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Abstract
Efficient methods to compute intrinsic distances and geodesic paths have been presented for various types of sur-
face representations, most importantly polygon meshes. These meshes are usually assumed to be well-structured
and manifold. In practice, however, they often contain defects like holes, gaps, degeneracies, non-manifold con-
figurations – or they might even be just a soup of polygons. The task of repairing these defects is computationally
complex and in many cases exhibits various ambiguities demanding tedious manual efforts. We present a com-
putational framework that enables the computation of meaningful approximate intrinsic distances and geodesic
paths on raw meshes in a way which is tolerant to such defects. Holes and gaps are bridged up to a user-specified
tolerance threshold such that distances can be computed plausibly even across multiple connected components of
inconsistent meshes. Further, we show ways to locally parameterize a surface based on geodesic distance fields,
easily facilitating the application of textures and decals on raw meshes. We do all this without explicitly repairing
the input, thereby avoiding the costly additional efforts. In order to enable broad applicability we provide details
on two implementation variants, one optimized for performance, the other optimized for memory efficiency. Us-
ing the presented framework many applications can readily be extended to deal with imperfect meshes. Since we
abstract from the input applicability is not even limited to meshes, other representations can be handled as well.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

Intrinsic distances and geodesic paths between points on
a 2-manifold in 3-space are a fundamental ingredient in
numerous Computer Graphics and Geometry Processing ap-
plications like isometry-invariant shape matching, intrinsic
symmetry and regularity detection, surface parameteriza-
tion, texturing, and tool-path generation, to name a few. A
number of efficient methods to compute these have been
presented – for implicit surfaces, point set representations,
and most importantly polygon meshes. These meshes
are usually assumed to be well-structured and manifold
with complete connectivity information. Unfortunately
this requirement is not always met in practice: real-world
meshes often exhibit several kinds of defects depending on
their origin – holes, gaps, (near-)degenerate polygons, non-
manifold configurations with singular edges and vertices,
or they might even be just a soup of polygons, completely
lacking any connectivity information.

Figure 1: An intrinsic distance field and a geodesic path
computed on an imperfect mesh in a defect-tolerant way.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



M. Campen & L. Kobbelt / Walking On Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations

A considerable number of methods that aim at repairing
mesh defects have been presented (cf. the recent survey by
Ju [Ju09]). They all suffer from the fact that the general re-
pair problem is naturally ill-posed and often exhibits vari-
ous geometrical and topological ambiguities if no additional
prior knowledge is available. This complicates the process
and leads to the fact that often user interaction and tedious
manual effort is required to obtain a clean mesh in the end.
Furthermore, if the application at hand does not actually re-
quire the mesh to be repaired anyway, spending these efforts
solely in order to facilitate the requisite geodesic distance
computations seems to be immoderate in many cases.

We present a computational framework that allows for the
computation of meaningful approximate intrinsic distances
and geodesic paths on meshes with all kinds of defects in a
way tolerant to these defects (cf. Figure 1). Further, we show
ways to locally parameterize a surface based on geodesic
distance fields, easily facilitating the application of textures
and decals on meshes in a defect-oblivious manner. We do
all this without explicitly repairing the mesh, thereby avoid-
ing the costly additional efforts as well as the resolution of
problem-inherent ambiguities. In the case of severe mesh de-
fects, e.g. large missing parts, the computed distance fields
might of course be inconsistent with those of the object that
is actually meant to be represented by the partial data – in
particular we do not propose new disambiguation or “defect
hole”–“feature hole” distinction strategies.

The basic idea is to abstract from the mesh structure (and
all its potential defects) and to perform all computations dis-
cretely in a crust volume tightly restricted to the spatial re-
gions occupied by elements of the input. It has been proven
that the extrinsic distance field in such crust volumes con-
verges uniformly to the intrinsic distance field of the sur-
face they bound with increasing tightness [MS01]. We show
ways to perform the necessary computations in a memory-
efficient manner such that tightness can be achieved by using
high resolutions. The discrete structure readily allows for the
application of topology-sensitive morphological operations
[BK05] to make computations tolerant to gaps and holes.
An improved variant of the Fast Marching method [Set95]
is then applied to efficiently generate distance fields. Due to
the abstraction from the input, applicability is not limited to
polygon meshes; other representations like point sets, im-
plicit functions, or NURBS patches can be handled as well.

2. Related Work
2.1. Geodesic Distance Computation

Intrinsic distance fields and geodesic paths on surfaces are
well-studied objects of Differential Geometry [dC76]. Their
computation on polygon meshes, as well as on other surface
representations like implicit functions, voxel or point sets,
has been made feasible by the work of several researchers.

