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Figure 1: Overview of our Dual Strip Weaving approach for the design of quadrilateral patch layouts. a) When hovering over the object, the
user is immediately presented with the best elastica strip (visualized using a stripe pattern) at the current pointer position. It can be selected
and fixed with a single click. b) Fixed strips (blue) constrain the design space; only compatible strips are offered next (green). c) Indicators
based on color-coding and stripe patterns guide the user to regions where modifications are recommended for the benefit of layout quality. d)
Finally, the implied quad layout structure is derived from a collection of strips. The accompanying video shows the entire process.
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Abstract

We introduce Dual Strip Weaving, a novel concept for the interac-
tive design of quad layouts, i.e. partitionings of freeform surfaces
into quadrilateral patch networks. In contrast to established tools
for the design of quad layouts or subdivision base meshes, which
are often based on creating individual vertices, edges, and quads,
our method takes a more global perspective, operating on a higher
level of abstraction: the atomic operation of our method is the cre-
ation of an entire cyclic strip, delineating a large number of quad
patches at once. The global consistency-preserving nature of this
approach reduces demands on the user’s expertise by requiring less
advance planning. Efficiency is achieved using a novel method at
the heart of our system, which automatically proposes geometri-
cally and topologically suitable strips to the user. Based on this
we provide interaction tools to influence the design process to any
desired degree and visual guides to support the user in this task.
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1 Introduction

Since the early days of Computer-Aided Geometric Design, the par-
titioning of a surface into (preferably few) quadrilateral patches (or
conversely: its composition thereof) has been an essential requi-
site and fundamental challenge. It is the tensor product nature of
smooth surface representations like Bézier, B-Spline, or NURBS
patches that established the need for such structures. Especially for
reverse engineering purposes, the efficient creation of such parti-
tionings has always been an important challenge, as outlined by [Li
et al. 2006]. Quad meshes, which have seen an increase in popu-
larity in recent years, sparked new interest in this problem. This is
due to the fact that semi-regular quad meshes, which contain an un-
derlying coarse quadrilateral base structure, i.e. which are a regular
refinement of a quad layout, provide advantages for various appli-
cation cases, as detailed in a recent survey [Bommes et al. 2013a].

A number of methods that tackle (variants of) this problem in an au-
tomatic manner have been proposed [Eck and Hoppe 1996; Boier-
Martin et al. 2004; Dong et al. 2006; Daniels et al. 2009; Tarini
et al. 2011; Bommes et al. 2011; Campen et al. 2012; Bommes
et al. 2013b]. Suitability of these methods’ results depends on the
application context. An inherent issue is that a good quad layout
generally is a compromise [Campen et al. 2012] that has to bal-
ance coarseness, patch rectangularity, feature and principal curva-
ture alignment, and possibly further objectives. The precise for-
malization of the relative importances of these aspects and further
requirements and side conditions in a certain application context is
not an easy task, nor is automatically finding the optimal layout, as-
suming such formal description and quality measure was available.

The field of quad mesh generation is related but essentially dif-
ferent: in this field one typically aims for rather uniformly sized
and shaped quads instead of a coarse network of potentially non-
uniform patches whose dimensions are rather implied by the ge-
ometry and global structural interdependencies. Despite these dif-
ferences, this field faces a very similar issue: a compromise be-
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tween alignment, orientation, and element shape needs to be found
[Bommes et al. 2009]. A solution which proved successful in prac-
tice was the inclusion of the user in the process – instead of aiming
for full automation. Major 3D sculpting packages like Pixologic’s
ZBrush or Pilgway’s 3D-Coat have recently been equipped with
quad remeshing features which follow this paradigm and rely on
high-level user interaction, e.g. regarding the specification of align-
ment and element sizing. This allows the user to tune the result to
meet the given requirements – even if no formal description thereof,
or no specialized optimization method therefor is available.

Unfortunately, while methods for quad mesh generation allow for
user influence (regarding edge flow, irregular vertex configurations,
element sizing, element anisotropy, etc.) [Bommes et al. 2009;
Zhang et al. 2010; Kovacs et al. 2011], even though not always at
interactive rates, existing methods targeted at the problem of quad
layout generation (e.g. [Eck and Hoppe 1996; Boier-Martin et al.
2004; Tarini et al. 2011; Campen et al. 2012]) neither are intended
for nor provide means for adequate user interaction.

1.1 Contribution

We introduce Dual Strip Weaving, a novel concept for the
computer-aided interactive design of quad layout structures on sur-
faces. Our system features novel interaction tools and provides
guides to effectively support the design process. It is based on
a dual perspective: a quad layout’s structure can be expressed by
its dual graph, consisting of dual edge loops (cf. Figure 2). This
view better exhibits the global connectivity-related interdependen-
cies of quad-only layouts [Murdoch et al. 1997]. In our work we
enrich these topological dual loops with a geometric dimension,
turning them into dual strips. We furthermore show that the model-
ing of dual loops by means of geodesics, as done in previous work
[Campen et al. 2012], is unsuited for the purpose of user-guided
design and instead model our dual strips based on discrete, bending
energy-minimizing elastica [Bruckstein et al. 2001]. This allows
us to automatically propose geometrically and topologically suit-
able strips to the user, enabling an efficient workflow.

The contribution of our work can be summarized as follows:

• A fast method for the construction of constrained elastica on
surfaces, without any restrictions on topology or homotopy.

• Novel support for boundaries and symmetries in the dual
loops/strips framework.

• Interaction tools and metaphors for incremental layout design,
supported by automatic background computations.

