
Automatic Restoration of Polygon Models

STEPHAN BISCHOFF, DARKO PAVIC and LEIF KOBBELT

RWTH Aachen University, Computer Graphics Group

We present a fully automatic technique which converts an inconsistent input mesh into an output

mesh that is guaranteed to be a clean and consistent mesh representing the closed manifold surface

of a solid object. The algorithm removes all typical mesh artifacts such as degenerate triangles,
incompatible face orientation, non-manifold vertices and edges, overlapping and penetrating poly-

gons, internal redundant geometry as well as gaps and holes up to a user-defined maximum size

ρ. Moreover, the output mesh always stays within a prescribed tolerance ε to the input mesh.

Due to the effective use of a hierarchical octree data structure, the algorithm achieves high voxel

resolution (up to 40963 on a 2GB PC) and processing times of just a few minutes for moderately

complex objects. We demonstrate our technique on various architectural CAD models to show its

robustness and reliability.

Categories and Subject Descriptors: I.3.5 [Computational Geometry and Object Modeling]: Geometric algorithms,

languages, and systems

General Terms: Algorithms

Additional Key Words and Phrases: mesh repair, polygon meshes, surface extraction, voxelization

1. INTRODUCTION

In computer-aided industrial development and design processes the concurrency and dependency of the
various project stages is increasing the requirements for flexible exchange of geometry data. Sophisticated
sub-tasks like numerical fluid-, structure-, or crash-simulation, scientific visualization, interactive shape
design, and rapid prototyping all should ideally operate on a common 3D model during the process in order
to enable a proper product data management. This is why polygonal mesh models (e.g., in the form of
STL-files) have established as a universal language to communicate geometric information between different
software systems in many computer graphics application areas ranging from mechatronics and architecture
to automotive-, ship-, and airplane design. Moreover, polygon meshes are quite easy to generate since all we
need is a set of sample points on the object’s surface that have to be connected in order to define a piecewise
linear approximation of the underlying surface.

On the other hand, since different applications impose quite different requirements on the consistency and
quality of the geometry data, many compatibility problems occur in practice. For example, the tessellation
backends of most CAD systems produce polygon meshes that are sufficient for mere visualization but often
the resulting surfaces are not suitable for further processing since they may have small holes, overlapping
faces, degenerate triangles, or topological inconsistencies.

This leads to application scenarios where more time is spent to convert and repair geometry data between
the different phases of the processing pipeline than to perform the actual computations on it. Even worse,
due to the various kinds of errors and inconsistencies, it is considered very difficult to repair polygon meshes
in a fully automatic manner. Often the user has to support the procedure interactively which significantly
adds to the project costs.

In this paper we present a fully automatic technique for the restoration of polygon meshes. Our input
consists of a possibly inconsistent triangulated polygon mesh, a tolerance value ε, and a threshold ρ for the
maximum size of holes to be closed. Our technique generates a new triangle mesh that approximates the
original mesh as good as possible but at least up to the prescribed tolerance ε and that has all inconsistencies
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smaller than ε fixed. Moreover, if the original data has gaps or holes that are larger than ε but smaller than
ρ, we fix these automatically by locally filling in surface patches. The output is guaranteed to be a clean and
consistent mesh that represents the closed manifold surface of a solid, i.e., at every edge exactly two triangles
meet and the fan of triangles around each vertex is topologically equivalent to a disk. Such models can be
used directly for down-stream applications like numerical simulation or rapid prototyping and standard
mesh processing algorithms like remeshing and mesh decimation can be performed on such meshes without
problems.

Our automatic technique is able to remove all typical mesh inconsistencies such as degenerate triangles,
incompatible face orientation, non-manifold vertices and edges, overlapping and penetrating geometry, nar-
row gaps, small holes and internal redundant geometry (like double walls). At the same time, even though
the algorithm resamples the original model, all important geometric features like sharp corners and edges are
well preserved. Our technique is sufficiently fast to process even complex input models with high precision
in just a few minutes on a standard PC.

Although we do not make any specific assumptions about the type of input geometry, we are focusing
on technical CAD datasets. In principle, densely sampled meshes as they are generated by 3D scanners
could also be processed by our algorithm. However, for this kind of input data the precision requirements,
especially for sharp feature preservation, are usually not as high since the input data is noisy anyway. Also
face orientation and redundant internal geometry are minor problems when dealing with densely scanned
data.

2. PROBLEM DEFINITION

In this section we give an intuitive and abstract explanation of the basic ideas and concepts of our algorithm.
These concepts are best described in a continuous setting which doesn’t rely on implementation details.
However, this continuous setting cannot be implemented robustly by a discrete data structure. Hence, in
the subsequent sections we show how to approximate and adapt this continuous setting by a discrete voxel
grid. Of course, we will then have to adapt our algorithm accordingly, but its basic concepts stay the same.

Let {Ti} be a set of triangles that inconsistently describes the geometric shape of a solid object S. By
inconsistent we mean that the orientation of each triangular face can be arbitrary and that the edges of
neighboring triangles do not have to match perfectly, i.e., we can have gaps and holes in the surface as well
as self-penetrating geometry. Moreover, complex vertices and edges can occur where the surface locally fails
to be homeomorphic to a (half-) disk. We are interested in constructing a clean and consistent triangle mesh
which approximates the boundary of the solid S. Obviously, due to the inconsistencies of the mesh {Ti} the
solid S might not be uniquely defined. Hence our goal is to reconstruct at least a solid S ′ which tightly fits
to the input triangles within the prescribed tolerance ε. This means that for every point on any relevant
triangle Ti the surface of the solid S′ is not further away than ε. Here, the relevant triangles are those that
contribute to the outside surface of S.

The complete surface restoration problem falls into two sub-tasks. One is to determine the topology of
the resulting surface and the other is to properly sample the surface in order to faithfully reconstruct its
geometric shape.

Let {Ei} be the set of boundary edges in the triangle soup {Ti}, i.e., those edges that belong to just
one triangle. Similarly let {Vi} be the set of boundary vertices whose adjacent triangles do not form at
least one cyclic fan around it. Notice that according to our definition, complex edges with more than two
adjacent triangles and complex vertices with more than one cyclic fan are not considered as belonging to the
boundary.

