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Abstract

In this paper we present an indirect volume visualiza-
tion method, based on the deformable surface model, which
is a three dimensional extension of the snake segmentation
method. In contrast to classical indirect volume visualiza-
tion methods, this model is not based on iso-values but on
boundary information. Physically speaking it simulates a
combination of a thin plate and a rubber skin, that is in-
fluenced by forces implied by feature information extracted
from the given data set. The approach proves to be appro-
priate for data sets that represent a collection of objects
separated by distinct boundaries. These kind of data sets
often occur in medical and technical tomography, as we will
demonstrate by a few examples.

We propose a multilevel adaptive finite difference solver,
which generates a target surface minimizing an energy
functional based on an internal energy of the surface and
an outer energy induced by the gradient of the volume. This
functional tends to produce very regular triangular meshes
compared to results of the marching cubes algorithm. It
makes this method attractive for meshing in numerical sim-
ulation or texture mapping. Red-green triangulation allows
an adaptive refinement of the mesh. Special considerations
have been made to prevent self inter-penetration of the sur-
faces.

1. Introduction

Many technical and medical tomographic measurement
techniques generate large volumetric scalar valued data sets,
that have to be interpreted by means of visualization meth-
ods.

For the visualization of volumetric data sets two main
categories of methods are in use: the direct and the indirect
visualization methods. The direct methods are mostly based
on variations of the volume ray-casting technique (Kauf-
mann [7]). The indirect visualization methods extract geo-
metric objects from the data set to be visualized. The ad-

vantage of indirect visualization methods is the possibility
to recover relevant surface manifolds and the ease of dis-
play. In consequence the crucial question in indirect vol-
ume visualization is how to find meaningful surfaces. Up
to now mainly iso-surfaces have been used for visualiza-
tion purposes. They are a powerful tool for data sets with
smoothly varying function values, a heat flux simulation for
instance, but they turn out to be problematic in data sets
with large gradients. In these kind of data sets the bound-
ary information is usually of interest. Using the iso-surface
approach would require to adjust an iso-value to obtain a
specific boundary, which is not always possible.

The most common iso-surface extraction scheme, that
is in use today is the marching cubes algorithm (Lorensen
et al. [9]). Most research in indirect volume visualization
has been done in the area of the acceleration of iso-surface
extraction and decimation. One popular acceleration tech-
nique is to presort the cells according to the value range of
the volume in order to eliminate cells in advance, that do
not contribute triangles to the requested iso-surface (Wil-
helm et. al [21] and Shen et al. [15]). Another accelera-
tion technique is the decimation of the produced polygons
in a post processing step as done by Schroeder [12, 13] or
the adaptive reduction of the volume data itself to generate
fewer polygons more quickly as it was done by Cignoni et
al. [2] or Grosso et al. [5].

In contrast to the iso-surface approach, we are looking
for surfaces with different properties in this paper. Our aim
is to look for surfaces that match the boundaries of a sub-
volume. Those are indicated by large gradient magnitude.
This contour model has been developed in the pattern recog-
nition community and is known as the snake concept for
the two dimensional case (Kass et al. [6]). The snake is
a curve that minimizes a potential energy, which consists
of an internal and an external part. The external part is
the negative of the gradient magnitude. This attracts the
snake to the boundaries. Many considerations concerning
this external force can be found in Cohen et al. [3]. Inter-
nal forces are introduced to stabilize the convergence of this
method. These forces tend to minimize a weighted sum of



the first and second order derivatives of the curve. The ex-
ternal forces account for the structure of the data while the
internal forces provide some global regularization proper-
ties (see also Neuenschwander [10]).

First extensions of this concept to three dimensions were
based on surfaces with spine topology, which yields a three
dimensional model, whose projection into an image plane
fits a given image (Terzopoulus et al. [18]).

An application of this concept to tomographical data sets
has been presented in Snell et al. [16]. They segment brain
surfaces of MRI scans by deforming an initial brain atlas,
that is parameterized over four individual domains.

In our approach we are using manifolds of arbitrary
topology. This approach is intended for visualization pur-
poses. Special consideration will be paid to the generated
triangular grid to be well shaped and to prevent self inter-
penetration of the surface. In order to apply the finite differ-
ence technique, we adopt the local reparameterization ap-
proach proposed by Neuenschwander [10].

An approach that uses adaptive refinement for the sur-
face, has been presented by Sardajoen at al. [11]. In con-
trast to our goal, they do not use internal energy terms,
and just approximate iso-surfaces from scalar data fields.
The displacement vectors of the vertices are computed us-
ing a Newton iteration scheme with the correction vector
projected on the surface normal direction. As a refinement
criterion an error estimator based on the face size and the
remaining distance to the target surface is used. We will
use an error estimator based on the local curvature of the
surface instead.