• Evaluation of intermediate design states and visualization of
the assessment to guide the user.

2 Related Work

A number of powerful methods for quad mesh generation have been
introduced [Bommes et al. 2013a]. Several of them, especially
those based on grid parameterizations [Kälberer et al. 2007], al-
low for user guidance, for instance regarding alignment [Bommes
et al. 2009], connectivity [Myles et al. 2010], or element sizing and
anisotropy [Zhang et al. 2010; Kovacs et al. 2011]. These possi-
bilities made such methods amenable for practical application, as
mentioned above.

For the generation of quad layouts, different methods, with a
stronger focus on coarseness than on element uniformity, have been
proposed [Eck and Hoppe 1996; Boier-Martin et al. 2004; Dong
et al. 2006; Daniels et al. 2009]. More recent works in this area

Figure 2: Basic concepts: quad layout, dual loops, dual strips.

[Campen et al. 2012; Tarini et al. 2011; Bommes et al. 2011] fur-
thermore take alignment to features and principal directions as well
as patch shape quality into account. User interaction is not provided
for in these approaches.

Methods for quad layout construction which do involve the user,
can be categorized based on the degree of user effort vs. automa-
tion. In some works a completely manual creation of the layout,
i.e. drawing of the individual layout vertices and edges on a surface
is described or assumed [Krishnamurthy and Levoy 1996; Bommes
et al. 2008]. In other works some support is provided, e.g. once the
vertices are positioned, edges between them can be proposed based
on principal directions [Tong et al. 2006], or once vertices to be
connected are indicated by the user, the corresponding edges can
be realized as geodesics [Li et al. 2006].

Construction approaches for subdivision base meshes are also re-
lated, but the difference between quad layouts and such base
meshes must not be missed: while, for instance, a torus can easily
be represented by a quad layout with just one patch, a subdivision
base mesh clearly needs to be finer. Furthermore, a small number of
non-quad faces can be acceptable in subdivision base meshes, but
not in quad-only layouts. Such meshes are often created by draw-
ing individual vertices and edges, sometimes aided by operators en-
abling the creation of multiple related elements at once. Recently,
a sketch-based system for a more efficient design of subdivision
base meshes was described [Takayama et al. 2013]. It provides var-
ious helpful guides and automatisms to reduce the user’s workload.
Specifically for character models a skeleton-based approach can be
of value, as shown by [Ji et al. 2010].

3 Concept

A design process with a user in the loop necessarily proceeds in-
crementally. This raises the question of what nature the increments
should be, or in other words:

What should be the atomic operations provided to the user?

In established modeling tools this is often answered like: the user
can create vertices, edges, and faces, and on a somewhat higher
level multiple faces can be created at once using splitting, extrusion,
and similar operators. In these cases, the user deals directly with the
individual elements of the layout.

A drawback of this approach is its fine granularity: the operators
are very local. Quad meshes and quad layouts, however, generally
have a rather constrained global structure [Murdoch et al. 1997]. As
this fact is not reflected in the local operators, it is up to the user to
plan ahead such that in the end all the locally constructed elements
meet up globally in a desirable manner. Large parts of the design
might have to be redone when the set of created quads comes to
form a non-quad region which cannot be quadrangulated without
adverse side-effects (irregular vertices, excessive refinement, etc.).
To cite [Takayama et al. 2013]: “it is often quite challenging even
for professional artists to manually design a perfect quad mesh on
the first try. Since the quality [...] is a global property, the correction
of a single mistake might require regeneration of the entire mesh.”



Inspired by the work of [Campen et al. 2012], who used global dual
loops for automatic quad layout construction, we propose to use
the creation of an entire dual strip as the atomic operation in
our interactive design system. In contrast to the established local
operators, this operator has a kind of built-in global consistency
(no non-quad patches are ever generated), effectively reducing the
burden of “planning ahead” for the user.

3.1 Dual Strips

A dual loop corresponds to a cyclic chain of quads in the primal
layout – cf. [Campen et al. 2012] for foundations and detailed def-
initions. The union of all the quad patches of such chain we call
dual strip, cf. Figure 2. We may say a dual loop is the spine of its
dual strip. Note that a quad patch of the primal layout corresponds
to an intersection region of two dual strips, crossing transversally.
From this point of view our goal of partitioning a surface into quad
patches is equivalent to doubly-covering the surface with dual
strips where all strip intersections are transversal.

A practical analogon which illustrates this idea is basketry, i.e. the
weaving, or more specifically plaiting,
of baskets from strips of plant materi-
als like bark, straw, or flax. The figure
on the left shows an example (courtesy
of Jonas Hasselrot). Notice how every
quad is covered by two crossing strips.
At the bottom corners of the basket it
can be observed that irregular “vertices”
(here of valence 3) can be formed using

this technique, too. In this sense, the underlying conceptual idea of
our system can be seen as weaving dual strips on a given surface un-
til it is covered. Note, though, that our strips are of variable width
and the layer-alternation of the woven strips, which serves stabil-
ity in practice, is of no meaning in our case. This process of Dual
Strip Weaving is computationally supported in our system, e.g. by
proposing optimal routes or choosing appropriate widths for strips.

Note that building the layout based on dual loops or strips does not
restrict the class of designable layouts in any way – for every quad-
only layout there is an equivalent collection of dual loops/strips.