Now assume we replace each triangle with a flat triangular prism of infinitesimal height ε, then the
boundary of the resulting solid Sε trivially is a manifold surface (possibly consisting of several components).
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If we further replace each boundary edge Ei by a cylinder of radius ρ and each boundary vertex Vi by a
sphere of radius ρ we still have a well-defined solid Sε,ρ with manifold boundary1. As ρ increases the different
components of the solid Sε are progressively merging. Since the input triangles are supposed to provide a
reasonable approximation of the surface of some solid object S, there is a value ρ for which the solid Sε,ρ

divides the embedding space into exactly one outside component C and one or several inside components.
The interface Q between this solid Sε,ρ and the outside component C defines the topology of the restored
surface R that we want to construct. This definition implies that we automatically remove any internal
geometry (see Fig. 1). Note that we cannot derive ρ from the input geometry, as we do not know the
underlying solid S. Hence, in practice, ρ has to be specified by the user and the algorithm will then close
all gaps of diameter ≤ 2ρ.

a) b) c)

Fig. 1. Starting from an inconsistent polygon model (a) we let cylinders with radius ρ grow at all boundary edges. At some
point, the resulting solid separates the outside component from the interior components and we find the interface (green) that

defines the restored surface’s topology (b). The geometry of the restored surface finally matches the original data wherever it is
available. The holes in the original data are eventually closed by smooth patches (c).

The geometric shape of R is reconstructed by re-sampling the input triangles {Ti}. To avoid sampling
artifacts we have to make sure that sharp features defined by adjacent triangles are properly sampled. For
those regions of R which correspond to the cylindrical boundary parts of Q there is no underlying input
geometry available. Hence, we fill in smooth membrane patches that interpolate the original boundary edges.

3. OUR APPROACH

We use a combination of a volumetric geometry representation and the original triangle data in order to
exploit the advantages of both. The collection of input triangles {Ti} provides the best available geometric

information and is necessary for the reliable detection and faithful reconstruction of sharp features. The
volumetric representation is conceptually based on a voxel grid (in fact, we use an adaptive octree data
structure) which makes it easy and safe to detect and resolve topological inconsistencies since we can rely on
the simple voxel set topology. In fact, the theory of digital topology [Kong and Rosenfeld 1989] states that
we can consistently represent a manifold surface by a set of voxels if we consider “full” voxels as adjacent
if they are face-neighbors (6-neighborhood) and “empty” voxels as adjacent if they are vertex-neighbors
(26-neighborhood).

Hence our approach is to determine the mesh connectivity (= topology) of the resulting surface exclusively
based on the voxel topology and to define the vertex positions of the output mesh (= geometry) exclusively

1If the boundary happens to be non-manifold because of a configuration with two cylinders or spheres exactly touching each
other, we can always infinitesimally adjust the radius ρ to obtain a manifold configuration. Since our implementation is based
on a finite voxelization, we will apply well-known results from digital topology to avoid such non-manifold configurations.
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based on the input triangles. This extremely simplifies the handling of topological degeneracies in the input
and it guarantees that the output faithfully approximates the input.

Our specific contributions in this paper are:

—A fast and reliable sparse adaptive voxelization technique which comes with the guarantee that the col-
lection of “full” cells exactly represents the topology of the input solid Sε.

—A set of space and time efficient voxel operations that exploit the hierarchical structure of the octree.
These operations include triangle voxelization, volumetric seed filling as well as morphological dilation
and erosion.

—A feature sensitive surface sampling technique that computes optimal sample positions in the interior of
those voxels that are intersected by the surface.

—An extension of the dual contouring algorithm [Ju et al. 2002] that, unlike the original, produces guaranteed
manifold meshes.

Putting all these ingredients together, we present an algorithm that restores meshes completely automat-
ically. The technique is 100% robust against any type of inconsistency in the input triangle soup since it
does not rely on inherently error-prone computations such as ray intersection test with an inconsistent mesh.
Through the effective use of hierarchical data structures, we are able to run voxel resolutions as high as
40963 for moderately complex models on a PC with 2 GB main memory.

4. RELATED WORK

In the computer graphics literature one can distinguish between two fundamentally different approaches to
surface restoration. One approach is surface based and makes the implicit assumption that artifacts and
inconsistencies affect only a small fraction of the object. One tries to identify consistent sub-meshes which
are then merged together by snapping corresponding boundary segments or by stitching small patches into
the remaining gaps and holes [Bøhn and Wozny 1992; Dolenc and Mäkelä 1991; Borodin et al. 2002; Barequet
and Sharir 1995; Barequet et al. 1998; Barequet and Kumar 1997; Guéziec et al. 2001; Turk and Levoy 1994;
Liepa 2003]. Other local inconsistencies can be removed by first cutting the mesh and then stitching, e.g.,
complex vertices and edges [Guéziec et al. 2001] or small handles and tunnels [Guskov and Wood 2001].

The major difficulties with this approach arise from numerical robustness issues and from the fact that
spatial proximity not always coincides with geodesic proximity [Weihe and Willhalm 1998]. As a consequence,
artifacts like overlapping geometry and “double walls” are difficult to handle. Moreover, some surface
artifacts might not even be detectable in the connectivity of the input mesh, e.g., two topologically consistent
meshes spatially penetrating each other.

The other approach is volume oriented. Here the idea is to convert the given mesh data into a volumetric
representation, e.g., a signed distance function [Frisken et al. 2000], and then generate a consistent mesh
when converting back to a surface [Lorensen and Cline 1987; Gibson 1998]. In the volumetric setting, various
filter operations can be applied to fix some of the topological artifacts and holes [Davis et al. 2002] but this
also removes sharp features from the input data. Hence, most volumetric approaches have been suggested in
the context of topology-modifying surface simplification [Anduj́ar et al. 2002; Nooruddin and Turk 2003]. In
contrast, we are not aiming at simplification but rather at preserving as much geometric detail as possible.
Nevertheless we could use our algorithm for simplification by choosing a large tolerance threshold ε.