In section 2 we introduce the mathematical concept of
the deformable surface and its discretization. We first ex-
plain the continuous formulation of the minimization prob-
lem. From this formulation we then derive the discrete rep-
resentation of the problem. The resulting equation has a
linear left hand side and a non-linear right hand side. In or-
der to solve this system we use a nested iteration scheme,
that applies a Gauss-Seidel-type iteration to solve the over-
all system. Each single step during this outer loop is eval-
uated using a fix-point iteration. This is necessary because
of the non-linear inhomogenity on the right hand side. A
methodology to prevent self intrusion of the surface will
also be presented here. Section 3 will cover the construc-
tion of a multi-level finite difference solver, including the
refinement criterion, the refinement operation and the effi-
cient construction of appropriate finite difference weights.
In Section 4 we will show a few examples to demonstrate
the behavior of the algorithm and the quality of the gen-
erated meshes. A medical and a technical application will
also be presented there.

2. Deformable Surfaces

Let the volume to be analyzed be described by a function
f : R

3

! R, and a surface byv : 
 � R

2

! R

3. The sur-
facev has to minimize the following functional (Terzopou-
los [17]):
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the potential field induced by the volume dataf . Therv
term denotes a membrane term that tends to minimize the
surface area, which simulates the behavior of a rubber skin.
The term((�v

(i)

)

2

� 2H(v

(i)

) denotes the total curvature
and simulates a thin plate. The coefficient� is a balancing
factor, which controls the relative influence of the rubber
skin and the thin plate aspect. Both terms stabilize the op-
timization process. The external energy termP is defined
as:

P (v) = �(w

edge

kr(G

�

� f(v))k+ w

image

f(v)) ;

whereG
�

denotes a Gaussian kernel with variance�. The
kernel is used to generate a smooth potential field out of the
data, which will improve the convergence of the iterative
solver. This makes the approximation of the gradient by
finite differences more reliable and enlarges the regions of
attraction near sharp boundaries in the volume data set. The
second part of the potential field term may be used to detect
regions with high intensity values. The coefficientw

edge

weights the impact of the boundary influence and the coef-
ficientw

image

describes the direct influence of the intensity
value of the data set.

In order to solve the described problem we derive the
corresponding Euler-Lagrange differential equation

��v � (1� �)�

2

v =

@P

@v

; (1)

where we combined the three equations corresponding to
the partial derivatives with respect to the components ofv.
This differential equation lacks a well defined solution in
the absence of boundary conditions. In our approach we use
boundary conditions at singular points in the beginning of
the iteration process. Consequently we do not get a classical
but just a weak solution to this problem (see Neunschwan-
der [10]).

We use a finite difference method to solve this differen-
tial equation system. The discretization results in a weakly
non-linear equation system. The iteration matrix itself
would be linear, but we have the non-linear inhomogene-
ity P . The valuesv are the degrees of freedom at a finite set
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Figure 1. Example difference star for the dis-
crete Laplacian operator

of given vertices and have to be computed by the iteration
process.

In order to approximate this system of differential equa-
tions, we need a discrete representation of the differential
operators in terms of divided differences. We are making
use of the Umbrella functionU to achieve this aim (Kobbelt
[8], Neuenschwander [10] ). The Umbrella functionU is
defined as follows:

U(p) :=

1

n

X

i

q

i

� p ; (2)

wherep contains the coordinates of the considered ver-
tex andq

i

are the neighbors in the triangular mesh we
use to represent the surface withn being the total number
of neighbors (valence ofp). The Umbrella function has
been constructed directly from the difference star shown in
Fig. 1. The Umbrella ofp is a discrete approximation of
the Laplacian if we assume a symmetric parameterization
of the neighborhood ofp, i.e we will associate the adjacent
vertexq
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An approximation of the�2 Operator can be computed by
the recursive application of the Umbrella operator

U

2

(p) :=

1

n

X

i

U(q

i

)� U(p) (4)

We assume the external force to be constant and compute
the correction vectorc for every vertex by iteration. This
way one approximates a solution for the discrete version of
(1).

�
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2

�
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k
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wherep
k

corresponds to thek-th row of the equation sys-
tem. As the following equations hold
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andn
i

the valence of thei-th neighbor ofq
i

, we can solve
equation (5) forc and get the following representation

c = 
(�c

1

+ (1� �)�c

2

�rP ) ; (7)

where the correction vectorsc
1

,c
2

are defined as follows:

c

1

= U(p) (8)

c
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2
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The coefficient
 is a damping factor that has to be chosen
small enough to guarantee for the convergence of the iter-
ation procedure (Fix-point theory of Banach). The damp-
ing coefficient
 is also frequently called a viscosity term,
which is a more physical interpretation.