4 Interactive Workflow

We begin by describing the design workflow in order to provide a
high-level understanding of the system and its core concepts. The
accompanying video shows the system in action. As stated above,
the creation of a dual strip is the fundamental operation in our sys-
tem. Instead of having the user draw such strips by hand, the central
idea of our system is to compute suitably optimized dual strips au-
tomatically and propose them to the user. Intuitive tools to select,
edit, or model these strips are then made available to provide full
flexibility, while still keeping the user workload low. Technical de-
tails of the involved algorithms for dual strip computation follow in
Sections 5 and 6.

4.1 Tools and Metaphors

Simply hovering over the surface with the mouse pointer, the user
is immediately presented with the best possible dual strip which
runs through this point. This dual strip is constantly updated as the
user moves the pointer. See Figure 1a.

Using the mouse wheel the user can furthermore browse good al-
ternative dual strips which run through the same point but take dif-
ferent routes over the surface, in order of descending quality.

These automatically proposed strips (computed and rated as de-
scribed in Section 5), provide a rich fundament already sufficient
for the construction of complete dual layouts. In order to provide
full design flexibility to the user we furthermore enable the mod-
eling and editing of dual strips using the following metaphors. In
these manipulation modes it proved advantageous for clarity to dis-
play the strip in form of its representative spinal loop (the automati-
cally chosen strip extent is not subject to user modification anyway;
it serves purposes of “coverage” visualization).

By clicking, the user creates an anchor point and the best dual
strip through this point is shown (the one which was already
shown when the user hovered
over this point). By dragging
a directional anchor is created
instead, producing a dual strip
which runs through this point,
interpolating the specified direc-
tion. The direction can also be al-
tered interactively in order to ex-
plore the space of possible dual strips through the anchor point.

By clicking (or dragging) at further points on the surface, additional
anchors (of positional or directional kind) can be placed. The best
dual loop interpolating these anchors is then shown.

Another metaphor that can be used to conveniently edit the shape
of a dual loop is grabbing. The user can grab the current loop
at any point and drag it to another position, implicitly creating an
additional anchor to be interpolated. This can be seen in analogy to
modern route planning applications whose interfaces offer similar
grab-and-drag tools to manipulate proposed routes.

When the user begins creating a new dual strip, the existence of al-
ready created strips is taken into account. The best way for two
strips to cross is orthogonally; at least they should be crossing
transversally, not touching tangentially [Campen et al. 2012]. The
system only proposes strips which respect this, favoring orthogo-
nality, and which are furthermore not topologically equivalent to
already existing ones, cf. Figure 1b.

4.2 Assessment & Feedback

The provided tools enable the flexible design of dual strip collec-
tions, which via dualization imply a primal quad layout structure
(determination of its actual geometric embedding in detail is con-
sidered in Section 7). Especially when designing rather coarse lay-
outs it can, however, be quite hard to visually judge the appropriate-
ness and quality of the dual strip collection during design, because
large patches that wrap around the underlying object are not visible
in their entirety. We thus equip our system with visual indicators
guiding the user in this regard.

The dual strips are visualized by a pattern of quasi-parallel loops in
order to indicate their directional orientation (“edge flow”). Where
two strips cross, these patterns overlap, forming a grid. This indi-
cates that the corresponding region is doubly-covered as desired.



The user does not need to doubly-cover every part of the surface –
uncovered regions only hint at sub-optimally shaped quads in the
primal layout, but this can be a desired trade-off for layout sim-
plicity. However, every region enclosed by loops at least needs to
be disc-homeomorphic, otherwise no
valid layout is implied. Regions with
non-disc topology are hence high-
lighted in red to indicate that further
strips are required to split this region.

When no region is red anymore, the set
of dual strips is topologically sufficient
and implies a valid primal quad layout.
The addition of further strips is, how-
ever, often desired in order to refine
the layout and achieve better geomet-
ric layout quality. Our system guides
the user to those regions where this is
particularly advisable. Regions which contain multiple pronounced
local extrema of Gaussian curvature are highlighted in orange,
indicating that it would be beneficial (though not mandatory) to add
further strips there. This is motivated by the fact that such extrema
are best represented by separate (irregular) vertices of the quad lay-
out (thus separate dual regions) – having (some of) them lie in the
interior of a quad patch would lead to low geometric patch quality.

In addition, we highlight in yellow those regions with a mismatch
between curvature and valence: Ideally, the valence v of a region
should be related to its total curvature K by K = (4 − v)π

2
for the

sake of patch quality [Campen et al. 2012]. If the actual valence
differs by more than 1, we indicate this situation for information.
Note that this is mainly relevant for highly edited strips – the au-
tomatically proposed strips rarely lead to such situations due to the
inherent favoring of orthogonality and alignment (cf. Section 5).

5 Elastica on Surfaces

The practicality and efficiency of the described interactive work-
flow depends on the geometric and structural quality of the auto-
matically generated loops and strips. Given a surface M , a dual
loop on it should ideally (cf. [Campen et al. 2012])

1) be aligned with principal directions of M and

2) have low geodesic curvature to facilitate a good quad shape.

Furthermore, for the sake of layout coarseness, it should rather

3) be short than wind around the whole object several times.

It should further respect, i.e. interpolate, the specified anchors of
positional and directional kind (cf. Section 4). We generate dual
strips in two steps: a dual loop is constructed to serve as spine (Sec-
tion 5) and is then extended to an appropriate dual strip (Section 6).

5.1 Field-Guided Geodesic Loops

In their Dual Loops Meshing (DLM) method, [Campen et al. 2012]
model dual loops as anisotropic geodesics with respect to a pre-
scribed guiding cross field [Palacios and Zhang 2007; Bommes
et al. 2009] which this method takes as input. This field is assumed
to be aligned to stable principal directions and smooth otherwise,
and in this way jointly promotes the alignment (1) and low geodesic
curvature (2) of the constructed loops.