In the volumetric approach the conversion from surfaces to signed distance functions can be tricky in the
presence of penetrating geometry and cracks [Nooruddin and Turk 2003]. Moreover, when converting back
from volumes to surfaces, alias errors can compromise the output quality unless feature sensitive sampling
techniques are employed [Kobbelt et al. 2001; Ju et al. 2002].
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Recently [Ju 2004] presented a hybrid approach that resamples the input geometry on the edges of a regular
grid and uses approximate discrete minimal surfaces to fill the holes. However, as the hole boundaries are
explicitly traced, interpenetrating non-manifold geometry, like dangling triangles, can lead to unexpected
and wrong fillings. Furthermore, the approach does not adapt to the surface shape and hence produces
overly fine tessellated output meshes even in flat regions of the surface.

The technique presented in this paper combines the surface and the volume approach in a way that exploits
the advantages of both. We use the volumetric approach to restore a proper surface topology but instead
of trying to compute the characteristic function of the unknown solid S inconsistently defined by the input
data {Ti} [Andújar et al. 2002; Nooruddin and Turk 2003], we compute the characteristic function of the
known solid Sε (see Sect. 2) which is much more reliable. Similar to [Brunet and Navazo 1990; Greß and
Klein 2003] we use a hierarchical representation which associates polygonal geometry with every octree cell.

5. DETAILS OF THE ALGORITHM

Our algorithm proceeds in six steps. First an adaptive octree is generated where each cell stores references
to the triangles that intersect with it. In the second step, this octree representation is adaptively refined
further to increase the resolution in regions of high geometric complexity and in the vicinity of boundary
edges. The third step applies a sequence of morphological operations to the cells of the octree to determine
the topology of the restored surface. This topological information allows us to compute the connectivity of a
triangle mesh in the fourth step by using an extension of the dual contouring algorithm [Ju et al. 2002] which
guarantees that the restored surface has a proper manifold topology. Next, in step five, we compute the
vertex positions for the output mesh. This is done by feature sensitive sampling of the input geometry. The
final step six performs some simple and local mesh optimization operations on the output mesh to determine
the shape of the patches that cover the holes in the input mesh.

The input to our algorithm consists of an unstructured set of triangles {Ti}, a tolerance value ε and a
value ρ which controls the maximum size of holes in the surface that should be fixed.

5.1 Voxelization

We assume that the input model is centered at the origin and that

M := max {|xi|, |yi|, |zi|}
is its maximum absolute coordinate value. We initialize the root cell of an octree [Samet and Webber 1988]
with a bounding cube that has its corners at (M + s ε)[±1,±1,±1]T . By setting the maximum refinement
level of the octree to k with

k − 1 < log2 (M/ε + s ) + 1 ≤ k

we guarantee that the size of the smallest leaf cells (voxels) is below the prescribed tolerance ε and that we
have at least s layers of empty voxels along the faces of the root cell. This simplifies the implementation of
voxel operations since no special cases where a relevant part of the geometry intersects boundary cells of the
voxel grid, have to be considered.

For every input triangle Ti we recursively traverse the octree and store a reference index i in each leaf cell
that is intersected by Ti. A cell is split as soon as two non-coplanar triangles are registered where we define
the supporting planes of two triangles to be numerically coplanar if they deviate by less than ε within the
current cell.

Let E1 = [n1, d1] and E2 = [n2, d2] be the normalized equations of the supporting planes of two triangles
T1 and T2 that intersect the same octree cell with edge length 2h centered at the origin. If n1 and n2 are
parallel, the deviation of E1 and E2 is simply |d1 − d2|. If n1 and n2 are not parallel, we conservatively
estimate the deviation of the two planes E1 and E2 within a sphere S of radius r =

√
3 h centered at the cell
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center c. Elementary geometry tells us that the maximum deviation occurs in the plane E∗ spanned by n1

and n2 and which passes through the point p that is the point on the intersection line of E1 and E2 lying
closest to the cell center. The point p is computed by solving the underdetermined system

(

nT
1

nT
2

)

p =

(−d1

−d2

)

in the least norm sense. Now let

b1 =
n1 + n2

||n1 + n2||
, b2 =

b1 × (n1 × n2)

||b1 × (n1 × n2)||
be the two angle bisectors of E1 and E2 and let

{a1,a2} = E1 ∩ E∗ ∩ S

{a3,a4} = E2 ∩ E∗ ∩ S

which can be computed by simple ray-sphere intersection tests. We then estimate the deviation δ of E1 and
E2 by projecting the extremal points a1,a2,a3,a4 onto the bisectors b1,b2, i.e.

δ = min(δ1, δ2)

where

δi = max
j=1,2,3,4

bT
i aj − min

j=1,2,3,4
bT

i aj

When δ > ε we split the current cell and assign the registered triangles to the corresponding sub-cells.
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Fig. 2. Subdivision criterion in the plane E∗ to compute the maximum deviation of two planes E1 and E2.

For each triangle Ti the octree traversal is controlled by a quick triangle-cell intersection test which uses
the separating axis theorem (SAT) for convex polytopes [Gottschalk et al. 1996]. The idea is to project both
objects onto an axis and check if the resulting intervals are disjoint. SAT says that we only have to check a
finite number of axes. Let D be the set of all edges from both objects then we have to check every axis that
is defined by the cross product of any two vectors from D. In the triangle-cell case this means we have to
check at most 13 different directions.
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The traversal stops if the finest level k has been reached. After the first phase we have an adaptively
refined octree with each leaf cell referring to a set of triangles intersecting with it. Our cell splitting criterion
guarantees that all triangles in a cell that is not from the finest level k, are coplanar up to the prescribed
error tolerance ε.

5.2 Octree disambiguation

Since we want to use the digital voxel topology, i.e., face-adjacency or 6-neighborhood [Bischoff and Kobbelt
2002] to determine the surface topology of the output mesh, we have to make sure that both are equivalent
where the input data is (locally) manifold. This implies that we have to refine our octree representation such
that the given surface actually passes through all faces between adjacent “full” cells (see Fig. 3). By this we
automatically guarantee that non-adjacent geometric features of the input mesh are sufficiently separated
by at least one layer of empty cells. In order to achieve this we make another pass over the octree, this
time splitting each cell that has another non-coplanar triangle in any of its 26-neighbors (i.e., face-, edge-, or
vertex-adjacency). Moreover, if the triangles in two face-neighboring cells are numerically coplanar, we still
have to check for each triangle whether its supporting plane actually intersects the common face between
the two cells in order to guarantee that the resulting voxel topology correctly reflects the surface topology
of the input mesh. This test can be done very fast by just checking if the four corners of this common face
are lying on the same side of the supporting plane.

a) b)

c) d)

Fig. 3. In order to have the input surface topology correctly represented by the collection of full octree cells, we have to refine

the octree in a number of ambiguous configurations. In (a) the surface does not pass through the octree facet between two

full cells (fat facet). Further refinement in (b) established this property. In (c) two components of the input geometry are not

sufficiently separated. Again, the configuration can be resolved by further octree refinement (d).