The correction vectors are equivalent to the solutions,
that satisfy the following equations:

U(p+ c

1

) = 0 (10)

U

2

(p+ c

2

) = 0 (11)

The corrected position of the vertexp can then be computed
according to:

~p = p+ c

The applied iteration method results in fact in a Gauss-
Seidel iterator without the need to construct the iteration
matrix explicitly. Since (7) gives rise to a fix-point iter-
ation to compute the solution of one row of the system,
the approximation procedure results in two nested iteration
schemes. The outer loop is the Gauss-Seidel scheme and
the inner one is the approximative solution of a non-linear
equation. This contribution is computed using a fix-point
iteration scheme.

This fix-point iteration should be repeated several times
within every step of the Gauss-Seidel iteration. But in
our case, we decided to just perform one single iteration
step since the boundary conditions also change during the
Gauss-Seidel iteration, that encapsulates this fix-point iter-
ation.

During each iteration the positions of all vertices are cor-
rected exactly once, using the computed correction vector.

2.1. Preventing self-intersections

The definition of the Umbrella functional guarantees for
a stable triangulation of the surface, if the geometry of the
mesh and of the surface to be extracted are already quite
similar. The only component that might cause trouble is the
impact of the potential function. As the additional impact
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(a) Shaded self intersecting
surface

(b) Shaded non self intersect-
ing surface

(c) Self intersecting surface (d) Surface without self inter-
section

Figure 2. The problem of self intersecting sur-
faces

vector is not necessarily orthogonal to the surface the trian-
gular mesh may be distorted.This problem is illustrated in
Fig. 2(c).

The first experiments were done using just the compo-
nent of the potential gradient, that points into the direction
of the estimated surface normal at this vertex as suggested
in (Sardajoen [11]). This approach prevented the surface
from becoming distorted, when the convergence of the iter-
ation method was already almost achieved. But during this
conversion process a another problem might occur as shown
in Fig. 3.

We suggest an approach which first computes the scalar
product of the potential gradient with the correction vec-
tor, that emerges from the Umbrella function. If the result
is positive, the direction of this correction vector is used,
otherwise the estimated surface normal will designate the
direction of correction. By using the Umbrella vector the
anomaly as shown in Fig. 3 is avoided, on the other hand
using the umbrella vector even if the resulting scalar product
is negative, existing anomalies would become even stronger
and would possibly lead to self intrusion, in this case an av-

target surface

Figure 3. The problem of using the normal
vector direction during the iteration process

eraged normal vector of the bordering triangles appeared to
be more stable. A resulting triangle mesh for the same ex-
ample as in Fig. 2(c) is shown in Fig. 2(d). In this image
we have already used an adaptive triangulator, that will be
described in section 3.

3. Hierarchical Approximation

The multilevel approach for discretizing partial differen-
tial equations has especially become popular in the finite
element community the last few years (see Bank [1]). Be-
sides the ability to accelerate numerical solution, we also
want to automate the decision about the discretization gran-
ularity. The approach first computes the low frequency con-
tribution of the final solution on the coarse grid. The higher
frequency contributions are added later on during the com-
putation on the finer grids.

In this paper we are using the main ideas of the multi
level approach for the generation of the final surface. The
first iterations are done on a coarse grid, that is then re-
fined at positions indicated by a local error estimator. The
initial surface used for the iteration process is generated
using a semi-automatic modeling tool, which will be de-
scribed briefly in the next sub-section. A special triangula-
tion method is used to avoid T-vertices in the new generated
grid. The initial values on the finer grid are computed from
the coarser grid using a subdivision-scheme. The weights
for the finite difference operators (see eqs. 2, 4) are con-
structed according to the local connectivity.

In order to implement a local refinement strategy a crite-
rion for deciding where to refine the mesh is required. The
standard approach used is to construct an error estimator
either based on higher order basis functions (p-method) or
temporary local refinement (h-method) (see Verfürth [20]).
We have decided to use the influence of the inner forces
during the last iteration as some kind of local error estima-
tor to avoid computational overhead. We stop iteration and
initiate mesh refinement, if the average correction during
the last Gauss-Seidel iteration has become very small. If
there is a high impact of the inner forces (local distortion)
on a particular vertex during the last iteration, this gener-
ally means that there also is a strong contour force implied
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(a) Shaded surface of uniform
refinement

(b) Shaded surface of adap-
tive refinement

(c) Uniform refinement (d) Adaptive refinement

Figure 4. Uniform vs. adaptive mesh refine-
ment

by the potential field, which is approximately the same size
and compensates the inner force (actio=reactio). This is an
indication that finer detail is present in the neighborhood of
that vertex. A triangle is marked for refinement, if the aver-
age indicator value of its vertices is above a given threshold.
In Fig. 4 the result of an adaptively and uniformly refined
surface is shown. The refinement concentrates in regions of
high curvature.