In 1987 Mitchell et al. [MMP87] presented the founda-
tion for the exact computation of intrinsic distance fields

on triangulated manifolds. Later practical implementations
[SSK∗05] and extensions [BK07] of this work have been
provided. Another exact method has been presented by
Chen and Han [CH90, XW09]. The Fast Marching (FM)
method [Set95] has been extended to triangulated mani-
folds [KS98, NK02] and allows for approximate computa-
tions. Shortest geodesic paths can be obtained by gradient
descent methods. Polthier and Schmies [PS06] presented an-
other notion and show how to trace out straightest geodesics.

Kiryati and Székely [KS93] estimate intrinsic distances in
structures represented by regular discrete volumetric data by
graph distances on the voxel neighborhood graph. Later the
FM method has been applied in this field to obtain improved,
consistent results [DC00].

For point-sampled surfaces an estimation of intrinsic dis-
tances can be computed by graph distances in a point prox-
imity graph [RDSK06, BSLT00]. For more accurate results
the computation of intrinsic distances on implicit surfaces
and point sets has been transformed into the discrete vol-
umetric setting by Mémoli and Sapiro [MS01, MS05]. The
FM method is then applied to the voxel representation. They
provide an in-depth analysis of the quality of the approxima-
tion that is achieved. This work is probably closest in spirit
to ours in that we also transform the problem into a kind of
voxel setting, however, our motivation and further strategy
is entirely different as our goals are defect-tolerant compu-
tations and parameterizations on meshes.

2.2. Local Surface Parameterization

Intrinsic distance computations have been used to build in-
verse exponential maps [dC76] to locally parameterize sur-
faces in numerous applications. Such approaches are con-
structive, do not require costly optimization procedures
while still providing properties usually desired, like low
stretch and angular distortion, in a local neighborhood on
the surface. This has, e.g., been exploited for shape compar-
ison [ZG04, GGGZ05], the plausible application of decals
[SGW06, BKW10], and surface detail transfer [BMBZ02].

2.3. Further Applications

The fact that isometric deformations preserve geodesic dis-
tances has been exploited to perform bending invariant shape
comparison of meshes [EK03] and point clouds [MS04] us-
ing Multidimensional Scaling (MDS) [CC94]. But also dif-
ferent approaches to shape matching and comparison make
use of geodesic distances [BBK06, SCF10]. Other tasks like
intrinsic symmetry detection [RBBK07], regularity detec-
tion [MBB10], and parameterization [GKK02] have shown
to benefit from MDS variants that consider geodesic dis-
tances. Remeshing [PC03] and surface sampling [MD03] are
further examples of applications that by exploiting geodesic
distances achieve high-quality results. In the field of textur-
ing geodesic distances have also been used to optimize map-
pings for casual projective texturing [TT09].
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a) b) c) d) e)

Figure 2: Overview of our approach: a) Input mesh with defect (large artificial hole for demonstration), rendered with backface
culling. b) Initial cubical complex constructed for this mesh (at a low resolution of 163 for illustration). c) Complex after
applying topology-sensitive morphological operators; the hole is now bridged. d) Visualization of a geodesic distance field (with
isolines) emanating from a point source, computed on the complex (at a resolution of 643), and mapped to the input mesh by
interpolation. e) Application example: defect-tolerant decal textured onto the surface using a local geodesic parameterization.

3. Overview

The framework we present takes inconsistent raw polygon
meshes (cf. Figure 2 a) as input and allows for the compu-
tation of (1) intrinsic distance fields with point or polygo-
nal sources, (2) geodesic paths between surface points, and
(3) various types of local surface parameterizations. Inde-
pendent of which computations are to be performed for a
specific application, the first step is to abstract from the
mesh representation to a cubical complex, i.e. a Cartesian
grid tightly restricted to the spatial regions occupied by the
mesh elements (cf. Figure 2 b). To make further compu-
tations tolerant to gaps and holes we next apply topology-
sensitive morphological operations [BK05] to this complex.
This closes all gaps and holes of sizes up to a user-specified
tolerance threshold and yields the final complex (cf. Figure
2 c). Details on this construction are presented in Section 4.

Source points or curves for the computation of distance
fields and geodesic curves are mapped into the complex
(cf. Section 5.1) to obtain initial conditions for the subse-
quent Fast Marching (cf. Section 5.2). Finally the mapping
of the results back onto the input mesh is detailed in Section
5.4 (cf. Figure 2 d). In Section 6 we present several ways to
construct local surface parameterizations in defect-tolerant
ways using the introduced framework and show application
to texturing of arbitrary meshes (cf. Figure 2 e). Further re-
sults and analyses are provided in Section 8.