In the same pass we also refine every cell that contains a boundary edge such that eventually all boundary
edges of the input data are represented on the finest level k. We tag the corresponding voxels as “boundary”.
This status information will be used in the next step to close the gaps and holes in the input surface.

The robust detection of boundary edges requires some effort since we do not assume any reliable connec-
tivity information in the input data. We solve this problem by exploiting the graphics hardware. Let us
assume that we have a cell from octree level k′ ≤ k and that all triangles in this cell are numerically coplanar.
Our idea is to render these triangles and check for pixels in the frame buffer that remain in background color.
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According to the definition of the root cell in the octree, we find that the size of the level k′ cell is not
larger than 2(k−k′) ε. Hence, we use a frame buffer with 2(k−k′+1) × 2(k−k′+1) pixel resolution. We set the
viewing frustum to the cell geometry (i.e., parallel projection) and we define the viewing direction by the
maximum component of the normal vector to the supporting plane of the triangles.

Into the cleared frame buffer we first render the supporting plane in green with z-buffer and frustum
clipping enabled. Then we render all the triangles in blue with a z-offset of ε. We know that the cell contains
a boundary edge if the resulting frame buffer has at least one green pixel left (see Fig. 4).

As our rendering test only evaluates the cell geometry at a finite number of pixels we may fail to classify
a cell as “boundary” even if it contains boundary edges. However, this can only happen if the boundary
edges are closer than ε ≤ ρ. Because of the volumetric representation, such a cell will nonetheless be tagged
as “full” and the gaps will be “invisible” to the dual contouring algorithm which we use to reconstruct the
geometry.

PSfrag replacements

view

image

Fig. 4. Boundary detection by two-pass rendering of all triangles in a cell.

5.3 Topological hole fixing by morphological operations

After the second phase we have an adaptively refined octree with full and empty cells from all levels. The
“full” voxel’s face neighborhood relation properly represents the topology of the input mesh. All geometric
features are separated by empty cells and some of the finest level cells are tagged as “boundary”.

In order to close the gaps and holes and to determine the restored surface topology, we apply a sequence
of morphological operators. The goal is to implement a discrete version of the cylinder growing process
described in Sect. 2. Since the user-defined maximum radius of these cylinders is ρ, we simulate the cylinder
growing by performing s = dρ/εe elementary dilation steps on all “boundary” voxels. Some more voxel
operations are then necessary to actually determine the outside component and to shrink back the “dilated”
voxels to the original “full” voxels.

Morphological operations with a small and symmetric template can be understood as procedures that
exchange information between adjacent voxels [Gonzalez and Woods 1992]. For example, an elementary
dilation operation sets all voxels to active that have an active neighbor. Conversely, we can think of each
active voxel passing its active status on to neighboring voxels. Hence we can decompose the elementary
dilation into sub-operations, i.e., first pass the status information to the left neighbor, then to the right, top,
bottom, front, back and so forth.

Each of these sub-elementary operations can be implemented very efficiently by a simple recursive traversal
of the octree. The idea is to call a procedure for each pair of source and target voxel that are supposed to
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exchange information. As an example, we present the pass back to front() procedures (cf. Fig. 5 for the
indexing scheme). Passing status information to the other directions is implemented analogously.
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Fig. 5. Indexing scheme for the children of an octree cell.

pass_back_to_front_1(cell c) {

for each back sub-cells c[1] ... c[4]

pass_back_to_front_1(c[i])

for each neighbor pair (c[1],c[5]), ... (c[4],c[8])

pass_back_to_front_2(c[i],c[i+4])

for each front sub-cells c[5] ... c[8]

pass_back_to_front_1(c[i])

}

pass_back_to_front_2(cell c1, cell c2) {

if both cells are leaves

c2.next_status = c1.current_status

else if c1 is a leaf cell

for each back sub-cell c2[1] ... c2[4]

pass_back_to_front_2(c1,c2[i])

else if c2 is a leaf cell

for each front sub-cell c1[5] ... c1[8]

pass_back_to_front_2(c1[i],c2)

else for each neighbor pair (c1[5],c2[1])...(c1[8],c2[4])

pass_back_to_front_2(c1[i+4],c2[i])

}

Once the status information has been passed into all directions, we call the procedure

commit(cell c) {

if c is a leaf

c.current_status = c.next_status

else

for each sub-cell c[1] ... c[8]

commit(c[i])

}

to finalize the elementary dilation operation. Notice that this operation can be applied to an adaptively
refined octree and the status information is passed from each active leaf cell to its neighbors no matter from
which refinement level they are.
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If we want the dilation operation to grow the active region with uniform speed into all directions we cannot
pass information between cells from different refinement levels, e.g., when we want the growing cylinders to
stay approximately circular. Hence, in situations where the dilation speed matters, we restrict the status
transfer to the finest level voxels (restricted dilation). As a consequence we have to refine each cell that is
adjacent to an active voxel, down to the finest level before it is activated. This is done by replacing the
pass back to front 2() procedure with

pass_back_to_front_2’(cell c1, cell c2) {

if both cells are finest level voxels

c2.next_status = c1.current_status

else if c1 is an active finest level voxel

if c2 is a leaf cell

refine c2

for each back sub-cell c2[1] ... c2[4]

pass_back_to_front_2’(c1,c2[i])

else if c1 is a leaf cell

return

else if c2 is a leaf cell

for each front sub-cell c1[5] ... c1[8]

pass_back_to_front_2’(c1[i],c2)

else for each neighbor pair (c1[5],c2[1])...(c1[8],c2[4])

pass_back_to_front_2’(c1[i+4],c2[i])

}

Obviously, depending on the number of restricted dilation steps, this will increase the complexity of the
octree representation significantly. However, since we apply this kind of restricted dilation operators only to
the “boundary” voxels, just a few regions of the volume are actually affected.

