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Abstract: Many mathematical problems in geometric modeling are merely due to the di�culties

of handling piecewise polynomial parameterizations of surfaces (e.g., smooth connection of patches,

evaluation of geometric fairness measures). Dealing with polygonal meshes is mathematically much

easier although in�nitesimal smoothness can no longer be achieved. However, transferring the notion

of fairness to the discrete setting of triangle meshes allows to develop very e�cient algorithms for

many speci�c tasks within the design process of high quality surfaces. The use of discrete meshes

instead of continuous spline surfaces is tolerable in all applications where (on an intermediate stage)

explicit parameterizations are not necessary. We explain the basic technique of discrete fairing and

give a survey of possible applications of this approach.

1 Introduction

Piecewise polynomial spline surfaces have been the standard representation for free form

surfaces in all areas of CAD/CAM over the last decades (and still are). However, although

B-splines are optimal with respect to certain desirable properties (di�erentiability, approx-

imation order, locality, . . . ), there are several tasks that cannot be performed easily when

surface parameterizations are based on piecewise polynomials. Such tasks include the con-

struction of globally smooth closed surfaces and the shape optimization by minimizing

intrinsically geometric fairness functionals [5, 12].

Whenever it comes to involved numerical computations on free form surfaces | for instance

in �nite element analysis of shells | the geometry is usually sampled at discrete locations

and converted into a piecewise linear approximation, i.e., into a polygonal mesh.

Between these two opposite poles, i.e., the continuous representation of geometric shapes by

spline patches and the discrete representation by polygonal meshes, there is a compromise

emerging from the theory of subdivision surfaces [4]. Those surfaces are de�ned by a base

mesh roughly describing its shape, and a re�nement rule that allows one to split the edges

and faces in order to obtain a �ner and smoother version of the mesh.

Subdivision schemes started as a generalization of knot insertion for uniform B-splines [11].

Consider a control mesh [c

i;j
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a tensor product B-spline surface S. The same surface can be given with respect to the
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being a simple linear combination of original vertices c

i;j

. It

is well known that the iterative repetition of this process generates a sequence of meshes C

m

which converges to the spline surface S itself.
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The generic subdivision paradigm generalizes this concept by allowing arbitrary rules for

the computation of the new control vertices
^
c

i;j

from the given c

i;j

. The generalization also

includes that we are no longer restricted to tensor product meshes but can use rules that

are adapted to the di�erent topological special cases in meshes with arbitrary connectivity.

As a consequence, we can use any (manifold) mesh for the base mesh and generate smooth

surfaces by iterative re�nement.

The major challenge is to �nd appropriate rules that guarantee the convergence of the mesh-

es C

m

generated during the subdivision process to a smooth limit surface S = C

1

. Besides

the classical stationary schemes that exploit the piecewise regular structure of iteratively

re�ned meshes [1, 3, 9], there are more complex geometric schemes [15, 8] that combine the

subdivision paradigm with the concept of optimal design by energy minimization (fairing).

The technical and practical advantages provided by the representation of surfaces in the

form of polygonal meshes stem from the fact that we do not have to worry about in�nites-

imal inter-patch smoothness and the re�nement rules do not have to rely on the existence

of a globally consistent parameterization of the surface. In contrast to this, spline based

approaches have to introduce complicated non-linear geometric continuity conditions to

achieve the 
exibility to model closed surfaces of arbitrary shape. This is due to the topo-

logically rather rigid structure of patches with triangular or quadrilateral parameter domain

and �xed polynomial degree of cross boundary derivatives. The non-linearity of such condi-

tions makes e�cient optimization di�cult if not practically impossible. On discrete meshes

however, we can derive local interpolants according to local parameterizations (charts)

which gives the freedom to adapt the parameterization individually to the local geometry

and topology.

In the following we will shortly describe the concept of discrete fairing which is an e�cient

way to characterize and compute dense point sets on high quality surfaces that observe

prescribed interpolation or approximation constraints. We then show how this approach

can be exploited in several relevant �elds within the area of free form surface modeling.

The overall objective behind all the applications will be the attempt to avoid, bypass, or

at least delay the mathematically involved generation of spline CAD-models whenever it

is appropriate. Especially in the early design stages it is usually not necessary to have an

explicit parameterization of a surface. The focus on polygonal mesh representations might

help to free the creative designer from being con�ned by mathematical restrictions. In later

stages the conversion into a spline model can be based on more reliable information about

the intended shape. Moreover, since technical engineers are used to perform numerical

simulations on polygonal approximations of the true model anyway, we also might �nd

short-cuts that allow to speed up the turn-around cycles in the design process, e.g., we

could alter the shape of a mechanical part by modifying the FE-mesh directly without

converting back and forth between di�erent CAD-models.