4. Mesh Abstraction

Given an input meshM= (F,E,V ) consisting of sets F , E,
V of faces, edges, and vertices respectively. We do not want
to make any assumptions about the integrity of M, i.e. it
may contain holes, gaps, singularities, degeneracies, or miss-
ing connectivity information. Hence, we first abstract from
this mesh to a cubical complex representation. The idea of
using some kind of discrete abstraction of polygonal geom-
etry has been applied for the same reason in various fields,
from simplification [ABA02] over vectorization [MZL∗09]
to model repair [BPK05], to name only a few.

4.1. Initial Complex Construction

The cubical complex we use is essentially a cut-out of a
three-dimensional Cartesian grid such that all elements of
F , E, and V are contained in the union of its cells. It should
be minimal, i.e. restricted to the regions occupied by the
mesh elements as tightly as possible. Hence, the construc-
tion of this initial minimal complex CI basically corresponds
to the three-dimensional rasterization (or “voxelization”) of
the mesh elements, since the obtained voxels directly cor-
respond to the 3-cells of the desired complex CI . Details on
efficient implementation are postponed to Section 7. We base
the further description on the cubical complex notation since
also the 0-cells and 1-cells of the complex are involved in the
computations. In the following we will refer to the 0-cells of
the complex as nodes, to the 1-cells as arcs, to the 2-cells as
walls, and to the 3-cells simply as cells. Further, by N(c), c
being a cell of C, we denote the set of nodes incident to c,
and N(C) =

S
c∈C N(c) for a set C of cells.

Some computations can benefit from normal information
at the nodes. For each node we average the normal vectors of
the faces intersecting the eight incident cells to obtain an es-
timated normal vector. Since this is only meaningful if the
set of normal vectors is coherent at least to some extent,
we do only store such an estimated normal vector at nodes
where the cone spanned by the set of normal vectors has a
non-reflex opening angle – which can conservatively be es-
timated by all pairs of these vectors spanning angles smaller
than 2/3π for simplicity. For the estimation process the nor-
mal vectors of the input have to be oriented consistently. If
this is not the case it can for instance be enforced by the
method of Borodin et al. [BZK04].

4.2. Morphological Operations

Bischoff et al. [BK05,BPK05] successfully applied morpho-
logical operations to voxel representations in the context of
3D model repair. By applying the discrete morphological di-
lation operation to our initial complex CI we can easily close
holes and bridge gaps up to a user-specified width. In prin-
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ciple holes of any size can be bridged in this way, however,
note that intentional feature holes, constrictions, or tunnels
up to the chosen size are also closed. If these can safely be
distinguished from defect holes in a specific scenario, dila-
tion can of course be restricted to defect hole boundaries,
e.g. as done in [BPK05], to alleviate this behavior.

Performing distance computations on the resulting dilated
complex CD would, however, result in significantly lowered
accuracy [MS01]. Hence we apply a morphological erosion
operation on CD to obtain the final complex C. To prevent
this operation from tearing closed holes and gaps open again,
a topology-preserving variant [BK05] is employed. This op-
eration removes cubes only if this does not change the digital
topology (defined via wall-adjacency, or 6-neighborhood) of
the complex thereby leaving a minimal sheet of cubes in
holes and gaps. The entire process is illustrated in Figure
3, implementation details are given in Section 7.

Figure 3: 2D schematic example of the employed morpho-
logical operators dilation (middle) and topology-preserving
erosion (right), filling holes up to a specified size.

5. Geodesic Computations

Having obtained the computational domain in form of a cu-
bical complex C as described in the last section, we can
now perform approximate geodesic distance computations
by Fast Marching (FM) [Set95,DC00]. This method, applied
to the complex, will compute a distance field d : N(C)→R+.

5.1. Initialization

A distance field d usually emanates from (a set of) source
points or curves on the input surface, i.e. onM (but sources
in free space can be handled as well). To set initial values
for the front propagation of the FM method this information
needs to be transferred into C.

For the set S of all specified point and curve sources
of d we determine the set CS of cells of C they intersect
and initialize the distance values d(n) for all n ∈ N(CS).
We set d(n) = mins∈S dist(n,s). If an averaged normal vec-
tor is not available we choose dist(·, ·) to be the Euclidean
distance. Otherwise we can enhance accuracy by calculat-
ing dist(n,s) as the Euclidean distance between n and the
orthogonal projection of s onto the tangent plane Tn at n.
This suppresses the surface-orthogonal distance component
merely introduced by the nodes not lying directly on the sur-
face. The distance value of all other nodes is yet undefined,
i.e. we initially set d(n) =∞ for all n /∈ N(CS).

5.2. Fast Marching

Starting from the initialized nodes N(CS) the FM method
[Set95, DC00] can now be applied to perform a front prop-
agation over all other nodes of C in order to determine dis-
tance values d(n) for all nodes n that closely approximate
their defect-tolerant geodesic distance to the set S of sources.
The FM method keeps the nodes that are part of the current
front in a priority queue, sorted by d(·), and always removes
the node with lowest distance while updating the distance
values of its adjacent nodes and adding them (back) to the
queue. Since this propagation is done in upwind direction,
distance values of cells removed from the queue can justly
be considered final.