The elementary dilation operators can now be combined to implement our topology reconstruction algo-
rithm, see Fig. 6. Each individual step performs a dilation from status-x cells to status-y cells. By this we
mean that status-x is considered the active status for this operation and only cells with status-y are affected
by the operation. All other cells’ status remain unchanged.

Step (a): Initially all cells in the octree are “full” or “empty” and some voxels are tagged “boundary”.
We start by performing s = dρ/εe restricted dilation steps from all “boundary” voxels to the “empty” cells.
Since we define the topology of the output surface via the 6-neighborhood of “full” voxels, the restricted
dilation propagates information only in the six major directions. All voxels that receive a status update
during these steps are tagged “dilated”. If the input data has gaps and holes that are smaller than ρ then
these are filled with “dilated” voxels by this operation, see Fig. 6 a.

Step (b): We set all “empty” cells that are touching the outer faces of the root cell to “outside”. This
is correct due to our definition of the root cell in Sect. 5.1. Then we perform several unrestricted dilation
steps from the “outside” cells to the “empty” cells until no more cells change their status. By this we in
fact implement a seed filling algorithm that finds the complete outside component enclosing a solid which
consists of “full”, “dilated” and “empty” cells, see Fig. 6 b. The refinement in the disambiguation step
(Sect. 5.2) guarantees that the seed filling actually reaches all parts of the outside component. Since we use
the 6-neighborhood between “full” and “dilated” voxels, we use the 26-neighborhood for the complement,
i.e., the “outside” voxels. This guarantees a compatible digital topology [Bischoff and Kobbelt 2002].

Step (c): Now we perform s dilation operations from the “outside” cells to the “dilated” cells. This
shrinks back the boundary of the solid enclosed by the “outside” cells while not changing the status of any
“full” cell, see Fig. 6 c. Since all “dilated” cells into which the “outside” cells propagate their status, have
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been generated in step (a), they already are from the finest level. Hence the propagation speed is uniform
even if we do not apply restricted dilation operations.

After this last step, we have the surface topology of the output mesh implicitly defined by all 6-connected
“full”, “dilated” or “empty” cells that are 26-adjacent to an “outside” cell, see Fig. 6 d. If the input data
happens to contain gaps and holes that are larger than the user-defined threshold ρ then these are not closed
in this phase. However, the following phases of our model restoration algorithm are not handicapped by this.
The algorithm will still produce a proper manifold surface which covers both the inside and the outside of
the input surface. Geometrically the two sheets will coincide but topologically they are distinct. Notice that
there is no way of automatically solving the general hole filling problem for large holes. If significant parts
of the input geometry are missing then the semantics of the object cannot be recovered.

a) b) c) d)

Fig. 6. Hole-fixing by morphological operations. (a) First the boundary cells are dilated (magenta) into the empty cells (green).
(b) Next we determine the outside component (blue). (c) The outside component is dilated back into the already dilated cells
(magenta). (d) The result is a clean separation of outside (blue) and inside cells (white) from which we deduce the surface
topology of the output mesh.

5.4 Surface topology extraction

We turn the implicit voxel topology information into explicit mesh connectivity information by applying
an extension of the dual contouring algorithm [Ju et al. 2002]. Our extension guarantees that the output
mesh is a clean manifold by carefully splitting complex vertices and edges that are produced by the original
algorithm.

We use a face based mesh representation where each face stores pointers to its neighboring faces and to
its adjacent vertices. Note that we do not need an explicit representation for the edges of the mesh. In fact,
using just the face neighborhood relation implies that the mesh data structure cannot represent complex
edges at all.

The mesh is then build up in 3 steps: First we create the faces, second we set the pointers between
neighboring faces and finally we create the vertices and set the corresponding vertex pointers.

Step 1: A grid-vertex in the octree is considered “outside” if it has at least one adjacent “outside” cell.
A grid-edge is considered “inside” if all the surrounding cells are “full” or “dilated”. We enumerate all pairs
(v, e = (v,w)) of “outside” grid-vertices v and incident “inside” grid-edges e = (v,w) where all adjacent
cells are leaf-nodes. This is done by a recursive octree traversal procedure similar to [Ju et al. 2002]. For
each such pair we create a dual polygonal face f , namely a triangle or quadrangle depending on whether e
has three or four adjacent leaf cells. By duality, each edge of such a polygonal face f is associated with an
octree grid-facet F . Finally we assign a piercing point and a piercing normal

pf =
2

3
v +

1

3
w

nf = v − w
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to f . The piercing point lies on e and provides a preliminary geometric embedding for the face f . This
piercing point is necessary to distinguish between the two faces that might be associated with the edge e
if both end points are “outside”. Notice that the piercing point position is not used for reconstructing the
geometric shape of the final surface. The piercing normal is chosen such as to always point to the “outside”.

Step 2: We recursively visit all octree grid-facets F and collect the polygonal faces f1, . . . , fn associated
with F (if any). Note that by construction, n is even. Note also that by duality, all fi conceptually share
an edge that is dual to the octree grid-facet F . Let c be the center of F and p1, . . . ,pn the piercing points
assigned to the faces f1, . . . , fn. The vectors pi − c all lie in the supporting plane of F and hence induce
a canonical counterclockwise ordering fπ(1), . . . , fπ(n) of the faces fi where we can assume without loss of
generality that nf

π(1)
points in counter-clockwise direction. To establish the face connectivity, we double link

the faces fπ(1), . . . , fπ(n) in that cyclic order (see Fig. 7). Note that since we do not represent mesh edges
explicitly, there is no need to split the complex edge common to all fi.

Step 3: Finally, we create a new vertex for every cyclic triangle/quad fan in the polygonal mesh and set
the pointers of the corresponding faces to this vertex. This is implemented by iterating over all faces and
following the face-neighbor links until each n-sided face has all its n vertices. This procedure automatically
splits complex vertices since a new copy is generated for each fan adjacent to it. Hence the result is guaranteed
to be a closed and manifold polygonal mesh. Notice that in contrast to the original dual contouring algorithm,
more than one vertex can be generated for a cell. The geometric position for the vertices is determined in
the next step.

a) b) c) d)

Fig. 7. The figure shows the supporting plane of an octree grid-facet. Octree facets that are adjacent to two full cells are marked

green, facets that are adjacent to one or two empty cells are blue. For each pair of an “outside” vertex and an “inside” edge (a)
we create a polygonal face f and its associated piercing point pf symbolized by bars and dots in (b). The faces are then linked

in counterclockwise order (c). Finally, we create a vertex for each cyclic triangle/quad fan (d). The actual geometric positions
of these vertices are determined in the geometry reconstruction phase.