2 Fairing triangular meshes

The observation that in many applications the global fairness of a surface is much more im-

portant than in�nitesimal smoothness motivates the discrete fairing approach [10]. Instead

of requiring G

1

or G

2

continuity, we simply approximate a surface by a plain triangular

C

0

{ mesh. On such a mesh we can think of the (discrete) curvature being located at the
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vertices. The term fairing in this context means to minimize these local contributions to

the total (discrete) curvature and to equalize their distribution across the mesh.

We approximate local curvatures at every vertex p by divided di�erences with respect to

a locally isometric parameterization �

p

. This parameterization can be found by estimating

a tangent plane T

p

(or the normal vector n

p

) at p and projecting the neighboring vertices

p

i

into that plane. The projected points yield the parameter values (u

i

; v

i

) if represented

with respect to an orthonormal basis fe

u

; e

v

g spanning the tangent plane

p

i

� p = u

i

e

u

+ v

i

e

v

+ d

i

n

p

:

Another possibility is to assign parameter values according to the lengths and the angles

between adjacent edges (discrete exponential map) [15, 10].

To obtain reliable curvature information at p, i.e., second order partial derivatives with

respect to the locally isometric parameterization �

p

, we solve the normal equation of the

Vandermonde system
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by which we get the best approximating quadratic polynomial in

the least squares sense. The rows of the inverse matrix (V

T

V )
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] by which

the Taylor coe�cients f

�

of this polynomial are computed from the data [d

i

]

i

, contain the

coe�cients of the corresponding divided di�erence operators �

�

.

Computing a weighted sum of the squared divided di�erences is equivalent to the discrete

sampling of the corresponding continuous fairness functional. Consider for example
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Notice that the value of (1) is independent of the particular choices fe

u

; e

v

g for each ver-

tex due to the rotational invariance of the functional. The discrete fairing approach can

be understood as a generalization of the traditional �nite di�erence method to parametric

meshes where divided di�erence operators are de�ned with respect to locally varying pa-

rameterizations. In order to make the weighted sum (1) of local curvature values a valid

quadrature formula, the weights !

i

have to re
ect the local area element which can be

approximated by observing the relative sizes of the parameter triangles in the local charts

�

p

: p

i

� p 7! (u

i

; v

i

).

Since the objective functional (1) is made up of a sum over squared local linear combinations

of vertices (in fact, of vertices being direct neighbors of one central vertex), the minimum is

characterized by the solution of a global but sparse linear system. The rows of this system

are the partial derivatives of (1) with respect to the movable vertices p

i

. E�cient algorithms

are known for the solution of such systems [6].
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3 Applications to free form surface design

When generating fair surfaces from scratch we usually prescribe a set of interpolation

and approximation constraints and �x the remaining degrees of freedom by minimizing an

energy functional. In the context of discrete fairing the constraints are given by an initial

triangular mesh whose vertices are to be approximated by a fair surface being topologically

equivalent. The necessary degrees of freedom for the optimization are obtained by uniformly

subdividing the mesh and thus introducing new movable vertices.

The discrete fairing algorithm requires the de�nition of a local parameterization �

p

for each

vertex p including the newly inserted ones. However, projection into an estimated tangent

plane does not work here, because the �nal positions of the new vertices are obviously not

known a priori. In [10] it has been pointed out that in order to ensure solvability and stability

of the resulting linear system, it is appropriate to de�ne the local parameterizations (local

metrics) for the new vertices by blending the metrics of nearby vertices from the original

mesh. Hence, we only have to estimate the local charts covering the original vertices to

set-up the linear system which characterizes the optimal surface. This can be done prior

to actually computing a solution and we omit an additional optimization loop over the

parameterization.

When solving the sparse linear system by iterative methods we observe rather slow conver-

gence. This is due to the low-pass �lter characteristics of the iteration steps in a Gau�-Seidel

or Jacobi scheme. However since the mesh on which the optimization is performed came

out of a uniform re�nement of the given mesh (subdivision connectivity) we can easily �nd

nested grids which allow the application of highly e�cient multi-grid schemes [6].

Moreover, in our special situation we can generate su�ciently smooth starting con�gura-

tions by midpoint insertion which allows us to neglect the pre-smoothing phase and to

reduce the V-cycle of the multi-grid scheme to the alternation of binary subdivision and

iterative smoothing. The resulting algorithm has linear complexity in the number of gen-

erated triangles.

The advantage of this discrete approach compared to the classical fair surface generation

based on spline surfaces is that we do not have to approximate a geometric functional that

uses true curvatures by one which replaces those by second order partial derivatives with

respect to the �xed parameterization of the patches. Since we can use a custom tailored

parameterization for each point evaluation of the second order derivatives, we can choose

this parameterization to be isometric | giving us access to the true geometric functional.