In the FM front propagation process a distance value up-
date for a node is computed from the distance values at up to
three adjacent nodes by a form of extrapolation. Originally, a
gradient-based first-order update rule was proposed. Higher-
order [Set99, HF07] rules can be employed to increase ac-
curacy. Especially for the case of circular distance fields of
point sources the first-order rules overestimate distances as
pointed out by Novotni and Klein [NK02]. They show that
higher accuracy is achieved by rules that take the particu-
lar circular nature of the front into account. We next extend
these rules to our three-dimensional setting. Their use is to
be preferred over gradient-based rules for point sources.

On a triangle mesh, given two vertices of a triangle with
known intrinsic distances to the source, [NK02] determine
a virtual point source in the plane of the triangle that main-
tains these distances. The distance value of the third vertex
can then be updated to its Euclidean distance to this vir-
tual source. In our three-dimensional domain, to update the
distance value d(n) of a node n from three adjacent nodes
n0, n1, n2 with already computed distance values, we de-
termine a virtual point source s in space by trilateration:
the points s1 and s2 are found as the two points satisfying
the three sphere equations d(ni)2 = ||x− ni||2, 0 ≤ i ≤ 2.
Since propagation proceeds in upwind direction, the one
with larger distance has to be chosen, i.e. we apply the up-
date d(n) = max(||n− s1||, ||n− s2||). When less than three
adjacent nodes have distances available we fall back to lower
dimensional lateration. Figure 4 illustrates the effect of using
these spherical rules instead of gradient based update rules.

Figure 4: Comparison of gradient-based (left) and spherical
(right) update rules. As can be seen from the distance field
isolines gradient-based rules overestimate distances in diag-
onal directions. Spherical rules show isotropic behavior.
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5.3. Polar Angle Propagation

Additionally to computing a distance field d of a point
source an angular coordinate field θ can be constructed
to obtain a (local) polar surface parameterization (d,θ).
Schmidt et al. [SGW06] construct both fields on meshes ap-
proximately by a modified version of Dijkstra’s shortest path
algorithm, essentially unwrapping the surface into the tan-
gent plane at the source. The accuracy of the radial coordi-
nate computed in this way, however, usually cannot compete
with that of the FM method. We incorporate the general idea
into the FM method to simultaneously construct angular co-
ordinates θ. For this construction normal vector information
must be available (cf. Section 4.1). Nodes that lack normal
information simply inherit the normals from their predeces-
sors in the front propagation process. This proved to be suffi-
cient in our experiments and compared to more sophisticated
global normal diffusion methods does not hinder a sweeping
implementation (cf. Section 7.2.2).

Let Ts be the tangent plane of the surface at the source
point s and a the polar axis in that plane, defining the orien-
tation of angle 0. Furthermore let uv(d,θ) = (d cosθ,d sinθ)
denote the 2D Cartesian vector defined by d and θ in Ts
and angle((u,v)) = arctan(v/u) the angular coordinate of the
vector (u,v) in the polar system defined by Ts and a.

During an update step of the FM method, updating node
n based on the distance values of one, two, or three adja-
cent nodes n0, . . . ,nm as described in the last section, θ(n) is
set as follows: we first choose one of the updating nodes
ni and take its so-called inverse exponential map vector
exp−1

s (ni) = uv(d(ni),θ(ni)). The ideal choice is nmin =
argmini∈{0,...,m}d(ni) since this can be expected to have
lowest accumulated error in its d and θ values. Then we “un-
wrap” the vector n− nmin into the tangent plane Ts by first
projecting it orthogonally onto Tnmin (to get rid of the orthog-
onal component merely introduced by n not lying directly on
the surface), then rotating it into Ts around the axis orthog-
onal to the normals at s and nmin (hinge map), and finally
transforming it into a 2D vector in the coordinate system of
Ts. By adding these two vectors we obtain an approximation
for the angular component of
exp−1

s (n), i.e. we set θ(n) =
angle(exp−1

s (nmin)+T RP(n−nmin)),
where T , R, and P are the trans-
formation, rotation, and projection
operations. d(n) is computed by
the FM update rules as before for
accuracy. The adjacent figure shows
a visualization of such an angular
field on a curved surface, including
isolines in radial and axial directions.

5.4. Interpolation

After distance values and possibly angular values have been
computed at the nodes of C we want to transfer this informa-

tion back onto the input meshM. Let P be the set of points
onM at which these values shall be made available (in most
applications this is simply the set V of vertices). While it can
be expected that most accurate results are achieved by inte-
grating the points of P into C as virtual nodes to compute the
values by the described FM update rules, this proved to re-
sult in slight discontinuities between points that are nearby
but fall into different cells. By contrast, the application of
trilinear interpolation leads to smooth results due to its very
nature. Hence, we interpolate the values at a point p of P
from the eight nodes incident to the cell of C that includes p.