5.5 Surface geometry reconstruction

Once the mesh connectivity has been reconstructed, we have to compute the vertex positions. Each vertex
is associated with one cell of the octree. If this cell is “full” we compute a feature sensitive sample point
based on the set of triangles that are registered in this cell. If the cell is “dilated”, i.e., it has been activated
during the topological hole filling then there is no local geometric information available and we set the vertex
position to “don’t care”. The actual position of these vertices is determined in the concluding post-processing
phase.

After the hierarchical voxelization phase, all the input triangles are registered in the corresponding leaf
cells. The refinement criterion guarantees that if a leaf cell is not from the finest level k then all the triangles
that intersect this cell are numerically coplanar, i.e., they deviate by less than ε. Hence, we can be sure that
the sample points computed for each voxel are satisfying the prescribed tolerance ε.
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On the other hand, a common problem with CAD datasets are “double walls” and other internal redundant
geometry. These are geometrically irrelevant because they do not contribute to the outside surface of the
solid S but they still might affect the sample point computation if the internal geometry reaches into a
cell where the restored surface passes through, i.e., a cell which is adjacent to an “outside” cell. Although
the resulting geometric artifacts are not violating the error tolerance, they might nevertheless cause some
disturbing deviation of the normal vectors (see Fig. 8).

a) b)

Fig. 8. Redundant internal geometry like double walls can affect the sample position (a). Although this does not violate the

prescribed tolerance ε, we can usually further improve the quality of the output mesh by a local visibility test from the blue

outside region. This test detects the redundant triangles and excludes them from the sample point computation (b).

Hence we can visually improve the quality of the output surface by locally determining for each cell which of
the registered triangles actually contribute to the outside surface. The feature sensitive sample computation
is then based only on these triangles. If the manifold extraction procedure generates more than one surface
sheet within a cell, this local test has to be done for each copy of the splitted vertex.

To avoid complex visibility tests, we implemented the culling procedure for irrelevant geometry, again, by
exploiting the graphics hardware. For each surface sheet we select one of the “outside” corners of the octree
cell as the viewing position and define the three adjacent grid-facets as clipping planes. Then we render the
registered triangles each with a different color and finally read out the frame buffer to check which triangles
are visible at least in one pixel. After this local visibility test, we use only the remaining relevant triangles
to compute the actual sample point.

It is tempting to try to make this visibility test globally, i.e., to determine which triangles are contributing
to the outside surface in a pre-process and then to start the mesh restoration algorithm only with this subset.
However, this pre-computation turns out to be as difficult as the mesh restoration itself since we cannot use a
simple from-viewpoint-visibility test and some triangles might be partially relevant and partially irrelevant.

For computing a sample point in a “full” cell, we distinguish between the cases when all triangles lie in
the same supporting plane, when they belong to two intersecting supporting planes, or when they belong to
three or more planes. In order to minimize the number of potential fold-overs in the resulting mesh, we aim
at finding sample points that lie in the interior of the corresponding cells. Hence among the candidates for a
good sample point position we want to pick the one that is closest to the cell center in the ‖ · ‖∞-norm since
this one could lie inside of the cell even in situations when the optimal sample according to the Euclidean
norm lies outside [Varadhan et al. 2003]. For the cases of one or two supporting planes the ‖ · ‖∞-optimal
point can be calculated easily, for three and more planes we fall back to the standard approach of the quadric
error metric [Garland and Heckbert 1997] for feature sensitive sampling [Kobbelt et al. 2001].

One supporting plane: The optimal sample point that is closest to the cell center with respect to the
‖ · ‖∞-norm can be found by placing an infinitesimally small cube around the center and letting it grow until
it touches the supporting plane of the triangle. Since a “full” voxel does not contain a boundary edge it is
obvious that this growing cube touches the triangle with a corner first. In special axis-aligned configurations
the growing cube might touch the triangle simultaneously with an edge or a face. In these situations we can
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pick any of the involved corners. The cells classified as “boundary” can be treated as “dilated” with no valid
geometry information which implies a “don’t care” vertex position, or they can be handled as if they had
two supporting planes intersecting along the boundary edge.

We compute the closest corner point by shooting rays from the cell center (which we take to be at the
origin in what follows) into all space diagonal directions [±1,±1,±1]T . Let E = [n, d] be the normalized
plane equation then the respective distances to the intersection points are

λ±,±,± =
−d

±nx ± ny ± nz

and the minimum distance is

λmin =
|d|

|nx| + |ny| + |nz|
.

The position of the corresponding sample p is then given by

p = λmin sign(d)





sign(nx)
sign(ny)
sign(nz)



 .

Two supporting planes: In this case we want to place the sample on the intersection line L between
the two planes in order to preserve the potentially sharp edge. We use the same analogon of the growing
cube and find that this time the cube will touch the (unbounded) intersection line L with one of its edges
first. Again special axis-aligned cases can occur but we can still select one of the involved edges.

In order to find the nearest point on L : q + ν r to the cell center (= origin) in the ‖ · ‖∞-norm we have
to compute intersections of L with the planes spanned by the cell center and the edges of the cell. We
simplify the calculations by projecting the local configuration into each coordinate plane. For example in
the xy-plane we find that the projection of L has the implicit form

[ry,−rx]

(

x

y

)

= dxy = qx ry − qy rx.

Shooting rays into all diagonal directions [±1,±1]T in the xy-plane gives the minimum distance

λxy,min =
|dxy|

|rx| + |ry|
.

