library for Scientific Computing,
Institut für angewandte Mathematik der Universität Karlsruhe (Preprint)

[IEEE85] American National Standards Institute / Institute of Electrical and Elec-
tronical Engineers, IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Std. 754-1985, New York, 1985

[Ker83] B. W. Kernighan / D. M. Ritchie, Programmieren in C, Carl Hanser Verlag
1983

[Kob92] L. Kobbelt, Approximative Berechnung metrischer Eigenschaften, Dipl.-
Arb. 1992, Universität Karlsruhe, Fakultät für Informatik

[Kul81] U. Kulisch / W.L. Miranker, Computer Arithmetic in Theory and Practice,
Academic Press, New York 1981

[Sto83] Josef Stoer, Einführung in die Numerische Mathematik I, Springer-Verlag
1983

14


