Quad Layout Embedding via Aligned Parameterization

Appendix

Appendix A: Layout Representation

The edge and face sequences corresponding to an arc are
obtained as follows: for an oriented embed-
ded arc a let Y (a) be the sequence of edges
crossed (shown in red) when traveling along a
from start to end. Every two subsequent edges
in Y (a) share a common incident face except
for when a runs through a vertex. In these cases
we can additionally include the edges incident
to the vertex from the left (blue) or the right
(green) with respect to a. Let Yl and v, denote
the operators that return the two corresponding
alternatives. We can use either one as discrete
representation for the arc, but define both ver-
sions here as we need them in the next sections.
Where the distinction is unnecessary, we omit the subscript
and refer to them as Y. Note that ¥} (a) = —7}(—a), where the
minus-operator reverses the edge sequence and the arc orien-
tation, respectively. We will also use the sequences of faces
incident to the edges in Y (a), denoted by y(a). If ¥ (a) is
empty, i.e. start and end node are incident to common faces,
Y(a) is defined to be the one of them which contains a.

The layout’s rotation system (c,0) can be derived from
the y-paths as illustrated in Figure A.

Appendix B: Turning Numbers

In the discrete setting (on the mesh M) one specifies the
turning numbers for cycles of faces (or equivalently dual
edges) of M. Note that the signs of turning numbers depend
on the cycle orientation.

For an irregular node A, the turning number ¢ necessary

Figure A: o is trivially defined between the half-arcs of an
arc. The definition of 0 can be derived from the cyclic order
of the y-paths around a node. In the simplest case this can be
decided directly at the node (left), if some paths coincide at
first the order can be decided at the point where they diverge
(center), or at the latest at the final vertices (right).

for the face cycle clockwise around v(h) (cf. Figure B left)
is simply determined from the valence v of h as t = —zv.
For nodes on boundary vertices no turning number needs to
be prescribed.

A set of 2¢ homology generator cycles of £ can easily be
computed using the homotopy basis construction algorithm
for combinatorial surfaces described in [EWO05]: A spanning
tree T of the layout graph G and a spanning tree T™ of the
dual graph which does not cross T are computed. 2g edges of
G will then not be contained in 7 nor crossed by edges of T*.
Connecting these 2g edges to the root vertex of T through T
yields the 2g arc cycles. For a cycle of arcs c = aja---an
(with consistent orientation of the a;) we consider the corre-
sponding face cycle ¥;(c) — as the combinatorial surface £
is homotopic to S, these face cycles are homology genera-
tor cycles of S. We count the number n, of arcs (emanating
from the n involved nodes) this cycle crosses. The turning
number of the cycle then needs to be fixed to r = %(n —na);
in Figure B bottom left the depicted face cycle ¢ crosses 2
arcs (dashed) which emanate from the 2 involved nodes, thus
¢t = 0 in this case. The choice of y; (not ;) is to get sign com-
patibility with the above node turning number sign choice.

For each boundary loop d of M we find the cycle of arcs
c =ajay---ay closest to d, i.e., such that no node lies be-
tween ¢ and d, and choose its orientation such that d lies
right of ¢ when traveling along c. We then determine the
turning number for Y;(c) as in the previous case. Figure
B right illustrates this for the gray mesh boundary loop d:
t= %(4 —4) =0 in this case.

Appendix C: Gradient Estimator

In order to compute the gradient descent vector d for a node
currently embedded in vertex a, we first need to obtain a
local 2D coordinate system of a’s 1-ring. To this end we em-
ploy the commonly used geodesic polar map [WW94], ef-
fectively flattening the 1-ring to the plane while preserving

Figure B: Visualization of the face cycles used for fixing the
turning numbers of singularities (top left), homology gener-
ators (bottom left), and of boundaries of the mesh (right).

2

radial lengths (/;) and relative angles by uniformly scaling
the inner angles ¢; incident to a such that they sum to 2m;
origin and axes in the plane can be chosen arbitrarily.