In case a Cartesian (u,v) parameterization is to be con-
structed from a computed polar parameterization, it is bene-
ficial to perform the transformation already at the nodes and
then interpolate the (u,v) coordinates. This avoids special
case handling near the singularity at the field’s pole where
trilinear interpolation is unsuited for angles and distances.

5.5. Geodesic Paths

Shortest geodesic paths between two points p and q on the
surface can be constructed using a gradient descent proce-
dure. First the distance field for source p is computed. Then,
starting from q, a piecewise linear path through C can be
constructed by proceeding stepwise in direction of the nega-
tive gradient of this field. The constructed path lies in C, i.e.
in the surrounding space ofM; if a path onM is desired,
we perform a projection where possible – in hole regions the
path simply remains in the cell sheet that survived erosion.

6. Parameterization

As pointed out in Section 2.2 geodesic computations have
proven to be a valuable tool to constructively generate local
surface parameterizations. We now present various methods
to construct such parameterizations – even on inconsistent
raw meshes. Figure 5 shows examples for comparison.

Center Point Parameterization A parameterization
around a point can be constructed by computing a radial
and angular coordinate field for this source. The resulting
polar parameterization can be transformed into a Cartesian
(u,v) parameterization with a user-specified orientation and
scale, e.g. for applying decals onto curved surfaces in an in-
tuitive way [SGW06]. Due to the defect-tolerance of our ap-
proach such decal application can be performed across non-
connected mesh components, bridging gaps and holes, thus
on a much broader range of meshes. The distortion – nec-
essarily introduced on surfaces with non-zero Gaussian cur-
vature – is minimal in the center and typically grows with
increasing distance depending on the curvature distribution.

Boundary Curve Parameterization More flexibility and
a less center-biased distortion distribution is achieved by
specifying four curves u0, v0, u1, v1 forming a quadrilat-
eral on the surface and for each computing the distance
field emanating from it. The distance fields du0 and du1
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of opposite curves u0, u1 can then be blended into du by
du = du0/(du0 + du1), analogously for dv, and these two re-
sulting fields du and dv be taken as u and v coordinates of
a parameterization that is aligned with the surface quadrilat-
eral, mapping this region to the domain [0,1]2 ⊂ R2.

Corner Point Parameterization Specifying desired pa-
rameterization boundary curves on a surface can be tedious.
Furthermore, in order to reduce distortions in the parameteri-
zation generated as described in the last section these curves
should be geodesic paths between their endpoints. We can
simplify the specification task to choosing the four corner
points of the desired quadrilateral and then automatically de-
termine geodesic paths between the points (cf. Section 5.5)
to construct a geodesic quadrilateral as basis for the bound-
ary curve parameterization.

Figure 5: Parameterization examples: center point parame-
terization (left), boundary curve parameterization from user-
specified quadrilateral (middle), and corner point parame-
terization from automatically determined geodesics (right).

7. Implementation Details

We now provide some details on the efficient implementa-
tion of the computations described in the last sections. In
order to enable broad applicability an implementation vari-
ant optimized for performance as well as one optimized for
memory efficiency is presented.

7.1. Cubical Complex Construction

To allow for high resolutions without excessive memory re-
quirements we employ an octreeO that is adaptive in multi-
ple ways. This further allows for the efficient establishment
of correspondences between elements ofM and C, required
to transfer information between the two representations.

We start by defining the cubical root cell of O to include
the bounding box of M. The elements of M are then “in-
serted” into O, intersected cells are refined up to a user-
specified maximum level l and marked as solid. The set of
these solid cells then forms the voxel representation ofM.
The vertices of V (or the set P of points for which distance
field values shall be computed, cf. Section 5.4) can option-
ally be recorded in the containing leaf cells, allowing for
direct access during interpolation. Methods for the efficient
traversal of octrees have been presented [FP02,Sam89], and
by installing so-called ropes to explicitly link neighboring
cells [MB90], the computational cost of cell navigation can
be reduced, trading memory requirements for efficiency.

Efficient dilation operators for octrees with on-demand
refinement of cells to level l are presented by Bischoff et

al. [BPK05]. Let λ denote the width of a cell on level l. Given
that holes and gaps up to a width of ρ shall be considered
unwanted, we need to determine how many layers of cells
need to be added to close these. Due to the discrete setting
the dilation process has a directional bias. Slowest growth
happens in space-diagonal direction where γ dilation steps
bridge gaps of widths up to 2 γ λ/

√
3. Hence, to ensure clos-

ing of all holes of widths up to ρ we choose γ = ρ/(2λ/
√

3).