Figure 1 shows an example of a surface generated this way. The implementation can be done

very e�ciently. The shown surface consists of about 50K triangles and has been generated

on a SGI R10000 (195MHz) within 10 seconds. The scheme is capable of generating an

arbitrarily dense set of points on the surface of minimal energy. It is worth to point out

that the scheme works completely automatic: no manual adaption of any parameters is

necessary, yet the scheme produces good surfaces for a wide range of input data.

4 Applications to interactive modeling

For subdivision schemes we can use any triangular mesh as a control mesh roughly describ-

ing the shape of an object to be modeled. The 
exibility of the schemes with respect to the

connectivity of the underlying mesh allows very intuitive modi�cations of the mesh. The
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Fig. 1 A fair surface generated by the discrete fairing scheme. The 
exibility of the algorithm allows to

interpolate rather complex data by high quality surfaces. The process is completely automatic and it

took about 10 sec to compute the re�ned mesh with 50K triangles. On the right you see the re
ection

lines on the �nal surface.

designer can move the control vertices just like for Bezier-patches but she is no longer tied

to the common restrictions on the connectivity which is merely a consequence of the use of

tensor product spline bases.

When modeling an object by Bezier-patches, the control vertices are the handles to in
uence

the shape and the de Casteljau algorithm associates the control mesh with a smooth surface

patch. In our more general setting, the designer can work on an arbitrary triangle mesh

and the connection to a smooth surface is provided by the discrete fairing algorithm. The

advantages are that control vertices are interpolated which is a more intuitive interaction

metaphor and the topology of the control structure can adapt to the shape of the object.

Figure 2 shows the model of a mannequin head. A rather coarse triangular mesh allows

already to de�ne the global shape of the head (left). If we add more control vertices in the

areas where more detail is needed, i.e., around the eyes, the mouth and the ears, we can

construct the complex surface at the far right. Notice how the discrete fairing scheme does

not generate any artifacts in regions where the level of detail changes.

Fig. 2 Control meshes with arbitrary connectivity allow to adapt the control structure to the geometry

of the model. Notice that the in
uence of one control vertex in a tensor product mesh is always

rectangular which makes it di�cult to model shapes with non-rectangular features.
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5 Applications to mesh smoothing

In the last sections we saw how the discrete fairing approach can be used to generate fair

surfaces that interpolate the vertices of a given triangular mesh. A related problem is to

smooth out high frequency noise from a given detailed mesh without further re�nement.

Consider a triangulated surface emerging for example from 3D laser scanning or iso-surface

extraction out of CT volume data. Due to measurement errors, those surfaces usually show

oscillations that do not stem from the original geometry.

Constructing the above mentioned local parameterizations, we are able to quantify the

noise by evaluating the local curvature. Shifting the vertices while observing a maximum

tolerance can reduce the total curvature and hence smooth out the surface. From a signal

processing point of view, we can interpret the iterative solving steps for the global sparse

system as the application of recursive digital low-pass �lters [13]. Hence it is obvious that

the process will reduce the high frequency noise while maintaining the low frequency shape

of the object.

Figure 3 shows an iso-surface extracted from a CT scan of an engine block. The noise is

due to inexact measurement and unstabilities in the extraction algorithm. The smoothed

surface remains within a tolerance which is of the same order of magnitude as the diagonal

of one voxel in the CT data.

Fig. 3 An iso-surface extracted from a CT scan of an engine block. On the left, one can clearly see the noise

artifacts due to measurement and rounding errors. The right object was smoothed by minimizing the

discrete fairing energy. Constraints on the positional delocation were imposed.

6 Applications to surface interrogation

Deriving curvature information on a discrete mesh is not only useful for fair interpolation

or post-processing of measured data. It can also be used to visualize artifacts on a surface

by plotting the color coded discrete curvature directly on the mesh. Given for example the

output of the numerical simulation of a physical process: since deformation has occurred

during the simulation, this output typically consists merely of a discrete mesh and no

continuous surface description is available.
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Using classical techniques from di�erential geometry would require to �t an interpolating

spline surface to the data and then visualize the surface quality by curvature plots. The

availability of samples of second order partial derivatives with respect to locally isometric

parameterizations at every vertex enables us to show this information directly without the

need for a continuous surface.

Figure 4 shows a mesh which came out of the FE-simulation of a loaded cylindrical shell. The

shell is rigidly supported at the boundaries and pushed down by a force in normal direction

at the center. The deformation induced by this load is rather small and cannot be detected

by looking, e.g., at the re
ection lines. The discrete mean curvature plot however clearly

reveals the deformation. Notice that histogram equalization has been used to optimize the

color contrast of the plot.

Fig. 4 Visualizing the discrete curvature on a �nite element mesh allows to detect artifacts without inter-

polating the data by a continuous surface.