The local mesh refinement is performed using a red-
green triangulator, which especially avoids the problem of
T-vertices (see Verfürth [20]). This triangulation method
consists of two different refinement rules. The red refine-
ment rule subdivides a triangle into four sub-triangles. This
rule is applied to triangles, that have been marked by the
local error estimator. The green refinement rule is applied
to triangles, that are next to the triangles which are red re-
fined. The green refined triangles are divided into two sub-
triangles to avoid the T-vertex (see Fig. 5). In order to con-
trol the aspect ratio of the triangulation green refined trian-
gles must not be refined again. If a green triangle is marked
for refinement, the green-cut is undone and a complete red-
cut is performed instead. This approach is related to the one

red

red

green
green

green

green

Figure 5. Red and Green refinement

described in Vasilescu et. al. [19].
On the irregularly refined grid, the finite difference

scheme has to be adapted, as the underlying parameteriza-
tion can no longer be assumed to be symmetric (see eq. 3).
If no special care is taken especially for the vertices con-
necting a red and green refined triangle, they would tend to
drift, and would severely distort the adjacent triangles. The
weights of a vertex which is separating a red and a green tri-
angle are therefore adjusted as proposed in Fig. 6(a). These
weights can be computed by differentiating the interpolat-
ing polynomials, as it is traditionally done in the construc-
tion of divided difference operators (see Schwarz [14]).

Also special considerations have to be made for the op-
posite corner of a green refined triangle, to keep the differ-
ence scheme balanced. In this case, we have decided to give
this former T-vertex a weight of zero (see Fig. 6(b)). This is
necessary to avoid the influence of the finer resolved cell to
the coarser one and to keep the difference scheme balanced.
In general non-symmetric Umbrella masks become neces-
sary, if the neighboring vertices are not all from the same
generation.

The decision which mask of weights to choose during
the calculation can be easily done by labeling the vertices.
In the initial mesh all vertices are labeledN . If a triangle
is refined red, all new vertices are also labeledN . If a tri-
angle is refined green, the newly generated vertex is labeled
M , the vertices that are on the same edge of this vertex are
labeledC and the vertex, that is on the opposite site of the
triangle is labeledD (see Fig. 7).

The resulting weights can then be determined using the
look up table 1. This table allows to correctly handle most
cases. Fot the sake of efficiency, we ignore some rare spe-
cial cases of cascading refinement level boundaries. This
does not effect the resulting mesh significantly.

In consequence of this generalization of the Umbrella
functional the equation (2), which represents the Umbrella
functional now becomes the non-uniform Umbrella

U(p) =

1

P

i

w

i

X

i

w

i

q

i

� p
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(a) Differentiation weights for typeM
vertex
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(b) Differentiation weights for typeD ver-
tex
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Figure 6. The differentiation weights in the case of the irre gular refined cells
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N
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Figure 7. Labelization of the vertices

wherew
i

are the weights according to the modified differ-
ence schemes. Equations (4) and (6) change accordingly.

The position of the new vertices are inserted according
to the subdivision scheme shown in Fig. 8, which has been
proposed in Dyn et al. [4]. This scheme tends to generate a
smooth surface. The butterfly subdivision step is applied as
a prolongation operator, that generally generates better ini-
tial values than simple linear interpolation. The final vertex

 N C M D

N 1 1 1 1
C 2 2 2 1
M 1 2 0 1
D 1 1 0 1

Table 1. Look up table for the interpolation
coefficients

position is computed by the iterative solver.

3.1. Generation of the Initial Surface

In order to apply the deformable surface algorithm, an
initial surface with a coarse triangulation has to be defined
first. This surface has to be in the neighborhood of the final
destination surface. First the user selects some boundary
points using a slicing tool, that is shown in Fig. 9. The
selected vertices are than connected using a Delaunay tetra-
hedrization. In order to model non-convex structures, tetra-
hedra may be deleted by the user in a post processing step.
The deletion of tetrahedra is done again by picking into the
slicing view to delete individual tetrahedra. The positions
of the tetrahedra are indicated by color. This technique is
related to the modeler presented in Neuenschwander [10],
except the fact, that Neuenschwander deletes the tetrahedra
in the three dimensional surface view, without the ability
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Figure 8. Butterfly subdivision scheme

to control the correctness in the slicing view. If the user
is finally satisfied with the result, the outer surface of the
tetrahedra complex is used as an initial surface.