To now remove all dilated cells except for thin hole and
gap bridging sheets we perform a topology-preserving ero-
sion [BK05]. In contrast to the original description we do
not only apply γ erosion steps but keep eroding until no
more dilated cells can be removed without changing the dig-
ital topology of the voxel set specified by solid and dilated
cells. This eliminates the “closing” character of the opera-
tions. Afterwards the set of solid and remaining dilated cells
corresponds to the desired complex C.

Instead of extracting the desired cubical complex C from
O to represent it by a separate data structure we directly rep-
resent it by the octree. Unfortunately the FM front propaga-
tion operates on the graph of nodes and arcs of C – which
are not explicitly represented in the octree data structure.
However, we can establish a graph isomorphism between
the nodes and a certain set of octree cells. This isomorphism
identifies an octree cell with the node in its upper-right-back
corner. The set of octree cells that is required for this pur-
pose contains the solid cells, the dilated cells, and all cells
which are incident to the lower-left-front corner (any other
pair of opposite corners could have been chosen as well) of a
solid or dilated cell (refined to level l if not yet the case). The
6-neighborhood graph of these cells, directly represented by
the ropes, can then be used instead of the nodes-arcs graph.

7.2. Memory Efficiency

The memory requirements of the entire procedure are mainly
determined by the number of cells that are constructed and
hence heavily depends on the resolution chosen for process-
ing. High resolutions can be desirable since then the cell set
bounds the mesh elements tighter and resolves finer features.
The number of cells of the final octree of course depends
on the geometry of the input, but in our experiments we ob-
served that on average roughly 50 million cells are generated
at a resolution of 40963. Since about 20-50 bytes need to be
stored per cell (for index pointers to the parent cell and one
child, location codes [FP02], state codes, a distance value,
optionally a normal vector, an angle value, and ropes) this
allows us to rasterize models at resolutions up to 40963 with-
out exceeding today’s PCs’ main memories. However, the
application of morphological operations results in a higher
peak cell count. For instance, performing a dilation at the
abovementioned resolution of 40963 to close holes and gaps
up to a size of 3% of the bounding box diagonal increases the
number of cells from 50 million to over 1000 million, clearly
constraining applicability to lower resolutions in such cases.
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7.2.1. Tiling

To avoid this high memory peak we can perform the dilation
and erosion process in a tiled fashion. The dilation and ero-
sion operators are local in the sense that they only affect a
local neighborhood of cells they are applied to, i.e. when ap-
plying γ dilation steps followed by γ erosion steps, the final
state of a cell does not depend on cells farther away than 2γ

in the 6-neighborhood graph of the cell set. Hence, when we
apply these operations to one tile (the cell set clipped to an
axis-aligned rectangular box) the resulting state of all cells
except those in the outer 2γ cell layers of the tile is not af-
fected by this clipping. By covering the bounding box with
tiles overlapping by 4γ cells layers, the correct cell states
can be obtained for all cells by applying the morphological
operations to each tile separately. As pointed out in the last
section restricting the erosion to γ steps results in a morpho-
logical closing of cavities in addition to gaps and holes, low-
ering the accuracy of distance computations. By applying
γ+δ erosion steps (and choosing an overlap of 4γ + 2δ) this
can be alleviated to any desired degree. In our experiments
δ = 3γ was the maximum encountered that was necessary to
achieve the same results as with unlimited non-tiled erosion.

Since in each tile cells can be collapsed again after ero-
sion, the peak cell count can be reduced significantly. Due
to the required overlap this reduction is bounded depending
on γ (and δ), but since the presence of large holes (requiring
large γ) introduces significant uncertainties, the appropriate-
ness of using very high resolutions to achieve high accuracy
seems to be questionable in such cases anyway.

7.2.2. Sweeping

Despite the tiling approach the final cell set still has to fit into
memory entirely. To allow for even higher resolutions we
introduce a sweeping variant of our method. In this imple-
mentation variant cells are dynamically created by octree re-
finement when they are reached by the FM front propagation
process and deleted by collapsing when the front has passed
them. For this purpose we separate the morphological hole
filing from the distance propagation process. We perform
the morphological operations in a tiled fashion as described
above but discard the cells of each tile after its construction
– we only record the center point of each non-solid cell that
survived the erosion. This yields a set of points which ef-
fectively “fill” gaps and holes ofM up to voxel resolution.

The sweeping can then be per-
formed without complex in-
line morphological operations
by considering the union of
M and this point set as input.
The adjacent figure shows this
sweeping in action: the octree
is visualized at an intermediate
state – only at the current front
of propagation cells are at the

finest level, away from it they are as coarse as possible.