Analogously we compute the minimum distances λyz,min and λzx,min in the other coordinate planes. Finally,
the minimum spatial distance λmin is the maximum of the three values λxy,min, λyz,min, and λzx,min. Let
λmin = λξη,min then the coordinates of the sample point p are eventually obtained by

(

pξ

pη

)

= λmin sign(dξη)

(

sign(rη)

−sign(rξ)

)

and the third coordinate can be read off the parametric formulation of L. If the sample position obtained
by this construction happens to lie outside the cell, we simply discard it and set the corresponding vertex
to “don’t care”. This situation occurs when two planes pass through a cell but their intersection line lies
completely outside. We do not lose significant feature information by discarding this feature sensitive sample
since the corresponding edge will be properly sampled in the neighboring voxel which is guaranteed to be
full as well due to our voxelization strategy (see Fig. 9).

Three or more supporting planes For three supporting planes the optimal sample point is uniquely
defined by the intersection of the three planes. If even more numerically non-coplanar planes have to be
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a) b)

Fig. 9. (a) Sample points are computed by growing cubes from the cell centers. If only one plane intersects a voxel, the sample

point is found along one of the voxel diagonals (bottom left and right). In case of two planes, the sample point is found along

the edge of the cube (top cell). If a cell is intersected by three or more planes and the sample point lies outside of the cell,
we set the sample point to “don’t care” (bottom middle). (b) The corresponding vertex will be split in two by the manifold

extraction procedure (Sect. 5.4) and the sample positions will be computed in the post-processing step (Sect. 5.6).

considered, the most reasonable way to define the optimal sample point is by using error quadrics and
choosing that point which has the minimum squared distance to all involved planes [Garland and Heckbert
1997]. Again we discard the sample position and tag the vertex as “don’t care” if the sample lies outside the
current octree cell.

5.6 Post-Processing

5.6.1 Computing the “don’t care” positions. In the last phase of the algorithm we already have a polygon
mesh consisting of quads and triangles with most vertices having their coordinates assigned. What remains is
the instantiation of the “don’t care” vertices and the final triangulation which should avoid flipped triangles.

For the “don’t care” vertices we could not compute a position in the earlier phases since they correspond to
voxels that have been activated by the dilation operation to close holes and hence they cannot be associated
with any input geometry. In the resulting mesh, the “don’t care” vertices form small patches that span
the holes in the input data and that are surrounded by vertices from “full” voxels. Hence the easiest way
to define their vertex positions is to apply an iterative smoothing filter [Taubin 1995]. Since the vertices
which correspond to the “full” voxels do not change their positions, the patches of the “don’t care” vertices
converge to smooth membrane patches that fill in the holes in the input data [Kobbelt et al. 1998]. Moreover,
since the vertex positions obtained by feature sensitive sampling in the geometry reconstruction phase are
not affected by the smoothing operation all sharp features of the input model are well preserved. Note,
however, that we currently do not restrict the movement of the vertices during smoothing. Hence, in rare
cases it may happen that the membrane surface intersects another part of the reconstruction.

To obtain a triangulated output mesh we have to split the quads generated with the extended dual
contouring method by inserting diagonals. Here we have to choose the diagonals carefully in order to avoid
flipped triangles. If the quad contains two opposite feature vertices we select the diagonal that connects
these vertices, otherwise we simply pick that diagonal which leads to the smaller angle between the normals
of the adjacent triangles.

A problem may arise if an edge is inserted multiple times, which may happen e.g.when we triangulate two
opposing quads by the same diagonal or if more than two quads share a common edge. Then the resulting
configuration can still be represented by any halfedge or face-based data structure but not by an indexed face
set, which is unfortunately the structure used for many file formats. Hence, before saving our reconstruction
to such a file format we proceed as follows: We detect double edges by enumerating for each vertex all
incident edges. We disambiguate such edges by doing a 2-to-4 split (i.e., insert the midpoint of both copies
of this “double” edge and connect it to the two opposite vertices of the adjacent triangles).
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5.6.2 Reducing the output complexity. Even a polygon model with just a few triangles can have local
configurations like tiny handles or tunnels that could be relevant or irrelevant depending on the design intent.
We leave this decision to the user by letting him set the precision tolerance ε as an input parameter to our
algorithm. Since this tolerance implies that the algorithm has to resolve all topological features up to this
resolution, we have to refine the octree data structure up to the corresponding level if necessary. However, our
algorithm automatically adapts the refinement depth to the local feature size and hence provides a maximally
sparse representation. In particular the complexity (=number of octree nodes) of our data structure scales
like O(n) compared to O(n3) for a naive, uniform grid and to O(n2) for a restricted octree as is used
in [Ju 2004]. Accordingly, the output complexity of our algorithm is an order of magnitude lower than that
of other approaches which generally have to apply a marching cubes or dual contouring algorithm on the
highest resolution. For example, the reconstruction at a resolution of 10003 of the architectural model at the
top left of Table I produces approx. 1 million triangles with our algorithm compared to 6 million triangles
for [Ju 2004] with the implementation provided by the author.

The output complexity of our algorithm could either be reduced by incorporating an octree pruning step
before the surface extraction, as was done in [Ju et al. 2002]. This, however, would make the scheme less
intuitive and simple and would have to rely on additional assumptions on the input geometry. Hence we
have opted to apply a mesh decimation scheme after the extraction taking into account somewhat larger
intermediate meshes. For our purposes we use a standard QEM decimation algorithm based on half-edge
collapses that was modified to provide feature preservation by taking into account the normal variation before
and after the collapse. Since efficient out-of-core decimation techniques are available [Wu and Kobbelt 2003],
this is not considered a serious bottleneck.

6. RESULTS

We have run our algorithm on a large variety of technical and architectural CAD models (see Fig. 10, 11, 12,
13). The algorithm never failed to produce a closed and consistent manifold mesh. Table I gives an overview
over some measurements. The timings for “voxelization” include steps 5.1 to 5.3 while “geometry” includes
5.4 to 5.6 (without post-decimation).

The running time of our algorithm depends on the prescribed tolerance ε as well as on the amount of
detail in the object. In flat regions the refinement stops on coarse levels while in the vicinity of sharp corners
and boundaries the refinement goes down to the finest level.

A problem with some architectural models is the presence of double walls that are extremely close together.
This can trigger excessive refinement in apparently flat regions of the input model because the local refinement
criterion in the first phase does not have access to the inside/outside information computed in the third step.