0 =0iv%

Let (ax,ay), (bx,by), and (cy,cy) denote the 2D co-
ordinates of a triangle #’s vertices in this system, and
(au,av),(bu,bv),(cu,cv) their current (u,v) parameters. u;
and v; are the first and second cross field vectors in ¢
(expressed in the 2D system). The (per triangle) gradient
(%E,, %E) at center vertex a in ¢ can then be computed
based on well-known expressions for triangle area A and tri-
angle gradient V as described in the following pseudo code,
where we partly use (x,y) as a short-hand for (ay,ay).

A= %(“xu’y —¢y) +bx(cy — ay) +cx(ay — by))

Vv—ziHv

%V”: 1(0717" cu) = 2A2H”axA

V= 3 (cu—bu,0) - ZAzHuayA

DTy = 0,6y —ev) — 5 Hy 2A

FVv =35 (cv=by,0) — zrHy 3 A

%EI—2(%Vu)T(Vu—u,)A+(Vu—u,) (Vu—u)2A
+2(290) (Vv —vi)A+ (Vv—v) (Vv —v) 24

LB =2(2Vu) (Vu—w)A+(Vu—u)(vu_u,)gA
+2(2 V) (Vv —v)A+ (Vv —v) (V=) 24

The final gradient descent vector d(a) = (E, ayE) is
then computed by summation over the triangles T(a) inci-
dent to a:

97 9
—Yrer(a) (5B 55 Er)

Appendix D: Per-Patch Parameterizations

To extract a transition-free parameterization of an individual
patch from the global parameterization P, the parameteriza-
tions of the triangles 7 which are part of the patch region
simply need to be expressed in a common chart. We start

from an arbitrary triangle seed € T and from there conquer
all others while transferring them to seed’s parameter sys-
tem. Let fir be the transition from face s to face ¢, Id the
identity transformation, s.uv the set of (u,v) parameters of
the corners of s, and Q a simple FIFO queue.

Q.push([seed, 1d])
while not Q.empty
[t,] < Q.pop()

for s € T | adjacent to ¢ and not yet processed
g fofu
s.uv «— g(s.uv)
Q.push([s,g])

Note that if instead of individual patch parameterizations
one global parameterization without transitions within the
patches is desired (e.g. for visualization purposes), the tran-
sitions must necessarily be located at the patch borders. This
is achieved by making the mesh conform with the layout by
splitting the faces crossed during the arc tracing, effectively
inserting edge strips that coincide with the arcs. Then per-
forming the above procedure for one seed per patch directly
results in all transitions getting shifted to the patch borders.

Appendix E: Comparison

In Section 9.1 zoom-ins on results of TPP are shown. Fig-
ure C shows the full models. In addition to the generally
larger principal direction deviations of TPP demonstrated
in Section 9.1, it can be summarized that nodes tend to
get pulled away from extremal positions, e.g. at the feet,
trunk, and ears of ELEPHANT, the wheels and nose of ELK,
or the corners of BLOCK. Isolines of the parameterization
tend to get straightened, leading to bad alignment at curved
smooth features, e.g. at the cylindrical parts and holes of
ROCKERARM and
BLoOCK. TPP uses the
MIPS energy for param-
eterization. When using

simpler barycentric
mappings, with discrete
harmonic coordinates

as in [DBG*06] or with
mean value coordi-
nates as in [GVSS00,
PSS01,KLS03], we
observed these effects
to be even stronger, as
demonstrated here on
the FERTILITY model.

Appendix F: Regular Node Optimization

Let us mention an option concerning the optimization of
regular nodes in a layout. While irregular nodes (imply-
ing singularities) have an essential influence on the field

Figure C: Results of TPP, shown in the same poses as the
results of our method in Figure 6.

construction and parameterization system structure, regu-
lar nodes do not. Using a simple modification, the opti-
mization of the embedding of regular nodes can thus al-
ready be achieved during the parameterization step. We
can simply remove a regular node’s explicit oc-

currence in the node connection constraints by |
instead concatenating the four involved connec- _?_
tion constraints in two pairs (unless this concate-

nates a constraint with itself), just as if the reg-

ular node was not present in the layout, but two

arcs crossing in its place. The regular nodes’ embedding is
then optimized implicitly in the parameterization process: a
node’s new position can be found at the intersection of the
two respective iso-parametric curves. This can be seen in the

accompanying video: the regular node positions in the final
layout lie at the crossings of arcs traced starting from the
irregular nodes.