In the following description of this sweeping, by the term
“(octree) cell” we also refer to the node that is identified with
the respective cell by the underlying graph isomorphism. In
order to directly obtain the set of octree cells that are re-
quired to establish the isomorphism we do not consider cells
whose volume is intersected by mesh elements (or hole-
filling points) as solid, but cells whose volume extended by
cell size λ in upper, right, and back direction is intersected.
This avoids the subsequent additional refinement of cells in-
cident to the lower-left-front corner – which would be cum-
bersome to manage in this sweeping variant. Cells record
contained vertices as described in the previous section.

Initially only cells containing sources are refined to level
l, initialized, and inserted into the front propagation queue.
During the propagation, whenever a value is to be propa-
gated into a solid neighboring cell (resp. node) this cell is re-
fined to level l. When a cell c is removed from the queue (i.e.
its distance and angle values are final) interpolation has to be
performed (cf. Section 5.4). Due to the extended virtual cell
size exactly those vertices whose interpolated values depend
on the node corresponding to c are recorded at c. Hence we
can easily add the values computed for c, multiplied by the
trilinear interpolation factors, to the (zero-initialized) values
of these vertices (“transposed interpolation”).

Afterwards, since it is not needed for interpolation any-
more, c can be marked collapsible – unless there is a neigh-
boring solid cell that is not yet finalized and hence might
need the values of c for an FM update triggered by another
cell. To cover this case we also call the collapsibility check
for neighbor cells of c that are finalized but could not get
marked collapsible so far. Whenever a cell gets marked col-
lapsible its parent cell checks whether all children are col-
lapsible and performs the collapse by deleting them. The par-
ent cell is then marked collapsible and this process is invoked
recursively to always obtain a maximally sparse octree.

8. Results

We now present some results generated with our implemen-
tation including runtime measurements. Experiments have
been performed on a PC with 2.8 GHz Intel Core i7 CPU.

Figure 6 shows distance fields, geodesic paths, and param-
eterizations computed on a scanned model (358K polygons)
which contains holes (partly non-simple, with islands). By
choosing the dilation distance such that these holes are
bridged the computed intrinsic distance approximations tol-
erate these defects. Computation times are presented in Ta-
ble 1.

Figure 7 depicts another mesh as it commonly appears
in practice. This mesh was created by a commercial CAD
tool, by inconsistent tessellation of NURBS patches. It con-
sists of nearly 1 million polygons in more than 11,000 non-
aligned connected components (see the close-up). Convert-
ing such models into manifold one-component meshes usu-
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Figure 6: Defect-tolerant computations on a raw scanned
mesh FACE containing holes due to occlusion effects. Left:
without morphological operations. Right: with morphologi-
cal operations for hole bridging. The results of computations
at resolution 2563 are depicted.

Resolution 643 1283 2563 5123 10243

γ 2 4 8 16 32
Voxelize 1.12 1.40 2.0 3.3 6.1

Dilate 0.01 0.07 0.5 4.0 31.4∗

Erode 0.02 0.09 1.0 9.4 80.2∗

FM 0.02 0.09 0.3 1.4 5.6

Table 1: Timings (in seconds) for distance field computation
on model FACE (cf. Figure 6). *) Here tiling has been used
(with δ = 0; for δ = 1.2γ, which sufficed to remove every un-
necessary dilated cell, morphology took about 20% longer).

ally requires computationally intensive global repair meth-
ods. Using our framework the model can be handled directly.
Timings are presented in Table 2. Since the processing is
blind to gaps and holes below leaf cell size the application of
morphological operators was unnecessary in this case. Note
that once rasterization, dilation, and erosion have been per-
formed the obtained cubical complex (resp. octree) can be
used for the quick computation of multiple distance fields
etc. – it does not have to be rebuilt each time.

Figure 8 exemplifies the behavior on a polygon soup
and shows how the morphological operators handle large
holes/gaps. Figure 9 illustrates that also for consistent
meshes the use of our abstraction method can be advanta-
geous due to higher computational stability on the regular
complex compared to mesh-based FM on an irregular mesh
structure as also noted by Mémoli and Sapiro [MS01].

The distances computed by our method of course usu-
ally deviate from actual intrinsic distances (on consistent
models) to some degree due to the finite resolution and the
FM approach. To quantify this exemplarily we performed a

Figure 7: Defect-tolerant texturing of an inconsistently
tessellated NURBS model CAR by a boundary curve pa-
rameterization. The insets depict the color-coded individ-
ual connected components. As exemplified in the close-
up, lots of non-trivial gaps, double-walls, and complex
self-intersections are contained, essentially disqualifying
boundary-snapping based algorithms for easy repair. The
result of computation with resolution 1283 is depicted.