The resampling of the original data preserves all geometric features but it also increases the number of
faces significantly. This is because our input models are usually generated by hand and hence faces are
placed intelligently. In contrast our automatic resampling does not know the model “semantics” and decides
locally where to put the sample points. However, we can reduce the output complexity down to a size that
is comparable to that of the input mesh. In the examples shown in Figure 11 we have applied a standard
QEM decimation algorithm that has been extended by a normal cone criterion. This criterion prevents
edge-collapses that would result in a strong normal deviation of the adjacent triangles and leads to a better
preservation of the sharp features. If the output becomes very large we can simplify it out-of-core using a
streaming decimation algorithm [Wu and Kobbelt 2003].

Figure 12 demonstrates the automatic hole detection and hole closing capabilities of our algorithm. Note
that even if we skip the hole closing stage, the output of our algorithm will still be manifold, although some
parts of the surface might be triangulated from both sides.

Finally, Figure 13 shows how our algorithm nicely removes unwanted interior geometry that is due to the

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



Automatic Restoration of Polygon Models · 17

architect arbitrarily sticking together the pieces of the model.

20003

15003

13003

Fig. 10. The figures above show the reconstructions of various architectural models. The original models shown in blue have

a large number of artifacts since most features are modeled as individual objects that are inconsistently stuck together. Note
how the size of the triangles of the reconstructed models (green) adapts to the local feature size in the original models.

7. CONCLUSION AND FUTURE WORK

With the algorithm that we present in this paper the reconstruction of a clean and consistent triangle mesh
from an inconsistent input mesh can be done fully automatically. The algorithm just requires two parameters,
one is the error tolerance ε and the other is the maximum size ρ up to which gaps and holes in the surface
should be fixed. The algorithm is guaranteed to produce a correct result since topology reconstruction is
done based on the digital topology of an (adaptive) voxel grid. For the mesh restoration only the geometric
location of the input triangles is used and no consistent normal orientation or connectivity information is
required.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



18 · Stephan Bischoff et al.

original

1124 triangles

reconstruction at 10003,

279892 triangles

decimated consistent result,

7018 triangles

original,
3346 triangles

reconstruction at 10003,
1370802 triangles

decimated consistent result,
18032 triangles

Fig. 11. Our algorithm automatically adapts the octree refinement depth to the local feature size of the input models. However,

to further reduce the number of triangles in the output mesh, we can apply a standard mesh decimation algorithm to the
reconstruction. Here we used an algorithm that is based on quadric error metrics and that incorporates a normal cone constraint

for better feature preservation.

In our experiments we demonstrate the restoration of complex architectural CAD models that have many
inconsistencies and geometric features from a large range of magnitudes. Due to the effective use of a
hierarchical octree data structure we could run voxel resolutions as high as 40963 and the complete restoration
process usually took only a few minutes. Only on very detailed input models (Table I, top right) the
reconstruction might take considerably longer, which we attribute to memory swapping effects on our 2GB
machine.

In rare cases our algorithm may accidentally fill in features like notches that are located in the immediate
vicinity of boundary edges. Hence, we plan to design and evaluate heuristics to detect and preserve gaps
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original with gap reconstruction without gap closing reconstruction with gap closing

Fig. 12. Our algorithm automatically fills holes up to a user prescribed threshold with smooth membrane surfaces (right).

Even if the hole-filling step is skipped, the reconstruction still has a topologically valid connectivity (middle) but every wall is

triangulated from both sides.

Fig. 13. The figure above shows the interior of an architectural model before (blue) and after (green) reconstruction. Note that
the algorithm has successfully removed all interior dangling triangles.

that are actually intended by the designer.
Our next step towards an improvement of the algorithm is to enable virtually infinite voxel resolutions

(and hence arbitrary precision) by decomposing the global octree into smaller bricks that are processed one
at a time in main memory. The dependencies between neighboring bricks can be taken care of by providing
sufficient overlap. The thin wall problem is still another open research question which has not been addressed
in the literature.
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Guéziec, A., Taubin, G., Lazarus, F., and Horn, B. 2001. Cutting and stitching: Converting sets of polygons to manifold

surfaces. IEEE Transactions on Visualization and Computer Graphics 7, 2, 136–151.

Guskov, I. and Wood, Z. J. 2001. Topological noise removal. In Proc. Graphics Interface 2001. 19–26.

Ju, T. 2004. Robust repair of polygonal models. ACM Trans. Graph. 23, 3, 888–895.

Ju, T., Losasso, F., Schaefer, S., and Warren, J. 2002. Dual contouring of hermite data. In Proc. SIGGRAPH 02. 339–346.

Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes.
In Proc. SIGGRAPH 98. 105–114.

Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H.-P. 2001. Feature sensitive surface extraction from volume

data. In Proc. SIGGRAPH 01. 57–66.

Kong, T. and Rosenfeld, A. 1989. Digital topology: Introduction and survey. Computer Vision, Graphics and Image

Processing 48, 357–397.

Liepa, P. 2003. Filling holes in meshes. In Proc. Symposium on Geometry Processing 03. 200–205.

Lorensen, W. E. and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. In Proc.
SIGGRAPH 87. 163–169.

Nooruddin, F. and Turk, G. 2003. Simplification and repair of polygonal models using volumetric techniques. IEEE
Transactions on Visualization and Computer Graphics 9, 2, 191–205.

Samet, H. and Webber, R. E. 1988. Hierarchical data structures and algorithms for computer graphics. part i. IEEE Comput.

Graph. Appl. 8, 3, 48–68.

Taubin, G. 1995. A signal processing approach to fair surface design. In Proc. SIGGRAPH 95. 351–358.

Turk, G. and Levoy, M. 1994. Zippered polygon meshes from range images. In Proc. SIGGRAPH 94. 311–318.

Varadhan, G., Krishnan, S., Kim, Y., Diggavi, S., and Manocha, D. 2003. Efficient max-norm distance computation and
reliable voxelization. In Proc. Symposium on Geometry Processing. 116–126.

Weihe, K. and Willhalm, T. 1998. Why cad data repair requires discrete algorithmic techniques. In Proc. 2nd Workshop on
Algorithm Engineering. 1–12.

Wu, J. and Kobbelt, L. 2003. A stream algorithm for the decimation of massive meshes. In Proc. Graphics Interface 2003.
185–192.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.