Unfortunately, this approach taken by DLM is not amenable to in-
teractive user-guided design. The prescribed field already consid-
erably restricts the space of representable layouts: dual loops con-
structed by DLM are essentially “bound” to the field. Hence, the

user is not free to create loops as desired – geometrical as well as
topological restrictions apply. In particular, the singularities of the
field already completely define the number and approximate posi-
tion of the result layout’s vertices (up to local merging). But not
only the number and configuration of vertices is fixed, also the con-
nectivity of these vertices, i.e. the edges of the layout, is subject to
restrictions induced by the fixed underlying field. In detail, only
those loops along which the prescribed field has zero holonomy
[Lai et al. 2010] can be created by the DLM approach.

For design purposes such broad restrictions are hardly communica-
ble to the designer. In the following we hence present a field-less
approach allowing for arbitrary loops. It is further able to take mul-
tiple user design constraints (the specified anchors) into account.

5.2 Elastica Loops

A suitable model for the (closed) curves ℓ : [0, L] → M in arc-
length parameterization we are looking for is the objective

c(ℓ) =

Z L

0

1 + α qℓ(t)(ℓ
′(t)) + β κℓ(t)

2dt→ min (1)

subject to (positional and directional) constraints. Here the term 1
penalizes length, q : TM → R penalizes deviation from principal
directions (cf. Section 5.5), and the last term penalizes geodesic cur-
vature κℓ(t). A curve minimizing the bending energy

R

κℓ(t)
2dt

subject to positional and directional constraints is called elastica
(or, depending on the context, spline), going back to Leonhard Eu-
ler and Jacob Bernoulli. Our functional in addition includes means
to soft-constrain local direction via q, with the parameters α and β
expressing the relative weighting of these objectives.

On surfaces, embedded elastica can be found using various meth-
ods of variational nature, like Active Contour and Snake models
[Lee and Lee 2002; Bischoff et al. 2005] or the constrained spline
optimization of [Hofer and Pottmann 2004]. These methods require
an initialization and then strive to find a local optimum in the same
homotopy class as the initial curve or loop1. To maximally support
the user, we want to avoid the need for an initialization and would
in particular like to find the optimum over all homotopy classes.

Hence, we design an algorithm, based on combinatorial optimiza-
tion, which is able to find (approximations of) global optima of
certain curve functionals, and this over all curve homotopy classes,
i.e. without prescribed homotopy (cf. Figure 3). It is based on find-
ing constrained minimum weight cycles in special graph structures.

To this end, all metric information must be modeled as graph edge
weights. Unfortunately, in the case of a surface graph (e.g. a tri-
angulation of the surface) only first-order differential quantities can
be taken into account in such an approach: the weight of an edge
has to be computed in advance from local information only, i.e. we
can at most build the difference of its two end node positions and
compute the weight from this vector’s length and direction (and the
node positions). Curvature, as in our objective (1), obviously is not
accessible per-edge in this way.

5.3 Elastica Graph

If, however, we take a graph whose nodes are not a sample of
the surface M , but of the tangent bundle TM , the nodes already
contain first-order information, such that second-order properties,

1The spline method of [Panozzo et al. 2013] does not require initializa-

tion, but is essentially based on (pseudo-)geodesics, leading to similar ho-

motopy class restrictions. In particular, it cannot construct (non-degenerate)

loops from just one constraint point – the most relevant case here.



Figure 3: Our optimization algorithm for elastica on surfaces has
free homotopy: depending on the orientation of the directional con-
straint (red dot with arrow), loops from differing homotopy classes
are obtained because the optimum is searched over all classes.

i.e. curvature, can be computed per edge: given two adjacent nodes
with position and tangential direction each, we are able to evaluate
R

κ(t)2dt for an imagined curve interpolating this Hermite data.

We are free to chose any sampling of TM and a connectivity to
construct a graph approximation of the tangent bundle. A natural
and intuitively accessible way is to take some digraph g approxi-
mating M and then form its derivative g′ (also called line graph or
adjoint) [Beineke 1968]: a node of this graph is a directed edge of g
and can hence readily be identified with a point p ∈ M (the edge’s
midpoint) and a direction d ∈ TpM (the directed edge’s direction).
Two g′-nodes are connected iff the corresponding directed g-edges
are adjacent, forming a directed path of length two (cf. Figure 4).
For the special case of planar regular grid graphs such line graph or
related product graph constructions have successfully been applied
for curvature-regularized image segmentation purposes [Schoene-
mann and Cremers 2007; Schoenemann et al. 2011].

As underlying graph g we choose an extended neighborhood graph
built from a triangulation T = (V,E, F ) of M , where two nodes
are connected (by two directed edges, realized as geodesics on M )
iff they have graph distance ≤ k in T . We found k = 4 to suffi-
ciently increase the angular resolution such that the resulting elas-
tica are visually smooth. In this case, the cardinality of the node
sets is related as follows: |Vg| = |V |, with an average valence of
60, and |Vg′ | ≈ 60|V |, with an average valence of 60. Note that g′-
edges connecting g-edges which form a large geodesic angle can be
omitted (e.g. the red and purple ones in Figure 4) – the correspond-
ing curves have large geodesic curvature, thus are expendable in
light of the bending energy minimization goal. We use a generous
limit of 30◦, reducing the average valence of g′-nodes to 10.