7 Applications to hole �lling and blending

Another area where the discrete fairing approach can help is the �lling of unde�ned regions

in a CAD model or in a measured data set. Of course, all these problems can be solved

by fairing schemes based on spline surfaces as well. However, the discrete fairing approach

allows one to split the overall (quite involved) task into simple steps: we always start by

constructing a triangle mesh de�ning the global topology. This is easy because no G

1

or

higher boundary conditions have to be satis�ed. Then we can apply the discrete fairing

algorithm to generate a su�ciently dense point set on the objective surface. This part

includes the re�nement and energy minimization but it is almost completely automatic and

does not have to be adapted to the particular application. In a last step we �t polynomial

patches to the re�ned data. Here we can restrict ourselves to pure �tting since the fairing

part has already been taken care of during the generation of the dense data. In other words,

the discrete fairing has recovered enough information about an optimal surface such that

staying as close as possible to the generated points (in a least squares sense) is expected

to lead to high quality surfaces. To demonstrate this methodology we give two simple

examples.

First, consider the point data in Figure 5. The very sparsely scattered points in the middle

region make the task of interpolation rather di�cult since the least squares matrix for
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a locally supported B-spline basis might become singular. To avoid this, fairing terms

would have to be included into the objective functional. This however brings back all the

problems mentioned earlier concerning the possibly poor quality of parameter dependent

energy functionals and the prohibitive complexity of non-linear optimization.

Alternatively, we can connect the points to build a spatial triangulation. Uniform subdivi-

sion plus discrete fairing recovers the missing information under the assumption that the

original surface was su�ciently fair. The un-equal distribution of the measured data points

and the strong distortion in the initial triangulation do not cause severe instabilities since

we can de�ne individual parameterizations for every vertex. These allow one to take the

local geometry into account.

Fig. 5 The original data on the left is very sparse in the middle region of the object. Triangulating the points

in space and discretely fairing the iteratively re�ned mesh recovers more information which makes

least squares approximation much easier. One the right, re
ection lines on the resulting surface are

shown.

Another standard problem in CAD is the blending or �lleting between surfaces. Consider the

simple con�guration in Figure 6 where several plane faces (dark grey) are to be connected

smoothly. We �rst close the gap by a simple coarse triangular mesh. Such a mesh can easily

be constructed for any reasonable con�guration with much less e�ort than constructing

a piecewise polynomial representation. The boundary of this initial mesh is obtained by

sampling the surfaces to be joined.

We then re�ne the mesh and, again, apply the discrete fairing machinery. The smoothness

of the connection to the prede�ned parts of the geometry is guaranteed by letting the blend

surface mesh overlap with the given faces by one row of triangles (all necessary information

is obtained by sampling the given surfaces). The vertices of the triangles belonging to

the original geometry are not allowed to move but since they participate in the global

fairness functional they enforce a smooth connection. In fact this technique allows to de�ne

Hermite-type boundary conditions.

8 Conclusion

In this paper we gave a survey of currently implemented applications of the discrete fair-

ing algorithm. This general technique can be used in all areas of CAD/CAM where an

approximation of the actual surface by a reasonably �ne triangular mesh is a su�cient
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Fig. 6 Creating a \monkey saddle\ blend surface to join six planes. Any blend surface can be generated by

closing the gap with a triangular mesh �rst and then applying discrete fairing.

representation. If compatibility to standard CAD formats matters, a spline �tting post-

process can always conclude the discrete surface generation or modi�cation. This �tting

step can rely on more information about the intended shape than were available in the

original setting since a dense set of points has been generated.

As we showed in the previous sections, mesh smoothing and hole �lling can be done on the

discrete structure before switching to a continuous representation. Hence, the bottom line

of this approach is to do most of the work in the discrete setting such that the mathemat-

ically more involved algorithms to generate piecewise polynomial surfaces can be applied

to enhanced input data with most common artifacts removed.

We do not claim that splines could ever be completely replaced by polygonal meshes but

in our opinion we can spare a considerable amount of e�ort if we use spline models only

where it is really necessary and stick to meshes whenever it is possible. There seems to be

a huge potential of applications where meshes do the job if we �nd e�cient algorithms.

The major key to cope with the genuine complexity of highly detailed triangle meshes is

the introduction of a hierarchical structure. Hierarchies could emerge from classical multi-

resolution techniques like subdivision schemes but could also be a by-product of mesh

simpli�cation algorithms.

An interesting issue for future research is to �nd e�cient and numerically stable methods

to enforce convexity preservation in the fairing scheme. At least local convexity can easily

be maintained by introducing non-linear constraints at the vertices.

Prospective work also has to address the investigation of explicit and reliable techniques to

exploit the discrete curvature information for the detection of feature lines in the geometry

in order to split a given mesh into geometrically coherent segments. Further, we can try to

identify regions of a mesh where the value of the curvature is approximately constant |

those regions correspond to special geometries like spheres, cylinders or planes. This will

be the topic of a forthcoming paper.
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