4. Results

We have applied the deformable surface algorithm to
medical and technical data sets as shown in Fig 10. By
modeling different initial meshes different structures may
be extracted from the same data set. The three parts of the
engine block are extracted from the same data set. The deci-
sion, which structure has to be visualized is done by editing
the initial surface appropriately. The surface tends to drift
towards the closest boundary with respect to its starting po-
sition.

We have implemented this algorithm in C++ using the
Open Inventor library as a means of displaying the gener-
ated surfaces. This provides the possibility to tune the pa-
rameters during the iteration process and the possibility to
generate an Inventor file description of the generated sur-
face that may be used later on.

As a performance result we have measured1:4 seconds
for an iteration with12288 triangles and5:9 seconds for a
surface with49152 triangles. These times have been mea-
sures on a 175 MHz R10000 SGI O2. It is difficult to give
an estimation for the overall construction of a complete sur-
face, as the computation time is influenced by the requested
quality. The finer the subdivision is done, the more time is
required. The overall time also depends on the quality of
the surface to be approximated, as different surfaces require
a different amount of iterations. As a rule of a thumb it can
said that about40 iterations are appropriate between two
sub-division steps. In lower resolutions there are fewer and
in higher resolutions there are more iterations necessary as
finer details are added to the surface. The segmentation of
the brain took about half an hour including user-interaction
to adopt the parameters of the iterative solver during the

computation. Processing the engine block took about 20
minutes. The required time is not comparable to the perfor-
mance of the marching cubes algorithm and its variations,
however in general these surfaces can not be extracted by
an iso-surface algorithm. This is especially true for the
extraction of the brain surface of the MRI scan. An iso-
surface extraction algorithm like the marching cubes gen-
erates surfaces that indicate a distinct value within the data
set and does not represent boundary information, which is
usually of higher interest in data sets, that represent certain
objects. The intensity values may differ along a boundary in
the algorithm presented here, which does not influence the
appearance as the iso-surface approach would. In contrast
to the iso-surface approach our algorithm tends to generate
smooth surfaces, which are tolerant to small disturbances in
the analyzed data set. An iso-surface extraction algorithm is
not able to isolate single connected objects as our algorithm
does.

The last two images show a comparison of the generated
triangular mesh of the marching cubes algorithm and the
energy minimization approach. The iso-value has been ad-
justed to show the head surface of the MRI-scan. For the
deformable surface approach, the initial surface has been
wrapped around the head. Our algorithm generates a much
more regular triangulation than the marching cubes does,
what makes this technique especially interesting for texture-
mapping and numerical applications. In Fig. 10(f) an adap-
tive triangulation of a cube side is shown. This image
clearly shows the stability of the triangulation, especially
at the borders of redly and greenly refined triangles.

As a rule of the thumb we figured out, that the damping
factor
 should be about0:05 � 0:1. This damping factor
influences the step size during the iteration. A smaller value
reduces the convergence rate. If the value is too high the it-
eration scheme behaves unstable, as the Lipschitz constant
of the iteration scheme is no longer smaller than one. The
factor� should be around0:05�0:2, but the algorithm does
not behave sensitive with respect to changes of the param-
eters. If the factor� is zero, then the surface simulates a
pure thin plate, that tends to minimize surface curvature. If
� is one, this approach simulates a pure rubber skin, that
tends to minimize the area of the surface. Any other value
simulates a mixture of these two aspects.

5. Conclusions and Future Work

In this paper we have presented a new indirect volume vi-
sualization method, that is based on the deformable surface
approach. We have described how to construct an adaptive
multi-level finite difference solver and demonstrated the ap-
plicability for medical and technical data sets. This visual-
ization method is a general approach suitable for a great
variety of scalar data sets, that contain boundaries.
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Figure 9. The user interface of the slicing tool

As future work we plan to use the generated surfaces for
texture mapping and parameterization purposes. First ex-
periments have also shown the ease of converting the Inven-
tor description to a VRML description, which might offer
the possibility of web based applications for this method.
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(a) Engine Block (b) Exhaust of Engine (c) Engine Configuration

(d) Brain of MRI scan (e) Brain Seen from Below (f) Adaptive Triangulation

(g) Head of MRI Scan (h) Marching Cubes Mesh (i) Energy Minimizing Surface Mesh

Figure 10. Applications of the energy minimizing surface al gorithm
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