Curved Edges The question remains how a g′-edge e′ =
(e0, e1) should be interpreted geometrically, i.e. which curve’s
geodesic curvature should be measured to obtain edge weights for
e′. Let’s first assume a planar configuration. One option is to com-
pose a circular arc of maximal radius and a straight line segment,
connecting the midpoints of e0 and e1 (cf. Figure 4). For this unique
curve we calculate

R

κ2 = 2γ tan γ

2
/min(|e0|, |e1|), where γ is

the angle between g-edges e0 and e1 at their common node, | · | the
length of an edge. As for its approximation

γ2

min(|e0|, |e1|)
=: κ2(e′)

(using Taylor expansion tan(γ) = γ + O(γ3)) favorable con-
vergence properties have been proved (i.e. using graph refinement,
continuous elastica can be approached) [Bruckstein et al. 2001], we
opt for this choice. To generalize to non-planar configurations we
only need to measure γ as geodesic angle on M , i.e. in a tangent
plane at the common node of e0 and e1. This effectively unrolls the
configuration to the tangent plane, masking out normal curvature,
such that only the geodesic curvature is measured as intended.

The length of a g′-edge e′ realized as described above evaluates to

|e′| =
γmin(|e0|, |e1|)

2 tan γ

2

+
||e0| − |e1||

2
.

Figure 4: Illustration of one directed node’s (black) incoming and
outgoing curved edges in the elastica graph g′. The underlying sur-
face graph g is shown dashed. The g′-nodes lie at g-edge centers.

The function q from (1), promoting principal direction alignment,
we evaluate for e′ using the trapezoid rule, sampling at the incident
g′-nodes n0, n1 (midpoints of g-edges e0 and e1), leading to

q(e′) :=
1

2
(qn0

(e0) + qn1
(e1)) |e

′|.

Using these definitions we can build a discrete version of (1) for the
closed curve formed by a cyclic chain E of g′-edges:

c(E) =
X

e′∈E

|e′| + α q(e′) + β κ2(e′) =:
X

e′∈E

w(e′) (2)

5.4 Constructing Discrete Elastica

Minimizers of (2) are minimum weight cycles in the elastica graph
g′. The global optimum could be found using a variant of the Floyd-
Warshall algorithm. However, we are not interested in this uncon-
strained optimizer, but would like the loop to interpolate the speci-
fied anchors to account for user influence. Therefore, we design an
algorithm based on nested minimum weight path problems which
can very efficiently be solved using Dijkstra’s algorithm.

In detail, we would like to take into account an arbitrary number
of positional and directional constraints to be fulfilled by a loop ℓ.
Let Φ = (φ0, . . . , φn−1) with φi = (pi, di) ∈ TM be a list of
n > 0 constraint points that shall be passed by ℓ in order, with
tangent parallel to di where di 6= 0 (di = 0 signifies a purely
positional constraint). Let vi be the g-node closest to pi and ξi the
set containing just the outgoing g-edge of vi closest to parallel with
di if di 6= 0, and the set of all outgoing g-edges of vi otherwise.

For each two subsequent constraints φi, φi+1 (all indices taken
mod n), we compute intermediate elastica curves according to (2):
for each pair (a, b) ∈ ξi × ξi+1 (remember: a, b are edges in
g and nodes in g′) we compute the shortest path (taking the g′-
edge weights w into account) from a to b in g′ and record its
cost as w̄(a, b). Note that if |ξi| = 1 or |ξi+1| = 1, the short-
est paths for all pairs can be computed with just one run of Dijk-
stra’s algorithm2. Only if both constraints have unspecified direc-
tion, min(|ξi|, |ξi+1|) runs are necessary. Being independent, all
runs can conveniently be performed in parallel.

Then we form a metagraph with metanodes ∪0≤i<nξi, and directed
metaedges ∪0≤i<n(ξi×ξi+1), weighted by w̄ (cf. Figure 5). In this
metagraph we find the minimum-weight cycle. Due to the special
structure of the metagraph, we can do this more efficiently than by
using the Floyd-Warshall algorithm. If at least one ξ is a singleton,
the cycle is found using a run of Dijkstra’s algorithm on the meta-
graph from this one element back to itself. Otherwise, this is done
for each element of the smallest ξ and the minimum taken. In any

2A variant that does not return the empty path if a = b must be used.



ξ0 ξ1

ξ2 ξ3

ξ4

∂

Figure 5: Metagraph construction for multi-constraint elastica.
Example with 2 positional (ξ2, ξ3) and 3 positional+directional (ξ0,
ξ1, ξ4) constraints. The boundary node ∂ allows for the construc-
tion of dual curves in addition to dual loops.

case, for fixed n and k, the complexity of the complete elastica con-
struction algorithm isO(|V | log |V |), V being the set of vertices of
M ’s triangulation.

Concatenation of the intermediate elastica which correspond to the
metaedges of the minimum-weight cycle yields the optimal loop
interpolating Φ: in case that di 6= 0 at each constraint, the meta-
graph is a single cycle and the optimal loop trivially composed of
all the pairwise elastica curves; otherwise, if there are constraints
with unspecified direction, this algorithm finds the minimum over
all (combinations of) possible directions. In the case of one po-
sitional constraint only, the |ξ0| runs of Dijkstra’s algorithm on the
metagraph yield |ξ0| loops (all crossing the anchor point in different
directions), which can be offered as alternatives to the user.

It is worth noting that there are quad layouts which contain dual
loops crossing themselves. Also such loops can readily be obtained
using the described algorithm without any additional measures.