Resolution 2563 5123 10243 20483 40963 81923

Voxelize 4.3 5.8 8.8 18.4 - -
FM 0.2 1.0 4.7 22.3 - -

Sweeping 8.6 12.9 27.1 82.2 314.1 1370

Table 2: Timings (in seconds) for one distance field com-
putation on model CAR (cf. Figure 7). With the sweeping
implementation higher resolutions can be handled (the peak
cell count at 81923 is only 305K).

ground truth comparison (cf. Figure 10). As can be seen in
the included table the error decreases with increasing resolu-
tion until the surface detail is resolved sufficiently. Then the
quality basically remains unchanged – due to the approxima-
tive nature of the FM approach it does not fully converge to
the actual intrinsic distances. On account of the axis-aligned
discretization computed distance fields depend on the input’s
orientation to some extent – the variation directly being de-
termined by this remaining FM discretization error as could
be observed in our experiments with random orientations.

Despite these deviations the computed distance fields
are intrinsically fairly consistent in that they live up to the
symmetry property of a metric well: the following table
shows the relative symmetry errors encountered at various
resolutions for 100 pairs of randomly chosen points on
models TOOL (cf. Figure 9) and FERTILITY (cf. Figure 1).

TOOL FERTILITY

643 2563 10243 643 2563 10243

max. 2.59% 0.65% 0.40% 3.48% 0.87% 0.34%
avg. 0.75% 0.26% 0.06% 0.86% 0.29% 0.07%
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Figure 8: Inconsistent polygon soup with a slice cut out.
Dilated cells that survived erosion, a distance field, and two
geodesic paths are visualized. Increasing the gap width at
some point leads to the morph. operators closing the two
holes instead of bridging the gap, as depicted on the right.

a) b)

c) d)

Figure 9: a) Manifold but rough scanned model TOOL. b)
Distance field computed using mesh-based FM [NK02]. c)
Distance field computed by an implementation of exact win-
dow propagation [SSK∗05] which can be considered ground
truth (neglecting slight inaccuracies possibly caused by ma-
chine precision limitations). d) Distance field computed by
our method (at resolution 2563; >20 times faster than c).

Almost all of the methods and applications mentioned in
Sections 2.2 and 2.3 require clean manifold mesh input –
most of them solely to enable geodesic distance computa-
tions. By performing these using the presented framework,
the applicability of these methods in most cases trivially
extends to meshes with several kinds of defects or even
polygon soups. For instance can the shape analysis meth-
ods for model comparison [ZG04, GGGZ05, EK03, BBK06,
SCF10] or for symmetry and regularity detection [RBBK07,
MBB10] be applied to imperfect or partial meshes, and the
FlexiStickers approach [TT09] for conveniently texturing
models with casual photographs can as well be applied to
texture casual meshes, making it even more opportune.

Limitations Due to the automaticity and generality of the
method, it is naturally not able to resolve ambiguities that are
inherent in the input due to large missing parts. Hence, the

+10%

+5%

0%

−5%

−10%

643 1283

2563 5123

643 1283 2563 5123 10243 20483

max. 21.6% 13.3% 7.5% 3.8% 3.0% 3.1%
avg. 7.1% 4.6% 2.2% 0.8% 0.7% 0.7%

σ 14.6% 9.7% 4.5% 1.1% 0.6% 0.6%

Figure 10: Visualization of the error to ground truth dis-
tances on an exemplary surface with a wide spectrum of fre-
quencies for various resolutions. Max. and average of the
abs. value of the rel. error, and standard dev. are specified.

computed distance fields might be inconsistent with those of
the object that is actually meant to be represented by input.
Additional knowledge about the represented object or man-
ual interaction would be required to more plausibly handle
the hole bridging in such cases.

Future Work At high resolutions the total runtime is
dominated by the morphological operations since these
cause a large number of cell neighbor queries, cell splits, and
collapses. We are currently investigating the use of multi-
resolution morphology operators to reduce the computa-
tional cost at high resolutions. The basic idea is to (1) per-
form dilation followed by erosion on an inner octree level,
i.e. at a lower resolution, (2) to propagate the result to the
leaf level (marking descendant leafs of the cells that survived
the erosion), and (3) to perform a final erosion on these leaf
cells to obtain minimally thick hole-filling cell sheets again.

9. Conclusion

We presented a method that abstracts from the topological
structure of a given input mesh, bridges gaps and holes up
to a user-specified width, and thereby allows for the compu-
tation of plausible intrinsic distances and geodesic paths on
meshes with all kinds of defects. The discrete volumetric ab-
straction is built in a way that high accuracy can be achieved
and computationally optimal methods for the computation of
distance fields can be adapted. We showed approaches to lo-
cally parameterize surfaces based on such geodesic fields in
defect-tolerant ways, e.g. for the texturing of casual meshes.
Many further existing methods and applications that rely on
geodesic distance computations can readily be extended to
deal with imperfect meshes by employing our framework.
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