As the number of nodes to be moved in the gradient de-
scent procedure does not significantly affect the total run-
time, this option does not necessarily increase efficiency. It
can, however, speed up convergence when the initial embed-
ding of regular nodes is worse than that of irregular nodes —
which can, for instance, be the case if it is a mere byprod-
uct of the rough initial embedding of crossing arcs as in
[CBKI12].

It is important to notice that when this option is used
the structure of the resulting layout is not guaranteed to
be equivalent to the input. One can think of constellations
where the arcs in the final parameterization could cross in
another way than they do in the input (— except for layouts
involving numerous dangling arcs, we have not come across
such a situation). This can be seen as a form of implicit struc-
ture optimization, but can be undesirable if preservation of
the structure is mandatory.

Appendix G: Directional vs. Positional Alignment

Our layout embedding optimization process generally aims
for alignment of iso-parametric curves (hence also arcs and
final patch parameterizations) to principal directions on the
surface. Another form of alignment is that of positional
alignment: one might want to fit an arc or a specific iso-curve
of the parameterization to a specifically located curve on the
surface. We described how to do this for the cases of fixing
arcs and positionally aligning integer iso-curves to feature
curves (Sections 6.2 and 8).

The optimization does, however, not explicitly aim at
specifically positioning arcs onto non-sharp, smooth features
or similar curvature extrema (unless fixed manually). While
such alignment might be desirable from an aesthetic point
of view, let us point out that it would often be suboptimal
in terms of isometry and alignment. The inset demonstrates
this on the BLOCK model which has numerous smooth fea-
ture curves:

On the left is the re-
sult of our optimiza-
tion where some arcs
align to smooth fea-

e
=

tures, some do not — be- Y.
. . %.:.:i: |
cause this is the opti- 5

mum in terms of isom-
etry and principal di-
rection alignment (as measured in a combined form by the
parameterization energy functional). On the right we show
a version where the nodes have manually been repositioned
S0 as to achieve further arc-to-feature alignment, in partic-
ular around the holes. While this can be of interest for cer-
tain applications, in a general sense the left result is to be

4

considered better: the parameterization residuum, reflecting
isometric distortion and misalignment, is higher by a factor
of 2.3 on the right. In particular, forcing an irregular node
and two incident arcs to lie on a smooth curve implies patch
corner angles of < 60° at valence 5 nodes and of 180° at
valence 3 nodes — far from the general optimum of 90°.

Appendix H: Video

The accompanying video illustrates the embedding opti-
mization process for several example layouts. For each ex-
ample it shows:

The initial layout embedding taken as input

The parameterization with node connection constraints
The gradient descent node relocation process

The extraction of arcs

The extraction of per-patch parameterizations (Section D)

For the gradient descent a step size factor of o = 0.1 (in-
stead of our default 0.75) has been used to slow down the
process in order to achieve a fluent visualization — otherwise
the nodes would jump to almost their final position in just a
few steps. The video shows one step per frame.

During the process the global parameterization P (with
visible transitions) is shown using an iso-line texture. The fi-
nal continuous per-patch parameterizations after arc tracing
are visualized using texture grids of size m x n, where (m,n)
is the rounded parametric extent of a patch.

The last example demonstrates how a willfully distorted
layout still converges to the desired result, in spite of large
dislocations and misoriented arcs (owing to the consistent
labeling, cf. Section 5.1).

References

[EW05] ERICKSON J., WHITTLESEY K.: Greedy optimal homo-
topy and homology generators. In Proc. 16th Ann. ACM-SIAM
Symp. Discrete Algorithms (2005), pp. 1038-1046.

[WWO94] WELCH W., WITKIN A. P.: Free-form shape design
using triangulated surfaces. In Proc. SIGGRAPH 94 (1994),
pp. 247-256.