5.5 Principal Direction Alignment

The functional q : TM → R is used to penalize deviation of loop
directions from principal directions. We compute (unit) principal
direction vectors dmin, dmax and principal curvatures κmin, κmax from
the eigenvectors and eigenvalues of the shape operator [Cohen-
Steiner and Morvan 2003]. The alignment of a unit tangent vector
t with a principal direction can naturally be measured using the in-
ner product |〈t, d〉| on M , the deviation using the reciprocal. We
measure deviation to either principal direction using

devp(t) := max (|〈t, dmin〉p|, |〈t, dmax〉p|)
−1 − 1,

which is zero in case of perfect alignment.

We weight this deviation with the local shape anisotropy factor
(|κmin| − |κmax|)

2 as in [Knöppel et al. 2013] and obtain

qp(t) := (|κmin| − |κmax|)
2
devp(t),

which suitably vanishes in umbilic regions with ill-defined principal
directions.

5.6 Feature Curves

It is usually desirable to align patch boundaries of a quad lay-
out to sharp feature curves on the surface. To enable this, dual
loops should not cross such features with small crossing angles,
but ideally orthogonally. We replace dev(p, t) defined above by
dev(p, t) := |〈t, dmax〉p|

−1 − 1 on feature curves to achieve this.
Now orthogonally crossing loops are favored, and the penalty in-
creases to infinity as the crossing angle goes to zero.

5.7 Boundaries

So far we considered dual loops, i.e. closed curves. On surfaces
with boundary ∂M , we also need to deal with non-closed curves
which end at ∂M . For this, we add one additional node ∂ repre-
senting all boundaries to the above metagraph construction. Edges
(a, ∂) and (∂, b) are added for each a ∈ ξn−1 and each b ∈ ξ0,
weighted by the cost of the shortest path between a/b and any g′-
node in E∂ , where E∂ is the set of all g-edges incident to a bound-
ary vertex of M ’s triangulation T . Where distinction is necessary,
we call the resulting elastica dual curves instead of dual loops.

The user can choose whether the final quad layout should be aligned
to the boundary, or whether non-aligned (trimmed) patches are ac-
ceptable. In the first case, dual curves should meet the boundary
orthogonally. This is achieved by treating the boundary as a feature
curve, using the weighting described in Section 5.6.

5.8 Symmetries

In caseM has a global (exact or approximate, extrinsic or intrinsic)
symmetry, it is likely that the user wishes to design an accordingly
symmetric layout. Global symmetry can be of reflectional or rota-
tional kind. In the first case, M consists of two, in the latter of two
or more symmetric parts Mi. We provide the convenient option to
perform the design on only one part, M0, automatically transfer-
ring the layout to the other parts. We make no assumptions about
the symmetry transformations ψi mapping M0 onto Mi except for
continuity; they can be specified by the user or be determined using
(semi-)automatic methods [Mitra et al. 2013]. Note that the dual
curves on M0 must meet certain constraints to merge into continu-
ous smooth loops on M . We achieve this as follows (cf. Figure 6):

Rotational In case of rotational symmetry, the boundary ∂M0

has two symmetric parts which are identified by the map ψ1. In g′

we realize this identification by means of virtual edges, connecting
respective g′-nodes adjacent to ∂M0. A loop found in g′ containing
one or more of these virtual edges then represents one or more dual
curves on M0 whose ends lie on positions on ∂M0 which are iden-
tified by ψ1 in a pairwise manner (cf. Figure 6d). Hence, mapped
to all parts via ψ, these curves join seamlessly (cf. Figure 6e).

Reflectional In case of reflectional symmetry we can make the
following observation: a symmetric loop on M must either cross
∂M0 orthogonally, or it must cross another (not necessarily dis-
tinct) loop on ∂M0 – an analogous property was recently discussed
for symmetric cross fields [Panozzo et al. 2012]. The orthogonal
case can be handled just like an aligned boundary as described
above. For the other case we must ensure the existence of both
crossing curves at once. Conceptually, instead of letting a curve end

a) b) c) d) e)

x ψ1(x)

y
ψ1(y)

Figure 6: Symmetry: (a) shows one representative half of the re-
flectionally symmetric object (c), dual curves end orthogonally on
its boundary and thus form smooth loops when mapped to both
halves. In (b) one half for another reflectional symmetry is shown,
the blue curve is reflected on the boundary and thus forms two
smooth crossing loops on (c). (d) shows one of four parts of a ro-
tational symmetry, left and right halves of its boundary are identi-
fied, thus technically the two red curves are one loop, as is the blue
curve. Mapped to all four parts, continuous loops are formed (e).
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at ∂M0, we reflect it at this boundary and let
it also form the second curve. Technically,
weights of g′-edges between g-edges incident
to ∂M0 are computed differently: the red g′-
edge (d, e) in the figure on the right is as-
signed the weight computed for the blue curve
(d, ψ(e)) formed with the reflection of the g-
edge e. In this way, curves resulting from the
Dijkstra approach are either closed and con-
tained inM0, meet ∂M0 orthogonally and end
there, or meet ∂M0 non-orthogonally and are reflected. Mapped
to both halves of M via ψ, these curves form symmetric loops (or
curves), smoothly crossing the symmetry’s stationary line.

6 From Loop to Strip

While (infinitesimal) dual loops are sufficient to define the layout’s
topological structure, the lack of a geometric dimension may overly
stress the user’s imaginative powers. Hence, we appropriately ex-
pand dual loops, constructed as described in the previous section,
to dual strips in order to better visualize the state and to guide the
process of interactive design as described in Section 4.

Formally, in analogy to a dual loop (cf. Section 5.2 ), a dual strip is
a continuous map s(u, v) : [-l, r]× [0, L] →M of a rectangle (or a
subset thereof in case of surface boundaries) onto the surface, with
s(·, 0) = s(·, L) in case of a closed dual strip. Its dual loop/curve
(spine) is its zero-u-isocurve s(0, ·). An alternative intuitive view
of a dual strip is as a continuum of adjacent dual loops – which
represent the one-parameter family of u-isocurves of s. The stripe
pattern used to illustrate the strips (cf. Figure 1) simply represents
a regular sampling of this continuum.

Conceptually, we build a dual strip by taking a dual loop and broad-
ening it by extending the map up to appropriate bounds l and r,
i.e. up to the point where the shape of M causes too large distor-
tions in s. As the acceptable degree of distortion depends on the
user’s intent, the boundaries of the dual strips are to be seen as
fuzzy indicators rather than definite patch borders. Because, a pri-
ori, the bounds l and r are unknown we compute an unbounded,
global, distortion-minimizing map S : M → R

2 (cf. Section 6.1)
from which all individual strip maps s can be extracted. This com-
mon map S is recomputed whenever the user inserts a new strip.

Note that one could follow the simpler strategy of expanding strips
in a local, incremental manner – until some stopping criterion is
met – e.g. based on a geodesic wavefront emanating from the loop
[Schmidt 2013]. Besides the difficulty of defining a suitable lo-
cal stopping criterion, this would result in u-isocurves with a con-
stant spacing, implied by the constant gradient magnitude of a
geodesic distance field. Depending on the model’s shape this leads
to isocurves with high geodesic curvature, thus to unnatural stripe
patterns and strip boundaries (e.g. on the arc of model FIVE or the
arms of model FERTILITY in Figure 7). The global map based ap-
proach, by contrast, yields stripes which much better resemble the
edge flow of a globally coherent quad mesh by its very nature.

6.1 Global Parameterization

We require the global map S to be aligned with all dual loops,
i.e. the loops should be isocurves of S. This implies that, in general,
S needs to have singularities. Such parameterization with align-
ment and singularities can automatically be computed using an in-
stance of cross field based parameterization [Kälberer et al. 2007].

For the generation of a suitable globally smooth cross field we make
use of the representation vector concept [Palacios and Zhang 2007],

which allows for smoothness optimization via simple sparse linear
system solves [Knöppel et al. 2013; Diamanti et al. ] – in contrast
to the popular angle-based formulation [Bommes et al. 2009] with-
out any integer constraints. In each triangle of the triangulation
T of M which is crossed by a dual loop
we set a unit representation vector which
represents a cross aligned with the loop.
These representation vectors are then har-
monically interpolated over T , a cross for
each triangle recovered from the result,
and the field singularities extracted, analogous to the recent descrip-
tion as a special case (4-RoSy) in [Diamanti et al. ].

Then we compute a global, chart-based parameterization which
is optimized for isometry and alignment of isocurves to the con-
structed cross field. This can be done efficiently, again using a
single sparse linear system solve, in a least-squares manner as de-
scribed in [Kälberer et al. 2007; Bommes et al. 2009] (note that
in contrast to these works we do not have to perform any integer
rounding). To achieve exact alignment to the dual loops we add
(linear) alignment constraints to the optimization problem, forcing
all edge intersections of a loop to lie on a common isocurve as de-
scribed in [Campen and Kobbelt 2014]. Note that due to the isom-
etry objective a globally constant parametric sampling is sufficient
to generate stripe pattern strip visualizations of uniform density.

By construction, each dual loop is an isocurve3 of S. To both sides

sS

ℓ

of a loop ℓwe then con-
quer the continuum of
adjacent isocurves, ef-
fectively extracting the
strip map s as illus-
trated on the right. We
stop when a singular-
ity in S is reached (or,
in the extreme case of
a singularity-free field,
the entire surface is
conquered). The sin-
gularities quite natu-
rally indicate appropri-
ate bounds for the strips
because they represent
portions (±k π/2) of total Gaussian curvature, in particular ex-
trema like corners – which should not come to lie in the interior of
quad patches for the benefit of patch developability (e.g. enabling
low-distortion patch parameterization). Encountered degeneracies
or fold-overs, which can sometimes appear in S, can gracefully be
dealt with by simply stopping there, too. As these appear adja-
cent to singularities on principle, the impact is minuscule. Note
that the field singularity constellation can also be exploited to easily
perform the region coloring related to Gaussian curvature extrema
(cf. Section 4.2).

Note that the cross field has no direct influence on the dual loop con-
struction (in contrast to the DLM approach [Campen et al. 2012]);
it merely serves the strip map creation for visualization purposes –
and helps to ensure loop and strip transversality as described next.

6.2 Strip Compatibility

Whenever a strip has been created by the user, it should constrain
the design space appropriately, as already mentioned in Section 4.
Within the area covered by the strip we thus remove (i.e. disable)

3Formally, the chart-based parameterization S has transition functions

across chart boundaries implied by the cross field. The term “isocurve” is

implicitly meant to take these transitions into account.



all those nodes from the elastica graph whose associated direction
forms an angle ≤ 45◦ with the isocurves of the strip map s. Now,
when the user hovers over the area covered by the strip, 1) no strips
which are topologically equivalent are proposed, and 2) the under-
lying dual loops do only cross transversally, as required for validity.

7 Primalization

The collection of dual strips defined by the user uniquely deter-
mines the structure of the primal quad layout. For the determina-
tion of the layout’s detailed geometry, i.e. its actual embedding in
M , we then have multiple (automatic, manual, assisted) options.

In the final stage of their method, [Tarini et al. 2011] apply a tech-
nique to optimize the embedding of a quad layout. It is driven by a
quality metric based on parameterization of the layout’s patches.
A similar strategy is described by [Campen et al. 2012]. An-
other approach that pays particular attention to principal direction
alignment is presented by [Campen and Kobbelt 2014]. These ap-
proaches proceed in a fully automatic manner.

Alternatively, in order to give control to the user also in this stage,
a manual strategy can be followed: the user positions the layout’s
vertices in the regions inbetween the dual loops and draws layout
edges dual to the loops in order to connect them. Note that no hard
topological decisions need to be made in this context, the ques-
tion is only where a vertex should be positioned within a region
and where within a dual loop corridor a patch boundary should lie.
Nevertheless, this can be a tedious task.

We provide assistance by automatically proposing good vertex po-
sitions and edge routes – which may serve as starting point for ad-
justments through the user. Each region (enclosed by dual loops)
of valence 6= 4 contains at least one cross field singularity. We
initially position a region’s primal vertex onto this singularity if
there is just one, otherwise into the geodesic center of the region.
We then compute elastica
curves within the corridors
between the dual loops and
use them as routes for the
connecting edges. This is il-
lustrated here schematically.
The manipulation tools from
Section 4.1 can be applied for these curves, too. The use of elas-
tica is motivated by the fact that the objectives stated for dual loops
in Section 5 often hold for primal edges, too. Note that in regions
of valence 4 two curves cross, implying a natural position for the
corresponding regular vertex. This latter approach was used for the
examples shown in the following.

8 Results

Figure 7 shows layouts designed by non-expert users with the de-
scribed system. The accompanying video gives further impressions
of the design process.

Parameters We normalized all input models (to bounding box
diagonal 1), such that model-independent parameters can be used.
We used α = 1 and β = 0.25 in (2) for all examples.

Timings We run our design system on a commodity PC. To get an
impression of the system’s performance, let’s consider the practical
scenario of an input mesh with 30,000 faces for example. The elas-
tica loop construction is output sensitive: good dual loops with low
cost are found within a few milliseconds; when multiple anchors in-
duce very high cost, construction time can increase to around 1 or 2
seconds. The subsequent generation of the cross field takes around
200 ms, the parameterization and strip extraction around 400 ms.

For optimal responsiveness, we display a loop immediately after its
computation, while the field and strip generation is performed asyn-
chronously in a background thread. In total, this allows to provide
an interactive interface – only expensive loops restrain fluency to
some extent. The user interaction time per model of Figure 7 for
the design of all strips was between 10 seconds and 5 minutes.

8.1 Limitations & Future Work

In our system, optimal dual loops are constructed and then extended
to dual strips. It could be of benefit if the strip geometry, in partic-
ular its width, could also already be considered in the loop opti-
mization: wide strips could be favored over very narrow ones to
the benefit of layout coarseness. However, it is unclear how this
problem could be tackled algorithmically, and currently it seems
unlikely that such integrated optimization could be performed at
interactive rates, as desired in our system.

While we ensure that each loop crosses all other loops transversally,
favoring orthogonality, a loop can be brought to cross itself with
arbitrary angles; there is no mechanism in the loop optimization
algorithm that could provide control over self-crossings and pre-
vent small angles there. This is not a noticeable hurdle in practice
because the principal direction alignment term in (1) favors orthog-
onality also in this situation, but depending on the anchors set by
the user, self-crossing with bad angles cannot be ruled out. How-
ever, it is easy to automatically detect such a loop and highlight it
accordingly, asking for adjustment.

Our current implementation offers a fully interactive workflow on
models with several tens of thousands of triangles. In practice
sometimes models with hundreds of thousands or millions of tri-
angles are to be dealt with. The geometric fidelity of these complex
models, however, is not relevant for the layout in many use cases
– at least not for its topological structure. This opens the door for
an efficient employment of simplified proxies. The layout design
could be performed on a decimated model version and the result
mapped back to the detailed original. This could even be done in
a transparent manner, i.e. the elastica construction and strip expan-
sion is performed on a coarse model in the background but the (in-
terpolated) result displayed to the user on the original model. The
final embedding optimization would be done on the detailed model
again. We leave in-depth investigation of suitable simplification and
mapping strategies (e.g. along the lines of [Lee et al. 1998]) and the
analysis of the resulting interaction quality to future research.

While, as a sideline, this proxy strategy offers a way to abstract
from small-scale geometric detail, it could also be valuable to inves-
tigate ways to offer scale control for the layout design process inde-
pendent of the model resolution. For this the shape operator could
be computed with a correspondingly large integration radius, the
curvature of elastica be measured based on analogously smoothed
tangent planes, and scale-aware methods for cross field and param-
eterization construction [Ray et al. 2009; Ebke et al. 2014] be em-
ployed for the strip expansion on the desired level of detail.

9 Conclusion

We proposed a novel, alternative concept for the design of quad lay-
outs, i.e. partitionings of surfaces into nets of quadrilateral patches,
as required in various fields of geometry representation and pro-
cessing. In contrast to established systems it builds upon global
operators based on dual loops and strips. The core technical com-
ponent of our approach is a novel combinatorial algorithm for the
constrained optimization of elastica loops embedded in surfaces.
We further described how our system can support the designer in
the presence of symmetries, boundaries, and feature curves.



Figure 7: Quad layouts designed with our method. Shown are intermediate design stages with dual strips and region coloring, followed by
the final quad layout. Next to each layout the number of dual strips and the (typically much larger) number of primal layout edges is specified.
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